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As a yearlong undergraduate project, we are developing a 1.2-meter autonomous sailboat for a 

trans-Atlantic attempt, from New England to Ireland, in the summer of 2020.  The control system 

for the sailboat requires sensors for wind and location, a solar rechargeable power system, a low-

powered microcontroller, and mechanical actuators for sail and rudder control.  In addition to the 

hardware design, we are also developing custom software for autonomous navigation and control 

of an experimental wing-sail.  Initial testing of a hardware mockup had positive results, however 

rudder response times were too slow.  We found that the rudder was delayed as it waited for the 

complex navigation subroutine to execute.  Our solution uses proto-threading to mimic parallel 

processing on a sequential processor, allowing us to run multiple subroutines at the same time.  

This spring, we will install the full, improved control system in the sailboat’s hull and perform 

testing on the water. 
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Introduction 

Autonomous systems are increasingly 

prevalent in the maritime industry with 

autopilots, dynamic positioning systems, 

automated cargo handling, and monitoring 

systems improving efficiency, reliability, and 

safety of transportation at sea.  Automation 

streamlines shipboard operations, sometimes 

reducing merchant vessel crew sizes from 

upwards of 40 to as few as 15 people [1].  

With clear benefits, maritime automation has 

grown interest at the undergraduate level. 

The Microtransat Challenge seeks to 

improve the state of maritime automation 

through competition.  The goal is to complete 

a trans-Atlantic crossing with an unmanned, 

wind-powered vessel up to 2.4 meters in 

length.  While the first unmanned sailing 

vessel successfully completed the course in 

August 2018, no completely autonomous 

vessel has finished [2].   

As the leading federal agency overseeing 

maritime industry, the Coast Guard has an 

operational interest in fostering and 

understanding automated technologies and 

their applications. The United States Coast 

Guard Academy has worked in the field of 

automation and autonomous systems for 

some time, including autonomous aerial 

vehicles, ground vehicles, and one prior 

autonomous sailing vessel (ASV) project, but 

has yet to attempt the Microtransat.   

We are currently in the process of 

creating an ASV, though a yearlong 

undergraduate directed study, to attempt the 

Microtransat Challenge.  The design tasks are 

unique and have already bridged numerous 

engineering disciplines including systems 

engineering, electrical, mechanical, and 

marine engineering.  Specific topics include 

controllers, control algorithms, and power 

systems.  



 

Figure 1 Flow chart of project tasks 

Project Overview 
Work on the ASV project began during 

the Fall 2018 semester and will continue 

through at least May 2019 (Figure 1).  Our 

primary Fall semester goal was to illustrate 

the project’s viability by creating a working 

“mockup” of the control system. Dry land 

testing with the mockup on a small cart 

allowed us to simulate course deviations, 

wind shifts, and other environmental stimuli 

while observing system responses (Figure 2).   

Figure 2 Mockup on cart for testing 

The result of the Fall semester is shown 

in Figure 3. Simple cardboard indicators 

attached to the servos illustrate rudder and 

wing-sail movements.   

Rather than a traditional soft sail, we 

decided to experiment with a rigid wing for 

our project. High performance sailing 

vessels, such as America’s Cup yachts, have 

pioneered the use of rigid wings [3].  These 

airfoils may have potential advantages for 

small vessels as well. The Naval Academy 

found the wing-sail to be promising for ASV 

performance across a variety of wind angles, 

strengths, and environmental conditions [4]. 

Figure 3 Final product of the Fall 2018 semester 

Work in the Spring 2019 semester has 

shifted focus from concept validation to 

optimizing the 2018 design in preparation for 

on the water testing and an attempt at a trans-

Atlantic crossing.  

 
 



Preliminary Control System Design 

Hardware Architecture 

The ASV’s control system hardware is 

straightforward.  The vessel must sense wind 

direction, determine its position to calculate a 

desired heading, and compare its desired and 

current headings to determine required 

course changes.  These requirements lead to 

the ASV’s hardware architecture (Figure 4).  

A Davis 6410 Vantage Pro2 anemometer 

senses wind speed and direction, although we 

are looking for a more rugged component to 

replace it.  The Waveshare NEO-7M-C GPS 

provides the ASV with positioning data.  

Documentation available for both the 

Waveshare and the Davis anemometer made 

them excellent candidates for our control 

system’s development [5] [6].  Our heading 

sensor was the Adafruit LSM303, which 

includes an accelerometer and magnetometer 

that can yield tilt-compensated magnetic 

compass headings.  
 

Figure 4 Block diagram of ASV control system 

 hardware components  

The ASV’s microprocessor is a variation 

of the Arduino Uno. Two of the board’s 

analog input pins are utilized for the LSM303 

as an I2C (Inter-Integrated Circuit) 

connection, one analog input is reserved for 

the anemometer, and two dual-purpose 

input/output (I/O) pins for the GPS (Figure 

5).  Two other I/O pins deliver the required 

pulse width modulation (PWM) for the 

rudder and wing servos (Figure 5).  

