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A Learning-by-Doing Approach to Teaching Computational Physics  

Abstract 

 

Scientific research is becoming unthinkable without computing. The ubiquity of 

computerized instrumentation and detailed simulations generates scientific data in 

volumes that no longer can be understood without computation. Computational physics is 

a rapidly growing subfield of physics and computational science in large part because 

computers can solve previously intractable problems or simulate natural processes that do 

not have analytic solutions. One can easily argue that all graduates of science or 

engineering programs should have the opportunity to develop good computing skills by 

the time they complete their studies. However, the depth and range of skills needed varies 

considerably – even in a single discipline such as physics. Moreover, the interests, 

backgrounds, and abilities of students taking physics courses vary widely, whereas the 

number of instructors with scientific computing skills has been rather limited. Providing 

appropriate courses and instruction in computational physics for such diverse student 

population is a challenge. On the other hand, computational physics provides exciting 

teaching opportunities that can complement traditional methods of teaching in the lecture 

or the laboratory. We use a laboratory project-based approach, where the students are 

learning by doing. The course is divided into two sections, lecture and laboratory session. 

During the laboratory session, the students work at mid-term and final projects, while the 

lecture the programming, numerical and computational techniques and methods are 

discussed. The usefulness of this approach is evaluated by surveys conducted every 

semester, and feedback from other educators is highly appreciated. 

I. Introduction 
 

Computational physics is an independent way of doing physics, and an essential tool of 

the physics research. Numerical computations are essential to further understanding of 

physics problems, and computers and computing play a central role in much of modern 

scientific research. Almost all analytical theories require the help of a computer to 

complete the calculations. On the experimental side, computers are essential for the 

control of experiments and the collection and analysis of data. However, computational 

physics also includes a fundamentally different way of doing physics that goes beyond 

using the computer as a specific tool. We have in mind the part of computational physics, 

called computer simulations
1, 8-11

, in contrast to many of the tasks listed above which we 

classify as numerical analysis. Using a computer to model physical systems is at its best 

more art than science. The successful computation al physicist exploits the numerical 

power of the computer through a mix of numerical analysis, analytical models, and 

programming to solve otherwise intractable problems. It is a skill that can be acquired 

and refined - knowing how to set up the simulation, what numerical methods to employ, 

how to implement them efficiently, when to trust the accuracy of the results. In the last 

two decades, however, computational physics has largely been neglected in the standard 

university physics curriculum
1-5

. In part, this is because it requires balanced integration of 

three commonly disjoint disciplines: physics, numerical analysis, and computer 

programming (Figure 1). The lack of computing hardware suitable for teaching situations 
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involved in computational physics courses, together with the lack of programming 

language licenses available for students have also been other factors. Students usually 

acquire what computing skills they do have by working on specific thesis or senior 

project problems and as a result, their exposure is often far from complete.  

 

                   

            Figure 1: Place of computational physics in the physics and science fields 

 

Physics, like other structured disciplines, has a very full curriculum because students 

need to learn challenging material dating back at least two centuries ago. Much of the 

older ideas, methods or techniques are still important and cannot simply be replaced by 

the most recent advances. However, computers and computing are indispensable tools for 

theorists and experimentalists alike for calculations, data analysis, acquisition and 

reduction, visualization, modeling, simulations and so on. Computers are now much more 

than tools for analysis. They provide us with innumerable intellectual challenges, from 

algorithm development to the exploration novel concepts such as self-organized 

criticality. Almost all physics theories require the help of a computer to complete the 

calculation. Despite of the importance of computational physics, about half of the physics 

departments in the United States offer them in only one course on numerical methods and 

computational physics
1, 6,7

.  However, the education of undergraduate physics students 

would be greatly enhanced by learning computational and numerical methods
4-9

. 

 

Teaching physics is not an easy task, and teach computational physics makes no 

exception. Our approach in teaching computational physics consists in splitting the 

standard credit hours allotted to this course in two sections: one-hour lecture, where the 

computational and numerical methods are introduced to the students; and the rest for 

practical section reserved for exercises and projects. The students are required to write 

self-contained programs in a high-level scientific language--i.e., either FORTRAN or 

C++ and/or by using a computer algebra system, such as Maple or Maxima. Students are 

involved in the creation of code programming and algorithms in order to increase their 

level of understanding as well as critical and creative thinking. Finally, we introduce a 
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scientific solving problem paradigm based on the above typology and we present 

software applications in various thematic units. Our goal is to provide students with direct 

experience in modeling non-trivial physical systems and to impart to them the minimal 

set of techniques for dealing with the most common problems encountered in such work. 

