Asee peer logo

A Design Methodology For Empowering Project Based Learning

Download Paper |

Conference

2007 Annual Conference & Exposition

Location

Honolulu, Hawaii

Publication Date

June 24, 2007

Start Date

June 24, 2007

End Date

June 27, 2007

ISSN

2153-5965

Conference Session

Teaching Methods for the 21st Century: Part 2

Tagged Division

Materials

Page Count

16

Page Numbers

12.36.1 - 12.36.16

DOI

10.18260/1-2--3075

Permanent URL

https://strategy.asee.org/3075

Download Count

409

Request a correction

Paper Authors

author page

Richard Savage California Polytechnic State University

Download Paper |

Abstract
NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract

A Design Methodology for Empowering Project-based Learning

Abstract

One of our primary objectives is to equip undergraduate engineering students to be successful global engineers, ready to face the challenges of the 21st century. Students need to develop self-directed learning skills, systems level thinking, the ability to integrate principles of sustainability into design solutions and recognize that they serve a global community. Project-based learning (PBL) has been identified as an effective process for developing these skills; however, to be effective, project-based learning activities require a clearly articulated design methodology. Engineering students must learn to recognize the similarities and differences between the scientific and design methods. Both can be looked at as systems for solving problems; however, the input for the scientific method is a theory with the output being increased knowledge while the input for the design method is an application with the output being a device or process. Design is a method that involves both creativity and innovation but it is also constrained by such practical factors as time-to-market and cost-effectiveness. Throughout their undergraduate education students are immersed in the scientific method but often they are not exposed to design methods until their capstone senior project. We have developed a seven-step method that guides students through projects and enables them to achieve the skills we have identified as essential to their success as global engineers. The steps include 1) identifying user’s needs, 2) developing product concepts, 3) translating performance requirements from the language of the customer into technical functional requirements, 4) brainstorming several conceptual designs and choosing the optimum solution, 5) developing a detailed design solution, 6) fabricating a prototype and testing to ensure that it meets the performance requirements and 7) determining the commercial feasibility of the design solution. An example of how we implemented this design method in our junior level electrical and optical properties of materials course is presented along with an assessment of our student’s confidence in being able to apply the design method to the types of unstructured problems they faced in their PBL activities.

Equipping the Global Engineer

One of the primary objectives as an educator is to equip engineering students with the tools necessary to become successful global engineers, ready to face the challenges of the 21st century. Students need to develop self-directed learning skills, systems-level thinking, the ability to integrate principles of sustainability into design solutions and recognize that they serve a global community. Project-based learning (PBL) has been identified as an effective process for developing these skills1. However, to be effective, project-based design activities require a clearly articulated design methodology. Engineering students must recognize the similarities and differences between the scientific and design methods. Both can be looked at as systems for solving problems, but the input for the scientific method is a theory with the output being increased knowledge while the input for the design method is an application with the output being a device or process. Design is a method that involves both creativity and innovation but it is also constrained by such practical factors as time-to-market and cost-effectiveness. Throughout their undergraduate education students are immersed in the scientific method

Savage, R. (2007, June), A Design Methodology For Empowering Project Based Learning Paper presented at 2007 Annual Conference & Exposition, Honolulu, Hawaii. 10.18260/1-2--3075

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2007 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015