
Paper ID #19692

A Learning Trajectory for Developing Computational Thinking and Program-
ming

Dr. Sean P. Brophy, Purdue University, West Lafayette (College of Engineering)

Dr. Sean Brophy is a mechanical engineer, computer scientist and learning scientists. His research in
engineering education and learning sciences explores how undergraduate engineering students develop
skills in design, troubleshooting and analytical reasoning. He is particularly interested in how these skills
develop through students’ interaction with technology.

Prof. Tony Andrew Lowe, Purdue University, West Lafayette (College of Engineering)

Tony Lowe is a PhD candidate in Engineering Education at Purdue University. He has a BSEE from
Rose-Hulman Institute of Technology and a MSIT from Capella. He currently teaches as an adjunct at
CTU Online and has been an on-and-off corporate educator and full time software engineer for twenty
years.

c©American Society for Engineering Education, 2017

A learning trajectory for developing computational thinking and
programming

Abstract

This research study identifies the relationship between students’ prior experiences with programming and
their development of computational thinking and programming during their first year engineering
experience. Many first year programs teach students basic programming concepts using languages like
MATLAB or LABView. These languages are used because many of the disciplinary schools expect
students to use computational models to analyze systems of interest. Some undergraduate engineering
students are entering college with strong computational backgrounds, while others have no experience at
all. This study is the first in a series to better identify students’ transition into developing and reasoning
with analytical tools. The learning progression across two programming languages is critical to
developing a student’s ability to generalize across various computational tools. The goal of this study is to
identify how students progress in their ability to engage in computational thinking and programming
relative to other learning outcomes for the course. This initial investigation uses students’ prior
background in programming and their exam scores to evaluate their interdependence of prior knowledge
on learning programming across their first semester in university. As anticipated, learning a new
language is difficult compared to the other course objectives. However, students with some prior
knowledge of programming demonstrate a balanced performance between computational thinking and the
other course objectives. Students who have limited programming experience do demonstrate a higher
variance in their performance in problems related to computational thinking compared to their other
course objectives. One of the leading factors is the time spent practicing programming. This paper will
be of interest to instructors with the objective of developing computational thinking and programming in
classrooms with a large variance in students’ backgrounds with programming.

Introduction

This research study explores the developmental trajectory of first year engineering students’
abilities to apply computational thinking (CT) combined with computer science(CS)/programming skills
used in engineering problem solving. Engineers engage in a range of engineering problem solving
activities associated with design, troubleshooting and analysis [1,2] . A critical part of the problem
solving processes is transforming the context and system of interest into a model that can be used to
analyze the system’s performance. This transformation involves deconstructing the problem into the
major factors, and identifying the interdependent relationships between these factors. These models can
be operated on to generate knowledge about the properties and behavior of these systems [4]. Many of
the models engineers produce for their work are represented with a system of mathematical equations
(first principles or empirical), or the models are a system of rules that define the behavior of the system.
The challenge is how to think with these models, that is, generate useful knowledge to inform decisions
related to the problem at hand. In some cases the engineer may be able to perform mental computation, or
hand calculation to determine a solution. However, if the model is complex enough, then they will need a
computer to perform the thousands of computations needed to run the model. This process of

transforming a model into an algorithm requires computational thinking and understanding how a
computer will process the model requires computer programming skills.

In the past decade a strong effort has been underway to emphasize computer science for all
students [10]. As mentioned, engineering students need computers to support their analytical problem
solving needs. We anticipate all students will need to develop computer programs as part of their
analytical work in any of the disciplines they will study during their four year academic engineering
career. Further we anticipate that many students will need to know how to use computer based models
even if they don’t build the models, or they will work with other professionals who are running the
models as part of the systems they design in industry or for research. Therefore, an important outcome of
a first year engineering course is learning to develop and use computational tools to support analytical
reasoning associated with engineering problem solving.

Many first year engineering courses have a desired learning outcome related to computer
programming of computational models. The course associated with this study originally only taught
MATLAB as an analytic tool for engineering problem solving because the professional schools want
students to be able to use it in their courses after their first year experience. The target learning outcomes
focused on students’ abilities to use basic programming structures to control the flow of a program
including sequential (procedural), conditional and looping constructs. Matrices and arrays were taught
primarily in the context of data structures for processing a collection of numeric data types. Students
were taught the basic methods for reading data into their programs from either a user’s console or file.
Functions were taught as a methods of generalizing procedures and modularizing code for readability and
reuse. They also learned how to use formatted output, or plots, to present data to a console or file. These
tools made it possible for students to solve basic numerical models or process large data sets. Typically
the matrix operations and symbolic tools in MATLAB were considered too advanced for first year
engineering students. Therefore, the main learning goals were to support students’ development of scripts
to process data or run basic numerical models as part of specific analysis.