The last components of the control 

system hardware are mechanical actuators for 

wing-sail and rudder movement.  During 

initial development two different servos were 

utilized for these actuators: an A0090 micro 

sized servo that was included in the 

Arduino’s starter kit, and a HiTEC D646WP.  

Component selection involved 

substantial research to ensure their 

interoperability.  Additionally, we were 

required to read technical documentation, 

troubleshoot, and make component 

substitutions when devices did not meet 

project requirements.   

Figure 5 Arduino microprocessor with connections 

 labeled  

Control Code 

Developing the algorithms and 

controllers for the project was the greatest 

technical challenge for the first semester.  

Figure 6 illustrates the general flow chart of 

the control code by December 2018.  

Separate functions interpret data from the 

sensors.  Arduino is an open source platform 

with documentation and programing 

“libraries” of useful functions readily 

available for work with a wide variety of 

sensors.  While we decided to focus the 

project on automation and systems, it should 

be mentioned that optimizing I2C, analog, 

and digital connections offers a project 

extension into signal processing.  

Once the ASV’s location is determined 

from the GPS, the control program compares 

this position to the next desired position for a 



desired heading calculation.  That heading is 

compared to the corrected heading from the 

LSM303 to determine a required course 

change.  If no course change is necessary, the 

ASV will simply trim its wing-sail and 

continue on.   

If a turn is required, the control code 

references the anemometer’s input to 

determine what type of turn is appropriate.  

Sailing vessels cannot sail directly into the 

wind but must sail at angles for their sail or 

wing to provide the desired, driving force. 

Our algorithm balances maximizing the 

distance sailed in the correct direction with 

minimizing the number and complexity of 

sailing maneuvers if the desired heading is 

too close to the wind.  Any turn may require 

one of two different sailing maneuvers (turn 

type), as shown in Figure 6.  

After determining the type of turn, the 

corresponding turn algorithm adjusts both the 

rudder and wing-sail angles to complete the 

maneuver.  A discrete-time, proportional 

controller was used for the rudder.  The 

apparent wind angle was mapped to the 

position of the wing-sail using a linear 

relationship.   

Occasionally, sailing vessels will get 

stuck in a position where the boat is pointing 

directly into the wind. Since the sail or wing 

does not provide forward motion in this 

scenario, normal control inputs do not work. 

We created a specific algorithm (the “irons” 

routine) to detect and escape this situation 

and return the vessel to a sailable course.   

 

Figure 6 Flowchart of the ASV control as of December 2019



Results 

We conducted two “field” tests with the 

ASV control system in 2018, utilizing the 

mock-up mounted on a wheeled cart.  Both 

tests put the control system through turns, 

simulated wind shifts, waypoint increments, 

and desired course changes.   

The test results validated the logic for all 

aspects of the control algorithm but often the 

response came far too slowly. Often, the 

rudder would move too little then pause for 

up to 30 seconds and overcorrect. 

Troubleshooting showed that the slow 

execution was the result of sequential 

processing of the complex computations, 

calculations, and data processing for the 

navigation subroutines.  Code for parsing and 

interpreting the GPS and LSM303 inputs, and 

a navigation function involving many 

trigonometric computations, are a substantial 

workload for the Arduino’s single core 

processor.  The control code by itself 

occupies over half of the Arduino’s useable 

program memory.  

Modified Control Code 

Implementation of Protothreads 

To address issues with the execution 

speed of the control program, we have 

implemented protothreads to mimic parallel 

processing on the Arduino’s single core 

processor.  This technique pulls certain tasks 

from the control code, and still executes them 

sequentially, but in between the execution of 

other tasks. Arduino’s “TimedAction” library 

provides a user-friendly approach for proto-

threading portions of Arduino code and 

defining the time interval over which the 

threat is executed. 

Not everything needs to be proto-

threaded as we still want certain actions to 

occur in a specified order. Functions for 

reading the anemometer, GPS, and LSM303 

inputs, and the navigation function, have 

been proto-threaded. The threads update 

global variables, accessible anywhere in the 

program, for wind angle, position, desired 

heading, and heading.  The major advantage 

to proto-threading these complicated 

functions is that it prevents their unnecessary, 

and slow, execution in every iteration of the 

control code’s loop.  Instead, required 

variables are updated on frequency intervals 

that make sense, and that do not hamper 

control code execution speed.  

 

Code Consolidation 

The initial structure of the control code 

was bulky and hardly efficient.  Through 

subsequent developments to the control code, 

we have eliminated calls to functions which 

use loops for specific turn types.  Instead, 

after the turn type determination is made, the 

required course change and rudder angle are 

determined and executed.  The angle of the 

wing-sail is then adjusted for the current wind 

angle, and the control code moves onto its 

next iteration.   

Field testing has illustrated that this 

method provides the same basic responses as 

the specific turning functions.  With the 

bulky turning functions eliminated, and the 

control code simplified, execution becomes 

faster and more seamless. 