The computer was to be viewed neither as a "black box" nor as an end in itself but rather 

as a tool for gaining a deeper understanding of physics. 

II. Brief Course Description 

 

The objectives of this course are: a) to use computers as an aid to understanding real 

physical systems; and b) learn efficient methods for the analysis of these systems. The 

goal of this course is to provide students with the ability of solving difficult problems by 

using computational methods and to learn and use programming languages. The course is 

intended to provide students with the computational tools, techniques and methods used 

in contemporary physics. During the laboratory sessions, a significant fraction of the 

students’ time, the students are required to write, compile, and run programs, together 

with the analysis of the results, and present their results as scientific reports. In this 

teaching approach, the students learn by doing
8-11

. It is a problem-solving course, that is, 

the measure of a student’s progress is demonstrated by the ability to solve numerical 

problems in physics. Upon completion of this course, the student will possess the basic 

computing knowledge that may be required for graduate school or in industry.  

Course structure: Different people learn in different ways. In this course, we try to build 

a learning environment with a diversified set of options that can be tailored to the each 

student individual learning style. There are class meetings, homework assignments, 

projects and practice. There are also many ways in which the students get assistance with 

the material in this course: the office hours, appointments, e-mail, phone and via online 

through the course management system.    

 

Curse description: This course gives a modern introduction to the basic methods in 

computational physics and an overview of the recent progress in scientific computing. 

Many examples from recent research in physics and related areas are given with the 

program listing. Basic computational tools and routines, including the ones for 

differential equations, spectral analysis, and matrix operations, are dealt with through 

relevant examples, and more advanced topics are treated. The broad categories of 

computational physics studied are simulation, visualization and modeling, numerical 

methods, algorithms and data analysis. Simulation and modeling are taught by stressing 

numerical techniques and programming language(s) techniques employed. Besides 

learning how to solve numerical problems with a computer, the student also will gain 

experience writing manuscripts in a scientific journal style. 

 

Projects: There are midterm computational projects and one final project. The projects 

aim to solve specific physics and/or electrical and physics engineering problems. The 

students are required to submit a report for each project. All reports should have the 

following sections: title, problem description, equations and computational model, testing, 

example of the input parameters, results (diagrams, figure, tables, and analysis), program 
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code, and conclusion. The report and the computer programs are required to be submitted 

electronically by the due date and time. This enables the assessor to run and check the 

program(s) if necessary. The project policy: “no submitted program = no credit for the 

assignment”. Each assignment was graded for completeness and correctness 

Exams:  Since this is a project-based course, there are no traditional exams but midterm 

projects, and final project. The final exam consists of an oral presentation of the final 

project and an accompanying written report (in the format of a research article). The final 

examination is mandatory and will be given only at the scheduled time.  

Course Outline:    

1. Basics: The nature of computational physics; Tolls of computational physics; 

Machine representation; precision and errors in computations. 

2. Introduction to Computer Languages: Computer languages for scientific 

computations and available compilers (C++, FORTRAN 90);  

3. Introduction to Scientific Software:  Computer algebra systems (Maple, MathCad, 

Mathematica). 

4. Basic Tools of Numerical Analysis in Science and Engineering: Nonlinear 

equations; Interpolation and curve fitting; Numerical differentiation and integration; 

Available numerical libraries of C++ and FRTRAN. 

5. Matrix Calculations and Applications in Physics: Linear systems; Eigenvalue 

problem. 

6. Ordinary Differential Equations and Applications in Physics and Engineering: 

Initial value problem; Boundary value problem. 

7. Spectral Analysis and Physics and Engineering Applications: Fourier series and 

transforms. 

8. Nonlinear Systems, Chaos and Applications: Random Processes 

9. Data Analysis and Modeling with Applications in Physics. 

10.  Introduction to Scientific Visualization and Animation Techniques 

III. Laboratory-based Computational Physics Course 

The formal prerequisites for this course have been college level physics and calculus 

level courses, but I have often been willing to waive some of the prerequisites if a student 

has had solid programming experience. Student taking the course are expected to have at 

least some minimal knowledge, although the programming is not a formal prerequisite. 