A new version of the course has evolved over the years from a one semester to a two semester
course and increased its learning objectives to include engineering design and design/control of
mechatronic machines. These added objectives supported students’ development for managing complex
systems, projects and team dynamics. Further, a choice was made to teach multiple programming
languages based on learning sciences research which demonstrated how knowledge will generalize when
it is taught in multiple contexts [3,9]. This lead to the premise that exposing students to basic constructs
of programming across multiple programming languages could lead to an increase in their abilities and
confidence to engage in complex problem solving contexts involving computational modeling. This
premise lead to identifying two to three programming languages to develop students’ programming skills
involving interesting engineering contexts to support learning and interest in engineering as a career.

Python was selected as the first programming language for students for several reasons. First,
Python can be used for a wide range of applications including numerical modeling, database management
and the internet (networks). Python language was designed to be readable and well structured which can
be a benefit to new learners. The interpretive language provides a development environment that makes
it easy for programmers to experiment with basic instructions as a starting point for investigating how
these instructions and built-in functions work. It is cross platform. Data structures can be well defined.
Programs can be defined as basic procedural programs to start, and later object oriented programming can
be introduced for more advanced management of the code. Modular coding techniques can be easily

applied by beginning programmers. The available libraries and the ease of use of these libraries makes it
accessible to students. Further many computer science and engineering programs use Python as an
introduction to programing for similar reasons [6,8].

MATLAB was introduced next in the sequence of programming languages. The primary reason
to include it was because of the professional schools’ desire to include it in the tool set of all engineering
students. Also, its mathematical capabilities make it an excellent choice for future engineering and
scientific modeling. Like Python, MATLAB’s interpretive environment makes it easy to experiment with
coding scripts. The integrated development environment has a similar interface to other programming
environments, or analysis tools (e.g. SPICE, ANSYS) students my need to learn for other courses or as
tools they may use in industry.

Finally C is introduced to complement the basic programming skills developed with Python and
MATLAB. C offers insights into more advanced computer science concepts such as explicit data typing,
pointers and memory allocation. Further, it provides more control of hardware like obtaining data from
sensors and regulating motors connected to embedded control systems. Teams also use RobotC with
Mindstorm mechatronic systems during their second semester term projects.

Introducing first year engineering students to multiple programming languages may seem
daunting. To meet this challenge the instructional model for this course leveraged the benefits of
problem based learning, peer instruction and studio learning to provide students with an effective learning
environment to learn these languages. This study is part of a multi-phase study associated with
developing students ability to construct computational models to support their analysis of natural and
engineered systems. For this study the central research questions included:

1. How well do students develop computational thinking and computer programming skills
while learning multiple programming languages?

2. What differences in student learning exist between developing computational learning
objectives and other course objectives?

Methods

The primary research goal was to identify how students’ computational skills develop while
learning multiple programming languages. In this context learning may depend on the prior programming
experience students brought to this first year experience. For many this could have been a completely
new experience and required a new way of thinking about problem solving and analysis. Therefore, the
second layer of analysis was to compare their computational and programming performance with the
other course objectives. The following outlines the participants and the instructional methods used to
develop their programming skills. A brief description of the various instruments used to evaluate
students’ learning and attitudes toward programming as they developed across multiple years follows.

Participants: The target audience for this study were students enrolled in a first year engineering honors
course. The course was conducted across two semester to develop students’ abilities to engage in
innovative design processes with teams and develop computational skills to produce numerical models for
analytical problem solving and control algorithms for autonomous devices.

Instructional approach: The course engaged students in a blended instruction method to develop basic
skills and problem based skills to manage more complex contexts. Instruction for computational/
programming skills began with pre-activities. Students were required to review readings and exercises
prior to coming to class. In Fall 2014 online video modules were used to introduce major topics to
students. In Fall 2015, an online textbook, authored by Zybooks [11], was adopted to organize content
into four modules each for Python and MATLAB. Each week students were assigned a module to review
prior to coming class. The typical topical sequence included, 1) an introduction to data types,
instructions, procedural control and libraries, 2) conditional control and functions, 3) collections and
looping control, 4) Input/Output control. The Zybooks text had traditional text narrative to introduce new
concepts to students. It also had an added feature of an embedded coding window that provided exercises
with feedback so students could test their understanding. Students reviewed the material and then posted
questions they still had about the content. These questions were evaluated by the instructional team and
the most frequently asked questions were discussed in class.

