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1. Introduction 

Flexible manipulator systems are receiving increasing attention due to their advantages over 

conventional robot manipulators. The advantages include faster response, lower energy 

consumption, relatively smaller actuators, higher payload to weight ratio and, in general, less 

overall cost 
1
. Some of the current applications of such manipulators include spacecraft, remote 

manipulation and radioactive material handling in nuclear power plants. Due to their flexible 

nature, induced vibrations appear in the system during and after a positioning motion 
2,3

. This 

restricts their wide spread use in industry. A considerable amount of research work has already 

been carried out on the vibration control of flexible manipulators. However, a generic solution to 

the problem is yet to be obtained 
4,5

. 

To formulate and implement an effective control strategy for efficient vibration suppression of 

the system, it is important to recognise the flexible nature of the manipulator and construct a 

mathematical model for the system that accounts for the interactions with actuators and payload 
6
. Such a model can be constructed using partial differential equations (PDEs). The finite element 

(FE) and finite difference (FD) methods have also been utilised to describe the flexible behaviour 

of manipulators 
7
. The computational complexity and consequent software coding involved in 

the FE method is a major disadvantage of this technique 
8
. An alternative solution is to utilise 

intelligent techniques, such as genetic algorithms (GAs) and neural networks (NNs) for 

modelling of flexible manipulator systems 
9
. 

The approaches indicated above have proved to be effective in modelling and simulation of such 

systems for test and verification of controller designs. However, to allow interactive and user 

friendly features, that are desired especially in computer aided teaching and research, be 

incorporated a modelling, simulation and control environment is developed in this work for 

flexible manipulators using Matlab and Simulink. To this end the authors have developed an 

interactive and user-friendly environment referred to as SCEFMAS (Simulation and Control 

Environment of Flexible Manipulator Systems) 
10

. As an on-going development process, the 

SCEFMAS environment is enhanced by the addition of intelligent modelling, a new menu driven 

user interface with GUI based facility, and the display of results within the GUI facility. 

Moreover, the environment is upgraded from Matlab 4.2 to Matlab 6.5. This paper describes 

these recent developments in SCEFMAS. The rest of the paper is structured as follows: Section 2 
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briefly describes the flexible manipulator system considered and the corresponding FD 

simulation process. Section 3 illustrates the GA and NN modelling strategies. Section 4 describes 

the implementation of the FD simulation algorithm, GA and NN modelling strategies within the 

SCEFMAS framework. The developed GUIs are also described in this section. The paper is 

concluded in Section 5. 

2. The Flexible Manipulator System 

The flexible manipulator system under consideration is modelled as a pinned-free flexible beam, 

with a mass at the hub, which can bend freely in the horizontal plane but is stiff in vertical 

bending and torsion. The model development utilises the Lagrange equation and modal 

expansion method 
11,12

. To avoid the difficulties arising due to time varying length, the length of 

the manipulator is assumed to be constant. 
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Figure 1: Schematic representation of the flexible manipulator system. 

A schematic representation of the manipulator is shown in Figure 1, where  and  

represent the stationary and moving co-ordinate frames respectively. The axis  coincides 

with the neutral line of the link in its undeformed configuration, and is tangent to it at the 

clamped end in a deformed configuration. The  represents the applied torque at the hub. , , 

, ,  and  represent the Young modulus, area moment of inertia, mass density per unit 

volume, cross sectional area, hub inertia and payload of the manipulator respectively. 

denotes an angular displacement (hub-angle) of the manipulator and  denotes an 

elastic deflection (deformation) of a point along the manipulator at a distance  from the hub of 

the manipulator. In this work, the motion of the manipulator is confined to the  plane.  

The width of the arm is assumed to be much greater than its thickness, thus, allowing the 

manipulator to vibrate (be flexible) dominantly in the horizontal direction. The shear 

deformation and rotary inertia effects are also ignored. 
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To obtain equations of motion of the manipulator, the associated energies have to be obtained. 

These include the kinetic, potential and dissipated energies. Thus, using the Hamilton’s extended 

method, a partial differential equation (PDE) describing the dynamic equation of the flexible 

manipulator with associated boundary and initial conditions can be obtained 
2
. The PDE thus 
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obtained is of a hyperbolic type and can be classified as a boundary value problem. This can be 

solved using an FD method 
7
. This involves dividing the arm into a finite number of equal-length 

sections and developing a linear difference equation describing the deflection of end of each 

section (grid-point). Thus, using the FD method, a solution of the PDE can be obtained and 

implemented on a digital processor
 2

. 

