
A Control System for a Small Autonomous Sailing Vessel

Tobias Ferl and Stephen Hills

Department of Engineering, Electrical Engineering

United States Coast Guard Academy

As a yearlong undergraduate project, we are developing a 1.2-meter autonomous sailboat for a

trans-Atlantic attempt, from New England to Ireland, in the summer of 2020. The control system

for the sailboat requires sensors for wind and location, a solar rechargeable power system, a low-

powered microcontroller, and mechanical actuators for sail and rudder control. In addition to the

hardware design, we are also developing custom software for autonomous navigation and control

of an experimental wing-sail. Initial testing of a hardware mockup had positive results, however

rudder response times were too slow. We found that the rudder was delayed as it waited for the

complex navigation subroutine to execute. Our solution uses proto-threading to mimic parallel

processing on a sequential processor, allowing us to run multiple subroutines at the same time.

This spring, we will install the full, improved control system in the sailboat’s hull and perform

testing on the water.

Corresponding Author: Tobias Ferl, tobias.s.ferl@uscga.edu

Introduction

Autonomous systems are increasingly

prevalent in the maritime industry with

autopilots, dynamic positioning systems,

automated cargo handling, and monitoring

systems improving efficiency, reliability, and

safety of transportation at sea. Automation

streamlines shipboard operations, sometimes

reducing merchant vessel crew sizes from

upwards of 40 to as few as 15 people [1].

With clear benefits, maritime automation has

grown interest at the undergraduate level.

The Microtransat Challenge seeks to

improve the state of maritime automation

through competition. The goal is to complete

a trans-Atlantic crossing with an unmanned,

wind-powered vessel up to 2.4 meters in

length. While the first unmanned sailing

vessel successfully completed the course in

August 2018, no completely autonomous

vessel has finished [2].

As the leading federal agency overseeing

maritime industry, the Coast Guard has an

operational interest in fostering and

understanding automated technologies and

their applications. The United States Coast

Guard Academy has worked in the field of

automation and autonomous systems for

some time, including autonomous aerial

vehicles, ground vehicles, and one prior

autonomous sailing vessel (ASV) project, but

has yet to attempt the Microtransat.

We are currently in the process of

creating an ASV, though a yearlong

undergraduate directed study, to attempt the

Microtransat Challenge. The design tasks are

unique and have already bridged numerous

engineering disciplines including systems

engineering, electrical, mechanical, and

marine engineering. Specific topics include

controllers, control algorithms, and power

systems.

Figure 1 Flow chart of project tasks

Project Overview
Work on the ASV project began during

the Fall 2018 semester and will continue

through at least May 2019 (Figure 1). Our

primary Fall semester goal was to illustrate

the project’s viability by creating a working

“mockup” of the control system. Dry land

testing with the mockup on a small cart

allowed us to simulate course deviations,

wind shifts, and other environmental stimuli

while observing system responses (Figure 2).

Figure 2 Mockup on cart for testing

The result of the Fall semester is shown

in Figure 3. Simple cardboard indicators

attached to the servos illustrate rudder and

wing-sail movements.

Rather than a traditional soft sail, we

decided to experiment with a rigid wing for

our project. High performance sailing

vessels, such as America’s Cup yachts, have

pioneered the use of rigid wings [3]. These

airfoils may have potential advantages for

small vessels as well. The Naval Academy

found the wing-sail to be promising for ASV

performance across a variety of wind angles,

strengths, and environmental conditions [4].

Figure 3 Final product of the Fall 2018 semester

Work in the Spring 2019 semester has

shifted focus from concept validation to

optimizing the 2018 design in preparation for

on the water testing and an attempt at a trans-

Atlantic crossing.

Preliminary Control System Design

Hardware Architecture

The ASV’s control system hardware is

straightforward. The vessel must sense wind

direction, determine its position to calculate a

desired heading, and compare its desired and

current headings to determine required

course changes. These requirements lead to

the ASV’s hardware architecture (Figure 4).

A Davis 6410 Vantage Pro2 anemometer

senses wind speed and direction, although we

are looking for a more rugged component to

replace it. The Waveshare NEO-7M-C GPS

provides the ASV with positioning data.

Documentation available for both the

Waveshare and the Davis anemometer made

them excellent candidates for our control

system’s development [5] [6]. Our heading

sensor was the Adafruit LSM303, which

includes an accelerometer and magnetometer

that can yield tilt-compensated magnetic

compass headings.

Figure 4 Block diagram of ASV control system

 hardware components

The ASV’s microprocessor is a variation

of the Arduino Uno. Two of the board’s

analog input pins are utilized for the LSM303

as an I2C (Inter-Integrated Circuit)

connection, one analog input is reserved for

the anemometer, and two dual-purpose

input/output (I/O) pins for the GPS (Figure

5). Two other I/O pins deliver the required

pulse width modulation (PWM) for the

rudder and wing servos (Figure 5).

The last components of the control

system hardware are mechanical actuators for

wing-sail and rudder movement. During

initial development two different servos were

utilized for these actuators: an A0090 micro

sized servo that was included in the

Arduino’s starter kit, and a HiTEC D646WP.