In class students worked on tasks as a team. Each task consisted of a series of small exercises
targeting specific programming concepts presented in the pre-activities. These exercise were designed to
practice using various instructions and the syntax associated with performing them. More importantly,
the exercises were presented with a context to help illustrate how to translate various problem contexts
into algorithms. Each session ended with a short quiz called a check for understanding (CFU). The CFU
targeted fundamental concepts relative to the topic for the particular day. The assumption was students
would perform well on the CFU if they prepared for the class by interacting with the pre-activities and
engaged with their peers to perform the programming tasks.

After the in-class tasks students had two opportunities in the following week to further develop
their programming skills. First, students had the option to complete the in-class tasks their team did not
complete to receive bonus points. Second, students were required to complete a post activity for
homework points. The Post Activity (PA) was presented in either a scientific or engineering context that
would benefit from a computational model. Students were required to generate an algorithm in the form
of a flowchart that summarize the logic for their computational model and then develop and test code to
perform the algorithm.

Instruments: Students’ prior experience was determined with a background survey profiling students’
prior experience with programming, solid modeling tools, and working in teams. The primary purpose of
the background survey was to facilitate team formation. The background information was used to
establish a balance of team members based on programming background, ethnicity, gender, and schedule.
Students’ self reports on prior experience and training were used to formulate a prior programming
metric. Survey items included -

A. Indicate your general level of ability when it comes to computer programming.
1. I cannot program at all -- even programming my calculator is hard work.
2. I can produce a working program, but it would be very simple or require a long time for me to

complete it.
3. I can create a reasonably complex program in at least one language.
4. I can program in multiple languages, and I can produce fairly complex programs in at least one

language.
B. Indicate how difficult it would be for you to do each of the following programming-related tasks, assuming

you had an appropriate reference manual available.

1 Very Difficult; 2 Difficult; 3 Somewhat Difficult;4 Neutral; 5 Somewhat Easy; 6 Easy; 7 Very Easy
a. I could readily write a sequentially-structured program in some programming language.
b. I could readily write a program in some programming language that includes conditional and

repetition structures.
c. I could readily write a program in some programming language that includes complex structures

(e.g., pointers, struct classes, recursive functions, etc.)

C. For the following computer languages, please make a self-appraisal of your level of knowledge.
1 Very Poor; 2 Poor; 3 Fair; 4 Good; 5 Very Good

1 Basic
2 C
3 C++
4 C#
5 Python 2
6 Python 3
7 Fortran 90
8 Java
9 Pascal
10 Visual Basic for Applications
13 NXT Lego Mindstorm

D. For the following computer languages, indicate whether or not you have taken a formal class
1 Basic
2 C
3 C++ or C#
4 Python (2 or 3)
5 Fortran
6 Java
7 Pascal
8 Visual Basic for Applications
9 Matlab
10 LabVIEW

The scores were combined into a subscore and divided into 4 categories defined as, 1) novice, 2)
rudimentary, 3) intermediate, 4) competent. Higher levels of expertise could be defined, but it was
assumed none of the students had a level of expertise that would suggest they were accomplished
programmers ready to work in industry.

Students’ computational thinking and computer science skills (CT/CS) were determined by a subscore
from items on the exam targeting the learning objectives. A second subscore is associated with all the
other test items that target other learning objectives for the course.

Analysis: A within subjects quantitative analysis was used to compare students’ prior programming
experience with their ultimate performance in the course. A delta score was computed between the
CT/CS and students’ self reports on their prior programming abilities. A correlational analysis was
performed between the student's cumulative CT/CS subscore and total test scores across the three exams.

Results

Students’ computational thinking and computer science scores from the exams were compared for
students across Programming Experiences shown in Figure 1 and Figure 2. The dependent variable
represents the percentage of total cumulative points that could be earned for exam in each semester.

Figure 1 - Cumulative scores across exams for each expertise level of programming

Figure 2 - Cumulative scores of students based on prior experience.

 Figures 3 and 4 illustrate a box whisker graph of students’ CT/CS performance relative to the other exam
questions. The assumption was this factor provided a relative indicator of students’ prior experience
relative to their overall performance on other common first year learning objectives. The cumulative

CT/CS scores were subtracted from the total exam score and offset by 1. That is, students who
performed similarly on the CT/CS items compared with the other test items would have a delta level of 1.
Students scoring better on the CT/CS items would have a positive delta meaning these students actually
performed better on CT/CS items compared to other test items. Students who score worse on the CT/CS
items would have a delta level less than one. In both years students coming into the course with even an
intermediate level of programming competence demonstrated equal abilities across all test items with a
relatively low level of variance. Alternatively, novice programmers tended to score lower on the
programming portions. However, the variance of scores for novice programmer was larger indicating that
lack of prior experience was a strong indicator of future success on exams.