3 Intelligent Modelling 

In many cases, when it is difficult to obtain a model structure for a system with traditional 

system identification techniques, intelligent techniques are desired that can describe the system 

in the best possible way 
9
. GAs and NNs are two intelligent techniques used commonly for 

system identification and modelling. The major advantage of utilising GAs for system 

identification is that GAs simultaneously evaluates many points in the parameter space and 

converge towards the global solution 
13

. The superiority of a GA over recursive least squares 

(RLS) algorithm in modelling a fixed-free flexible beam is addressed by 
14

. In contrast, NN 

approaches for system identification offer many advantages over traditional ones especially in 

terms of flexibility and hardware realisation 
15

. This technique is quite efficient in modelling 

non-linear systems or if the system possesses nonlinearities to any degree. 

Once a model of the system is obtained, it is required to validate whether the model is good 

enough to represent the system. A number of such validation tests are available in the literature 
15

. These are one-step ahead (OSA) prediction; model predicted output (MPO), and correlation 

tests. Such techniques are incorporated within SCEFMAS for validating developed models. 

Moreover, with NN modelling, the input-output data set is divided into two halves. The first half 

is used to train the NN and the output computed. The NN usually tracks the system output well 

and converges to a suitable error minimum. New inputs are presented to the trained neural 

network and the predicted output is observed. If the fitted model is correct, i.e., correct 

assignment of lagged inputs and outputs, then the network will predict well for the prediction set. 

In this case the model will have captured the underlying dynamics of the system. If both the OSA 

and the MPO of a fitted model are good over the estimation and prediction data sets then most 

likely the model is unbiased. 

3.1 GA Modelling 

With GA modelling an initial population of potential solutions is created in the first step. Each 

element of the population is mapped onto a set of strings (the chromosome) to be manipulated by 

the genetic operators. In the second step, the performance of each member of the population is 

assessed through an objective function imposed by the problem. This establishes the basis for 

selection of pairs of individuals that will be mated together during reproduction. For 

reproduction, each individual is assigned a fitness value derived from its raw performance 

measure, given by the objective function. This value is used in the selection to bias towards more 

fit individuals. Highly fit individuals, relative to the whole population, have a high probability of 

being selected for mating, whereas less fit individuals have a correspondingly low probability of 

being selected 
16

. 

In the manipulation phase, genetic operators such as crossover and mutation are used to produce 

a new population of individuals (offspring) by manipulating the genetic information usually 
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called genes, possessed by the members (parents) of the current population. The crossover 

operator is used to exchange genetic information between pairs, on larger groups, of individuals. 

Mutation is generally considered to be a background operator, which ensures that the search 

process is not trapped at local minimum, by introducing new genetic structures in the population. 

After manipulation by the crossover and mutation operators, the individual strings are then, if 

necessary, decoded, the objective function evaluated, a fitness value assigned to each individual 

and individuals selected for mating according to their fitness, and so the process continues 

through subsequent generations. In this way, the average performance of individuals in a 

population is expected to increase, as good individuals are preserved and breed with one another 

and the less fit individuals die out. The GA is terminated when some criteria are satisfied, e.g., a 

certain number of generations completed or when a particular point in the search space is 

reached. 

For parametric identification of the manipulator with GA, randomly selected parameters are 

optimised for different, arbitrarily chosen order to fit to the system by applying the working 

mechanism of GA as described above. The fitness function utilised is the sum-squared error 

between the actual output, , of the system and the predicted output, , produced from 

the input to the system and the optimised parameters: 
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Where,  is the number of input/output samples. With the fitness function given above, the 

global search technique of the GA is utilised to obtain the best set of parameters among all the 

attempted orders for the system. The output of the system is thus simulated using the best sets of 

parameters and the system input. 

n

3.2 NN Modelling 

Various modelling techniques can be used with neural networks to identify a non-linear 

dynamical system. These include state-output model, recurrent state model and non-linear 

autoregressive moving average process with exogeneous (NARMAX) input model. However, 

from the literature it has been established that if the plant’s input and output data are available, 

the NARMAX model is a suitable choice, for modelling systems with nonlinearities. 

Mathematically, the model is given as 
17

: 
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Where, is the output vector determined by the past values of the system input vector, output 

vector and noise with maximum lags ,  and  respectively,  is the system mapping 

constructed through multilayer perceptron (MLP) or radial basis function (RBF) neural networks 

with an appropriate learning algorithm. The model is also known as NARMAX equation error 

model. However, if the model is good enough to identify the system without incorporating the 
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noise term or considering the noise as additive at the output the model can be represented in a 

NARX form 
17,18

 as: 
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With both GA and NN modelling the manipulator is modelled from the input torque to hub-

angle, hub-velocity and end-point acceleration. These are referred to as the hub-angle model, 

hub-velocity model and end-point acceleration model respectively. 