Component selection involved

substantial research to ensure their

interoperability. Additionally, we were

required to read technical documentation,

troubleshoot, and make component

substitutions when devices did not meet

project requirements.

Figure 5 Arduino microprocessor with connections

 labeled

Control Code

Developing the algorithms and

controllers for the project was the greatest

technical challenge for the first semester.

Figure 6 illustrates the general flow chart of

the control code by December 2018.

Separate functions interpret data from the

sensors. Arduino is an open source platform

with documentation and programing

“libraries” of useful functions readily

available for work with a wide variety of

sensors. While we decided to focus the

project on automation and systems, it should

be mentioned that optimizing I2C, analog,

and digital connections offers a project

extension into signal processing.

Once the ASV’s location is determined

from the GPS, the control program compares

this position to the next desired position for a

desired heading calculation. That heading is

compared to the corrected heading from the

LSM303 to determine a required course

change. If no course change is necessary, the

ASV will simply trim its wing-sail and

continue on.

If a turn is required, the control code

references the anemometer’s input to

determine what type of turn is appropriate.

Sailing vessels cannot sail directly into the

wind but must sail at angles for their sail or

wing to provide the desired, driving force.

Our algorithm balances maximizing the

distance sailed in the correct direction with

minimizing the number and complexity of

sailing maneuvers if the desired heading is

too close to the wind. Any turn may require

one of two different sailing maneuvers (turn

type), as shown in Figure 6.

After determining the type of turn, the

corresponding turn algorithm adjusts both the

rudder and wing-sail angles to complete the

maneuver. A discrete-time, proportional

controller was used for the rudder. The

apparent wind angle was mapped to the

position of the wing-sail using a linear

relationship.

Occasionally, sailing vessels will get

stuck in a position where the boat is pointing

directly into the wind. Since the sail or wing

does not provide forward motion in this

scenario, normal control inputs do not work.

We created a specific algorithm (the “irons”

routine) to detect and escape this situation

and return the vessel to a sailable course.

Figure 6 Flowchart of the ASV control as of December 2019

Results

We conducted two “field” tests with the

ASV control system in 2018, utilizing the

mock-up mounted on a wheeled cart. Both

tests put the control system through turns,

simulated wind shifts, waypoint increments,

and desired course changes.

The test results validated the logic for all

aspects of the control algorithm but often the

response came far too slowly. Often, the

rudder would move too little then pause for

up to 30 seconds and overcorrect.

Troubleshooting showed that the slow

execution was the result of sequential

processing of the complex computations,

calculations, and data processing for the

navigation subroutines. Code for parsing and

interpreting the GPS and LSM303 inputs, and

a navigation function involving many

trigonometric computations, are a substantial

workload for the Arduino’s single core

processor. The control code by itself

occupies over half of the Arduino’s useable

program memory.

Modified Control Code

Implementation of Protothreads

To address issues with the execution

speed of the control program, we have

implemented protothreads to mimic parallel

processing on the Arduino’s single core

processor. This technique pulls certain tasks

from the control code, and still executes them

sequentially, but in between the execution of

other tasks. Arduino’s “TimedAction” library

provides a user-friendly approach for proto-

threading portions of Arduino code and

defining the time interval over which the

threat is executed.

Not everything needs to be proto-

threaded as we still want certain actions to

occur in a specified order. Functions for

reading the anemometer, GPS, and LSM303

inputs, and the navigation function, have

been proto-threaded. The threads update

global variables, accessible anywhere in the

program, for wind angle, position, desired

heading, and heading. The major advantage

to proto-threading these complicated

functions is that it prevents their unnecessary,

and slow, execution in every iteration of the

control code’s loop. Instead, required

variables are updated on frequency intervals

that make sense, and that do not hamper

control code execution speed.

Code Consolidation

The initial structure of the control code

was bulky and hardly efficient. Through

subsequent developments to the control code,

we have eliminated calls to functions which

use loops for specific turn types. Instead,

after the turn type determination is made, the

required course change and rudder angle are

determined and executed. The angle of the

wing-sail is then adjusted for the current wind

angle, and the control code moves onto its

next iteration.

Field testing has illustrated that this

method provides the same basic responses as

the specific turning functions. With the

bulky turning functions eliminated, and the

control code simplified, execution becomes

faster and more seamless.

The implementation of proto-threading

and code consolidation has had a noticeable

improvement on system response times.

Field testing now verifies minimal lag in

responses (approximately 500ms) for both

rudder and wing-sail movement in response

to stimuli.

Controller Development

Since the wing-sail position is directly

controlled by a servo, its simple mapping of

apparent wind angle to desired wing position

is appropriate and allows for optimum

aerodynamic efficiency.

The same is not true of the rudder. The

simplest type of control is a proportional

controller, which sets rudder angle based

solely on the magnitude of the course

deviation. Proportional control is

unresponsive to different rates of turn and

Figure 9 Power system block diagram

causes practical issues with the ASV

overshooting and oscillating around its

desired course.