Figure 3 - Difference between CT/CS item scores and other test items relative to prior programming experience.

Figure 4 - Difference between CT/CS item scores and other test items relative to prior programming experience.

Discussion

The instructional design of the course should balance students’ effort and performance on the
major learning outcomes for the course. Learning a new programming language can be very challenging
for students who do not have a programming background. Although learning to engage in evidence based
design may be unfamiliar to students as well, and potentially just as difficult to learn and teach. One
concern the course designers had was introducing these challenging topics to novice engineering students
because of the variance in prior background students have with programming and design. Figure 1 and 2
illustrate that for the two years of analysis students were successful in learning the major programming
objectives. Even novice programmers eventually obtain nearly 65% of the points associated with
computational thinking and programming assessment questions. This lower performance was due to a
slow start in performance on programming skills which was often the most challenge concepts assessed
on the initial exam. This also explains some of the variance of the novice programmers who demonstrated
early their ability to grasp programming concepts and perform well on the exams. Interestingly, the prior
experience did have some effect on novice students’ performance on the first exam in 2015. The
introduction of the new online textbook, with embedded practice session may have had some impact on
students’ early success with the programming activities. Additional studies are underway to investigate
students’ perceptions of these resources for learning and the impact of their participation with this
resource on their overall programming performance.

Learning to program could be challenging for first year students because it was new and not
comparable to other skills that were more in line with the difficulty for achieving other course learning
objectives. Figure 3 and 4 helped to illustrate this point for both years. In both years the majority of
students were more successful on the general course objectives compared to their programming
performance. However, this difference between the overall CS performance compared with the rest of the
score was not significant. This suggests successful students achieved a balance across all the course
learning objectives. Also, the progression of multiple learning programming language lead to increasing
all students’ performance on programming tasks.

In the past year several changes were made to the instructional method to provide more in-class
practice with feedback. The intent was to provide students with with more formal feedback from the
instructional team. This form of active learning was based on models of guided discovery using
formative assessment tools like Classroom Presenter [12]. Further training of the Peer Teaching Assistant
(PTA) was increased to better support their approach to evaluating student work and generating
meaningful feedback on individual student’s work product and during office hours. The goal is to reduce
the effect from a slow start and to increase the learning curve of novice so they achieve at least the same
performance as the competent student.

Future studies are underway to better determine the specific transfer effects of programming
multiple language and students’ development of computational thinking skills. These impacts include
their ability to transform a complex system into a model they can be used to either explain patterns and
behaviors of a system they design and develop models they can convert into algorithms a computer can
process. These are critical skills first year engineering students need as they prepare for the academic
and professional engineering careers.

Acknolwedgements

We appreciate the support of Purdue University’s School of Engineering Education and the First
Year Engineering Honors Program for their support of this study. The views expressed by the
authors do not necessarily reflect the views of these agencies.

References

[1] Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P-12
classrooms. Journal of Engineering Education, 97(3), 369-387.

[2] Bennedsen, J., & Caspersen, M. (2008). Model-driven programming. In Reflections on the Teaching of
Programming (pp. 116-129). Springer Berlin Heidelberg.

[3]Cognition and Technology Group at Vanderbilt. (1997). The Jasper Project: Lessons in curriculum, instruction,
assessment, and professional development. Psychology Press.

[4] Hmelo-Silver, C. E., & Azevedo, R. (2006). Understanding complex systems: Some core challenges. The Journal
of the learning sciences, 15(1), 53-61.

[5] Koulouri, T., Lauria, S., & Macredie, R. D. (2015). Teaching introductory programming: a quantitative
evaluation of different approaches. ACM Transactions on Computing Education (TOCE), 14(4), 26.

[6] Langtangen, H. P. (2009). A primer on scientific programming with Python (Vol. 2): Springer.

[7] Morris, C. D., Bransford, J. D., & Franks, J. J. (1977). Levels of processing versus transfer appropriate
processing. Journal of verbal learning and verbal behavior, 16(5), 519-533.

[8] Radenski, A. (2006). Python First: A lab-based digital introduction to computer science. ACM SIGCSE Bulletin,
38(3), 197-201.

[9] Schwartz, D. L., & Bransford, J. D. (1998). A Time For Telling. Cognition and Instruction, 16(4), 475-5223.

[10] Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

[11] Zybook. (2017). Introduction to Python and MATLAB. Last accessed March 19, 2017, from zybooks.com.

[12] Anderson, R., Davis, P., Linnell, N., Prince, C., Razmo, V., & Videon, F. (2007). Classroom presenter:
Enhancing interactive education with digital ink. Computer, 40(9).