4. SCEFMAS Environment 

A major portion of the initial version of the SCEFMAS was developed using Simulink 
10

. 

Moreover, SCEFMAS utilizes the Matlab Guide (GUI development tool) for the development of 

GUIs 
19,20

. The working principle of the SCEFMAS is shown by a flow-chart in Figure 2. 

 

Figure 2: Flow-chart of the SCEFMAS environment. 

The Initial GUI allows the user to provide the flexible manipulator specifications, material 

properties and simulation parameters. Following this the user will have the option to choose 

algorithm type for simulation and model type. The choices are: FD simulation, GA modelling, 

NN modelling. 

4.1 Initial GUI 

The initial GUI is named as Scefmas_V2 and is used as gateway to the SCEFMAS environment 

(Figure 3). Through this GUI the user will have the choice to provide three sets of parameters. 

These are Manipulator Specifications, Material Properties, and Simulation Parameters. 

Manipulator parameters involve the length, thickness and width of the manipulator along with 

Proceedings of 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright @2004, American Society for Engineering Education 

 

P
age 9.62.5



 

the hub inertia and payload. While the material properties constitute damping factor, young’s 

modulus and mass density per volume. Finally, the total simulation time, number of segments, 

and stability factor for the FD algorithm constitute the simulation parameters. The user then 

needs to choose the type of algorithm options from the bottom right side box of the GUI window. 

The options are: FD Simulation, NN Modelling or GA Modelling. 

 

Figure 3: Startup GUI for the SCEFMAS environment. 

At the bottom of the option selection box there are two radio buttons, which can be used to select 

excitation input of the flexible manipulator. The inputs are Random input and Composite PRBS 

input. Both of these inputs provide sufficient excitation for all the modes associated with a 

flexible manipulator system within the frequency range of excitation. 

5.2 FD Simulation and display of results 

Once the user clicks on the FD Simulation button within the Scefmas_V2 GUI, the user has the 

option of either opening a pre-developed model or one of their own models. Figure 4 shows such 

a pre-developed model with a flexible manipulator connected to a random input in an open-loop 

manner. The Auxiliary block within the model produces data set for 3D plot within the Result 

GUI. After a simulation run the input and outputs are passed to the Matlab environment through 

the yin and yout blocks. 
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Figure 4:  Excitation of a flexible manipulator using a random input. 

 
Figure 5: Displaying the results obtained from FD Simulation 

At the end of the simulation, a button called Results will be displayed within the Initial GUI 

(Figure 3). A click on this button will open a new GUI called Results, which can be used to 

display all the input and outputs produced through this simulation process (Figure 5). 

The left hand side of the GUI includes option buttons, top right side contains time domain and 

frequency domain result windows for the selected input or output parameter, bottom middle 

window is for displaying 3D plot of the complete motion of the manipulator for a given 

simulation. The drop down menus at the bottom right side can be used to choose properties of the 

3D plot. After viewing the result, the user can choose to return to the Initial GUI by clicking on 

the New Simulation button or may exit SCEFMAS by clicking on the Quit button within the 

Results GUI. The complete FD simulation and display process can be presented through the 

flowchart shown in Figure 6. Within the flowchart Simulink Controller is shown as a part of 

SCEFMAS and has been reported earlier 
10

. 
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Figure 6: FD simulation flowchart. 

4.3 Neural network modelling 

The NN_template GUI, shown in Figure 7 is used for NN modelling of the flexible manipulator 

systems. The process starts by clicking on the NN Modelling button within the Scefmas_V2 

GUI. The upper part of this window allows the user to choose the number of layers of neurons 

within the NN structure along with the property of neurons in each layer. At this point the user 

needs to generate the training data for NN modelling. The process starts by clicking on the 

Generate Data Set button. The user can choose from a set of FD Models available within the 

SCEFMAS environment. At the end of FD simulation the user can view the generated data for 

quality assurance. To start the NN training one has to click on the Train Network button at the 

bottom middle part of the GUI. This will start the training process and the sum-squared error 

will be displayed in a graphical window at the bottom left corner of the GUI. At the end of the 

training Simulation Done message will pop up at bottom right corner of the GUI. A new button 

called Validation Plots will also appear just below the Train Network button. 
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Figure 7: Neural network modeling GUI. 

A click on the Validation Plots button will open the Validation Plots GUI as shown in Figure 8. 