Over the years, there have been a significant number of students who have taken the 

course without prior programming knowledge. Finally, they developed good 

programming skills along the way, even though this lack entailed a somewhat steep 

learning curve at the beginning of the course. An immediate question that I faced when I 

teach such course was what programming language I should adopt. One constrain was the 

available programming language licenses at that institution. Usually I opted for 

FORTRAN, and a computer algebra system if available. My decision was mostly 

motivated by its intrinsic array,  its mathematical library and the available free source 

codes which turned out to very useful for the algorithms I had planned to illustrate and 
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the for the projects included in this course. I also use C/C++ for selected projects, helping 

to show the interoperability of two programming languages.  

 

A distinctive aspect of our approach is that the physics drives the course rather than 

programming. There are many topics that can be discussed, and they may vary from year-

to-year, depending on our interests and those of the students. Particular programming 

constructs and numerical algorithms are introduced as needed. In addition, we are 

stressing visualization and animation more and more as a way of understanding the 

behavior of a system. An important goal is to instill good programming habits. Thus, we 

encourage modular programs with reusable components. We also encourage students to 

avoid tricky programming constructs that might lead to faster but less readable code.  

 

The project-based approach provides much flexibility in the choice of topics. Students 

work at their own pace and do not all work on the same assignments at the same time. 

Those with stronger programming skills are encouraged to explore the physics deeper 

while novices of programming might spend most of their time working on coding. The 

mix of abilities and levels encourages students to teach each other. In addition to the 

instructor, we typically have a teaching assistant to help during the laboratory times. 

First, we discuss problems that can be solved using deterministic algorithms. These might 

involve the numerical solution of differential equations, used to solve classical problems. 

Thus, they provide a natural means of showing students that there is more to physics than 

what is discussed in introductory physics. We have students compare different algorithms 

and determine the level of accuracy one can expect from such algorithms. Many of these 

topics require very little formal preparation, and are rarely discussed in other physics 

courses. Topics may include examples of systems traditionally considered by other 

scientists such as polymers or earthquakes. Thus, the student can see how their skills can 

be used in a much broader context. Second part deals with projects, focusing on more 

advanced topics. The project based structure of the course leads to a number of important 

differences between our course and the traditional ones. For example, the instructors do 

not know all the answers and hence their role is different from in a traditional lecture 

course. Because some students know certain aspects about computer languages and 

programming better than us, these student have an opportunity to contribute to the course, 

and thus become more committed to it. Occasionally, students discover behavior that was 

not expected, and can tell the class about their results. This possibility exists because 

most of the assignments have some open ended aspects in addition to direct questions. 

The direct questions help students see what the relevant issues are, and the open-ended 

suggestions allow students to explore a topic in more depth.  

 

A key component of our course is teaching students how to communicate scientific 

information. Students write laboratory reports, which are the basis for their grade in the 

course in addition to class participation and initiative. These reports include a summary 

of the system being modeled, a discussion of the method used to simulate the system, 

verification of the program, presentation, analysis and interpretation of the data, and a 

critique discussing the key physical concepts and techniques learned by doing the project. 

In addition, students are expected to keep a computer-based laboratory notebook that 

includes a log of the time spent on their work. The reports are an excellent vehicle for 
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teaching writing skills. Each project begins with a discussion of a physical situation, 

followed by a discussion what we can be learned about the system using analytical 

methods. During the lectures, students are received programs that they can use as a 

starting point for their own program or as pseudo-code if they are using a different 

language. They run the program and collect data that they can use to test its validity and 

their understanding of what the program is doing. The final project is written up as 

laboratory report and presented as a poster. The above process follows the typical method 

of doing research in science. Students learn the importance of testing and how easy it is 

to make mistakes. They learn how difficult it is to distinguish between interesting 

behavior and various errors. They also learn the importance of having some analytical 

results and physical insight to guide their investigations. They also learn to share 

information. All of these lessons are important to the researcher and rarely incorporated 

in a meaningful way in traditional courses. 

 

The instructor and a teaching assistant are available during the laboratory sessions to 

answer and ask questions. Specific programming questions are discussed in the 

laboratory. Students are asked to work a total of 8–10 hours per week on the course, a 

total that is often more than some of their other courses. There are many obstacles that 

must be overcome to achieve an effective course. One example is that students frequently 

have difficulty analyzing their data or the use the proper visualization programming tools. 