Instead, the rudder requires a

proportional-integral-derivative (PID)

controller. The proportional part of the

rudder’s PID controller still responds to the

difference between current and desired vessel

heading. The integral term takes previous

heading differences into account. For

example, if a rudder angle has not produced

any course change, the integral term may

increase the rudder angle until the

appropriate response is achieved. The

derivative term corrects for the heading

difference’s instantaneous rate of change,

preventing overshoot and oscillation around

the desired course.

Creating a PID controller through

Arduino code is a challenge. The Arduino

forces a discrete time system. Instead of a

traditional, continuous-time PID controller,

we are required to use difference equation

estimations of the integral and derivative

terms [7] (Equations 1 and 2). These

difference equations are realizable with

Arduino code.

𝑦(𝑡) =
𝑑𝑥(𝑡)

𝑑𝑡
≈ 𝑦[𝑛] =

1

𝑇
(𝑥[𝑛] − 𝑥[𝑛 − 1]) (1)

 𝑦(𝑡) = ∫ 𝑥(𝜏)𝑑𝜏 ≈ 𝑦[𝑛] − 𝑦[𝑛 − 1] = 𝑇𝑥[𝑛]
𝑡

−∞
 (2)

𝑇 is the sampling period of the heading

sensor, 𝑦(𝑡), is the rudder angle, and 𝑥(𝑡) is

the heading difference. 𝑥[𝑛] and 𝑦[𝑛] are the

discrete instances of these functions as

represented on the Arduino.

As a clear and useful extension into

control systems modeling, we intend to use

Simulink and MATLAB software (Figure 7)

to help optimize our discrete-time PID

controller’s coefficients as we gather

experimental data on the ASV’s heading

controller via on the water testing.

Figure 7 Early Simulink model of PID rudder

 controller

Power System Design
In addition to the control system, we had

to design a solar rechargeable power system

capable of sustaining ASV control system

operations for the duration of a trans-Atlantic

voyage. Our search for power system

components was driven by power-budget

calculations, which consider the expected

loads, frequency of operation, and current

draw of every component on the vessel. Our

power system design consists of a Richsolar,

30 Watt, 12V, monocrystalline solar panel, a

Genasun GV-5, maximum power point

tracking (MPPT), custom solar charge

converter, and five Bioennopower, 11.1V, 5

amp-hour batteries. A preliminary system

block diagram is shown in Figure 9.

We will use measurements during actual

operating conditions to verify the capacity of

our designed power system prior to

installation in the ASV.

Conclusions

Future Work

This is an accessible project that has

components requiring several engineering

disciplines. Subsequent semesters of our

project work may choose to examine signal

processing and filtering of signals from the

ASV’s sensors, applying different modelling

techniques to optimize controllers, and

implementing different algorithms for craft

control. Currently, the LSM303’s

accelerometer is only utilized for

magnetometer corrections. Future controller

iterations may combine acceleration with

GPS and compass data to optimize rudder

control.

Application to Engineering Education

Few projects offer so much potential at

the undergraduate level. The project

incorporates creative design processes,

troubleshooting, and innovative solutions to

multidisciplinary challenges. While the

Coast Guard Academy has approached ASV

development through its Electrical

Engineering and Naval Architecture

Departments, other programs may adopt

ASV development as Mechanical, Systems,

or Controls Engineering projects.

Compared to many collegiate research

projects, ASV development is very

accessible. The project’s cooperative and

cross-disciplinary nature contributes to self-

paced student work, study, and discovery.

Most programs can put forward the modest

budget needed for the project. To date our

power and control system components have

totaled less than $1000. The “MaxiMOOP”

hull our Naval Architecture Department is

constructing for the ASV was designed to be

a cost affordable platform and plans are

available online (the hyperlink is halfway

down the page and is in blue text reading

“file”) [8].

References

1. Ding, Song, Han Duanfeng, and Boshi

Zhang: Impact of Automation to

Maritime Technology. International

Conference on Computer and

Information Application (2012).

2. The Micotransat Challenge. About the

Microtransat. Retrieved from The

Micotransat Challenge:

https://www.microtransat.org/. Accessed

06 December 2018.

3. Holtrop, John. Rigid Wing Sails.

Retrieved from Epoxyworks:

https://www.epoxyworks.com/index.php

/rigid-wing-sails/. Accessed 25 March

2019.

4. Miller, P., et. al: An Alternative Wing

Sail Concept for Small Autonomous

Sailing Craft. United States Naval

Academy (2017).

5. Cactus.io. How to Hookup Davis

Anemometer to Arduino. Retrieved

from cactus.io:

http://cactus.io/hookups/weather/anemo

meter/davis/hookup-arduino-to-davis-

anemometer. Accessed 04 December

2018.

6. Arduino. How to Interface GPS Module

(NEO-6m) with Arduino. Retrieved

from Arduino Project Hub:

https://create.arduino.cc/projecthub/ruchi

r1674/how-to-interface-gps-module-neo-

6m-with-arduino-8f90ad. Accessed 04

December 2018.

7. B.P. Lathi and Roger Green. Linear

Systems and Signals. Oxford University

Press (2018).

8. Sailbot. MaxiMOOP. Retrieved from:

https://www.sailbot.org/maximoop/.

Accessed 23 February 2019.