This GUI is to display the time domain and frequency domain model validation properties. The 

left hand side of the GUI provides all the model option buttons. For each input output model 

there are two types of validation. One is comparison between the actual and model outputs in 

time and frequency domains and the other is a correlation test. The figure within the GUI shows 

the comparison between the actual and model outputs for input to hub angle model. The top left 

corner graphical window shows the normalized actual and predicted outputs while the top right 

corner graphical window shows the error between the actual (from FD simulation) and NN 

model output. Bottom graph window compares the actual and predicted outputs in the frequency 

domain. The performance of models from the input to each output can be displayed by clicking 

on the appropriate button. 

 

Figure 8: Validation plots for NN modeling. 

There are couple of inactive model option buttons incorporated within the GUI. These can be 

used to validate further models developed within SCEFMAS. At the end of the validation 
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process the user can click on the Quit button to return to the Scefmas_v2 GUI and start another 

simulation run. The flowchart shown in Figure 9 explains the NN modelling process. 

 
Figure 9: Neural network modeling flowchart. 

4.4 Genetic algorithm modelling 

Clicking on the GA modelling button within the Scefmas_V2 GUI will open the GA 

modelling GUI as shown in Figure 10. The left hand side of the GUI are provided with sliders, 

where a user can set the GA modelling parameters. These are Number of individuals, Maximum 

number of generations, Generation gap, Binary precision and Order of GA model. The top right 

corner of the GUI provides a drop down menu to choose a model type, such as, Hub Angle, Hub 

Velocity and End Acceleration. After entering all the model parameters and model type, the user 

can generate training data by clicking on the Generate Data button (one of the right bottom 

buttons). After the generation of FD simulation data, the user can proceed with the GA 

modelling by clicking on the GA Modelling button within the GUI. The progression through the 

GA modelling along with the fitness performance will be displayed in the figure window at the 

middle of the GUI. 

 

Figure 10 The GUI used for GA modelling process. 
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Figure 11: GA modeling validation GUI. 

After the completion of the modelling process the Validation Plots button will be activated 

(bottom right corner of the GUI). The user can click on this button to observe the performance of 

the developed GA model through GA_Validation_plots GUI (Figure 11). The left hand side of 

the GUI is provided with buttons for choosing model types. The model validation outputs are 

displayed through four figure windows. Top two figure windows are for comparing the 

magnitudes of actual and predicted outputs. The bottom right window shows the comparison 

between actual and predicted outputs in the frequency domain. The bottom left window shows 

the sum-squared error for each generation. At the end of the GA model validation process the 

user can return to the Scefmas_V2 GUI for further modelling exercises. The GA modelling 

process is illustrated by the flowchart in Figure 12. 

 

Figure 12: Genetic algorithm modeling flowchart. 
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5. Student response 

The first version of the SCEFMAS is in use with the Automatic Control and Systems 

Engineering Department of University of Sheffield (UK).  This package is used as a supporting 

tool to deliver a module of a M.Sc. program with the department.  Although, there is no formal 

assessment for the effectiveness of this environment as a leaning tool, but students has expressed 

their opinion during the module end questioners.  These opinions reflect that the software 

environment enables the students to understand the behaviour of a flexible manipulator system 

and also the effect of parameter variations.  The learning process could be much difficult without 

this package.  In addition to this, student can test the effectiveness of their controller designs 

without spending much time on system simulation.  However, the introduction of new version of 

SCEFMAS would be followed by a detailed student evaluation. 

6. Conclusions 

As an on-going process of enhancing SCEFMAS, the development of intelligent modelling 

techniques through user friendly GUIs has been presented. The finite-difference simulation of a 

single-link flexible manipulator is the backbone of the SCEFMAS system. As a part of 

intelligent modelling techniques GA and NN models have been developed and realised using the 

Matlab and Guide environments. The interactive GUI allows the user to choose a model structure 

and monitor the developed model performance without going into the programming details. 

Moreover, a data analysis provision has been made within the package, to enable users to analyse 

their data obtained from a test run. This makes the environment more user friendly and saves the 

time and effort to transfer the data to another environment for analysis. 

SCEFMAS has already proven to be a valuable education tool for understanding the behaviour of 

flexible manipulator systems and development of various controller designs. The addition of 

these new features will enhance the learning outcome of this environment. The GA and NN 

modelling features of SCEFMAS can easily be extended to the development of intelligent 

controllers within SCEFMAS. With the advent of Internet technology, the package can be further 

used as a distance teaching learning facility 

The Simulink blocks can be utilised to investigate various other aspects of active vibration 

control in flexible manipulator systems. Users can design their own Simulink blocks and couple 

them to specific requirements. 
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