The mix of undergraduate and graduate students in the same class, when this is possible, 

has turned out to be good for both types of students. Although the course usually begins 

with traditional topics that are well-known to the graduate students, they enjoy improving 

their programming skills in a traditional context. It also is not a good assumption that the 

graduate students will do better than the undergraduates. The progress of graduate 

students in the computer simulation course proves to be a much better predictor of how 

students will do in research than their grades in the traditional graduate courses. Some 

students do better in open-ended environments than others. Grades in the course are 

determined by students’ progress since they started the course, rather than on their 

absolute knowledge. This procedure can cause some confusion and uncertainty among 

students. However, students generally appreciate the fact that their grade is usually 

proportional to their effort within the time constraint. 

III.1 Teaching Goals  

An important question that arises when teaching computational physics is: What do we 

want to achieve? During the course, students learn to solve a physics problems using 

computer simulation. This includes diverse tasks: a) formulating the physics problem in a 

way suitable for computer simulations; b) choosing an efficient computational algorithm; 

c) writing and testing computer code; d) running the computer simulations and collecting 

data; e) analyzing, interpreting and visualizing the data obtained; and, f) extracting the 

solution of the physics problem. A distinctive aspect of our approach is that the physics 

drives the course rather than programming. There are many topics that can be discussed, 

and from year to year, they may vary depending on our interests and those of the 

students. Particular programming constructs and numerical algorithms are introduced as 

needed. Students with stronger programming skills are encouraged to explore the physics 
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deeper, while novices in programming might spend most of their time working on 

coding. In our project-based, typically the students work about two short projects and 

they do a four-week final project of their choice at the end. The above process follows the 

typical method of doing research in science.  

III.2 Project Format 
 

In our view the team must clearly define a physical problem that they want to solve. 

There are three recommendations for the project are:  a) Don't choose anything too 

ambitious or challenging; b) Write your own numerical program to solve it; and c) While 

doing this, discuss with others, including myself, the best method to use and the smartest 

way to implement it. I am encouraging the students to do groups of two.  Once the 

numerical results from the program were computed, the students are required to test that 

the program is working. While writing the program is often perceived as the hardest part, 

it is actually the analysis of the results, which make numerical projects worthwhile. 

Therefore, I required students to spend considerable time on thinking of everything you 

can do and test with their programs. The report does not have to be long, but it should 

include: (i) a description of the problem to be solved, (ii) a description of the method 

used (with the program attached), (iii) tests of the code to convince everybody that it is 

working properly, and (iv) the presentation and analysis of results. 

Time Schedule for the Projects: 

1. Second week of the semester, the mid-term projects start. 

2. The seventh week of the semester, the e-files of the midterm projects, programming 

codes and written report are due.  

3. Eighth week of the semester, the final projects start, 

4. The last week of the semester the carbon copy of the final projects are due. 

In the exam week, the e-files of the written reports of the final projects are due. During 

this week, the oral presentations of the final projects are scheduled.    

 

Suggested Projects; the students are encouraged to propose good projects related to their 

research if any. They can also pick one of the projects listed by the instructor.  

III.3 Project Sample - Radiative Transfer in a Planetary Atmosphere 

In this project, you will construct a Monte Carlo calculation of radiative transfer in a 

planetary atmosphere. The radiative transfer will be simulated using a random walk of 

photons through the atmosphere. In this calculation, photons are emitted by the planet's 

surface and random walk their way through absorption and reemission in the atmosphere 

until they eventually escape to space or are reabsorbed by the ground.   

Project Description and Program Development: It is a good idea to begin by 

developing the script for a single random walk through the atmosphere. The problem 

implies that the layers are nearly transparent. Thus, each time you encounter a layer, there 
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is only a small chance that the photon will be absorbed and reemitted. The program input 

is the total optical depth of the atmosphere. Then the atmosphere is divided into a large 

enough number of layers so that, for each layer, the chance of absorption is small. 

Obviously, for a given total optical depth, the approximation that the chance of 

absorption is small will be better for larger and larger numbers of layers. But, also 

obviously the program will take longer to run with larger numbers of layers. So the 

artistry here is to pick an optical thickness for the layers that is small enough for an 

accurate calculation, but big enough so that the calculation does not take forever. Here 

you will want to keep track of some of the critical data in the calculation:  

≠ Number of photons which escape: PE.  

≠ Number of photons which are absorbed by the ground: PA  

≠ For each layer, i in the atmosphere, the number of photons that are absorbed in that 

layer: PL(i).  

All quantities to the emission from the top of the atmosphere, which we know should be 

equivalent to the rate of emission from a blackbody at temperature Teff are normalized. 

For a given effective temperature, input by the user, and for a given optical depth, input 

by the user, your program should produce:  

≠ An estimate of the ground temperature of the system.  