The implementation of proto-threading 

and code consolidation has had a noticeable 

improvement on system response times.  

Field testing now verifies minimal lag in 

responses (approximately 500ms) for both 

rudder and wing-sail movement in response 

to stimuli.  

Controller Development 

Since the wing-sail position is directly 

controlled by a servo, its simple mapping of 

apparent wind angle to desired wing position 

is appropriate and allows for optimum 

aerodynamic efficiency.  

The same is not true of the rudder. The 

simplest type of control is a proportional 

controller, which sets rudder angle based 

solely on the magnitude of the course 

deviation.  Proportional control is 

unresponsive to different rates of turn and 



Figure 9 Power system block diagram 

 

causes practical issues with the ASV 

overshooting and oscillating around its 

desired course.   

Instead, the rudder requires a 

proportional-integral-derivative (PID) 

controller.  The proportional part of the 

rudder’s PID controller still responds to the 

difference between current and desired vessel 

heading.  The integral term takes previous 

heading differences into account.  For 

example, if a rudder angle has not produced 

any course change, the integral term may 

increase the rudder angle until the 

appropriate response is achieved.  The 

derivative term corrects for the heading 

difference’s instantaneous rate of change, 

preventing overshoot and oscillation around 

the desired course.   

Creating a PID controller through 

Arduino code is a challenge.  The Arduino 

forces a discrete time system.  Instead of a 

traditional, continuous-time PID controller, 

we are required to use difference equation 

estimations of the integral and derivative 

terms [7] (Equations 1 and 2).  These 

difference equations are realizable with 

Arduino code. 
 

𝑦(𝑡) =
𝑑𝑥(𝑡)

𝑑𝑡
≈ 𝑦[𝑛] =

1

𝑇
(𝑥[𝑛] − 𝑥[𝑛 − 1])     (1) 

 

  𝑦(𝑡) = ∫ 𝑥(𝜏)𝑑𝜏 ≈ 𝑦[𝑛] − 𝑦[𝑛 − 1] = 𝑇𝑥[𝑛]
𝑡

−∞
  (2) 

 

𝑇 is the sampling period of the heading 

sensor, 𝑦(𝑡), is the rudder angle, and 𝑥(𝑡) is 

the heading difference.  𝑥[𝑛] and 𝑦[𝑛] are the 

discrete instances of these functions as 

represented on the Arduino.   

As a clear and useful extension into 

control systems modeling, we intend to use 

Simulink and MATLAB software (Figure 7) 

to help optimize our discrete-time PID 

controller’s coefficients as we gather 

experimental data on the ASV’s heading 

controller via on the water testing.  

 
Figure 7 Early Simulink model of PID rudder 

 controller  

Power System Design 
In addition to the control system, we had 

to design a solar rechargeable power system 

capable of sustaining ASV control system 

operations for the duration of a trans-Atlantic 

voyage.  Our search for power system 

components was driven by power-budget 

calculations, which consider the expected 

loads, frequency of operation, and current 

draw of every component on the vessel. Our 

power system design consists of a Richsolar, 

30 Watt, 12V, monocrystalline solar panel, a 

Genasun GV-5, maximum power point 

tracking (MPPT), custom solar charge 

converter, and five Bioennopower, 11.1V, 5 

amp-hour batteries. A preliminary system 

block diagram is shown in Figure 9. 

We will use measurements during actual 

operating conditions to verify the capacity of 

our designed power system prior to 

installation in the ASV. 



Conclusions 

Future Work 

This is an accessible project that has 

components requiring several engineering 

disciplines.  Subsequent semesters of our 

project work may choose to examine signal 

processing and filtering of signals from the 

ASV’s sensors, applying different modelling 

techniques to optimize controllers, and 

implementing different algorithms for craft 

control.  Currently, the LSM303’s 

accelerometer is only utilized for 

magnetometer corrections.  Future controller 

iterations may combine acceleration with 

GPS and compass data to optimize rudder 

control.   

Application to Engineering Education 

Few projects offer so much potential at 

the undergraduate level.  The project 

incorporates creative design processes, 

troubleshooting, and innovative solutions to 

multidisciplinary challenges.  While the 

Coast Guard Academy has approached ASV 

development through its Electrical 

Engineering and Naval Architecture 

Departments, other programs may adopt 

ASV development as Mechanical, Systems, 

or Controls Engineering projects.   

Compared to many collegiate research 

projects, ASV development is very 

accessible.  The project’s cooperative and 

cross-disciplinary nature contributes to self-

paced student work, study, and discovery.  

Most programs can put forward the modest 

budget needed for the project.  To date our 

power and control system components have 

totaled less than $1000.  The “MaxiMOOP” 

hull our Naval Architecture Department is 

constructing for the ASV was designed to be 

a cost affordable platform and plans are 

available online (the hyperlink is halfway 

down the page and is in blue text reading 

“file”) [8].   
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