≠ An estimate of the temperature of the top layer of the atmosphere.  

≠ A plot of the temperature of the atmosphere versus optical depth in the atmosphere, 

where the optical depth defined to be 0 at the top of the atmosphere and increasing with 

depth into the atmosphere.  

You will need to decide how many trial photons are required to get accurate answers. In 

this case, we will define "accurate" to mean that the ground temperature is derived to an 

accuracy of 0.2K. In your report, you should be sure to tell the number of trial photons 

used and justify your selection.  

Questions 

1. We claim that the above model is a good simulation of the Earth's atmosphere. 

Compare the ground temperature result to the Earth's typical ground temperature. How 

good is the agreement? What would have to be done in order to improve the agreement of 

your model?  

2. Compare the behavior of the temperature of the top of the nominal model atmosphere 

to the temperatures high in the Earth's atmosphere. (Here the most relevant region is the 

base of the Earth's stratosphere.) Is there good agreement?  

3. Using the optical depth and effective temperature values given for the nominal 

calculation, test the sensitivity of the ground temperature to a change in optical depth. 

How big a change in optical depth is required to increase the surface temperature by 5 

degrees?  
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4. A change in the planet's reflectivity can change its effective temperature. For a one 

percent increase in reflectivity (that is 0.34 rather than 0.33 for the albedo), how much 

does the ground temperature decrease with NO change in optical depth.  

5. Venus has an effective temperature of 240K, but its surface temperature is 700K! 

Find the atmospheric optical depth that is required to accomplish this.  

Extra Credit Calculation: To make our calculation easy, we have divided the 

atmosphere into layers of equal optical depth. In the real atmosphere, these layers would 

have different thickness since the optical depth depends on the mass of the layer and the 

density of air decreases with altitude. The density of air in the Earth's atmosphere, d, 

follows the exponential law:  

d(h) = d(0) exp(-z(km)/8(km))  

where z is the altitude and 8 km is the e-folding scale of the exponential law (known as 

the scale height in atmospheric physics.) Each of your optical depth layers must have the 

same amount of material in it, so we can use this relationship for density versus height to 

derive the height corresponding to each layer, assuming that the opacity only depends on 

the amount of material. Make a graph of the temperature derived from the model versus 

the actual height in the atmosphere. How does this compare to the temperature profile of 

the Earth's atmosphere?  

IV. Student Assessment 

To have an estimate of the effectiveness of our teaching approach of computational 

physics at the end of the course, using the project-based teaching approach all students 

are requested to answer (with a five point scale: 1-very poor, 2-poor, 3-satisactory, 4-

good and 5-very good) an anonymous questionnaire as shown in Table 1. 

 

        Table 1 Questionnaire for course evaluation 

 

Q1 Are the course challenging and interesting? 

Q2 Have you learn more than expected with the course? 

Q3  Are the projects useful to you? 

Q4 Are the lectures of high quality and easy to understand?  

Q5 What was the level the laboratory exercises? 

Q6 Please, provide an overall evaluation of the course 

 

According to the results, the project-based approach received ratings above 3.6, 

comparing with an average rating of 3.4/5.0 for the all courses at program (the average of 

the last five years). The results from the students’ feedback have been extremely positive 

with the regard to the projects and the exercises provided during the laboratory sessions. 

The majority of students felt that such projects enhanced their understanding of the 

theoretical materials and made the course more interesting, either they consider that the 

work required, during the course is higher than in a traditional one. Similar surveys are 

planned to be conducted at the end of each term when the curse is offered. 
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V.  Conclusions 
 

Computational physics is taught as project-based laboratory course, instead of the lecture 

course traditional approach. We find that this format allows us to introduce various 

computational methods and gives a broader overview of computational physics. It also 

helps the students to become more proficient at programming. The students use the 

symbolic computational skills they learn in this course to do their home-works and 

projects. After completing the course the students may use programming, symbolic and 

numerical skills acquired during the course in their research, gaining a set of skills that 

will help them succeed after they graduate. In our interactive approach of teaching 

computational, we aim to: a) focus on mainly the science aspects of computational 

physics, not on programming; b) give students hands-on experience in designing and 

running computer programs and simulations; and c) play a role similar to that of 

laboratory courses for experiment. The project-based computational physics course is 
aimed at upper-level undergraduates and beginning graduate students, and is intended not 

only for physics students but also students from the other sciences and engineering. 
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