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A Method for Predicting Post-Secondary Educational Outcomes 
 

Abstract 

 

Identifying potential engineering students and understanding what affects their choice of college 

major is critical to engineering educational research.  Insufficient numbers of students are 

majoring in Science, Technology, Engineering, or Mathematics (STEM) topics.  Understanding 

the factors that affect students’ interest in studying STEM, capability of succeeding in STEM, 

and likelihood of persisting to achieve a STEM degree is of vital concern to educators.   

 

This study used an extensive national longitudinal dataset of over 12,000 students to develop a 

set of logistic regression models for predicting which students ultimately achieve a STEM degree 

vs. another educational outcome.  The potential educational outcomes included no college 

degree, a less than four year college degree, a Non-STEM college degree, a STEM college 

degree, and a newly proposed category of STEM-Related college degree.  Another model 

comparing the probability of STEM vs. all the other possible outcomes combined was also 

constructed.  The resulting models demonstrated strong predictive accuracy in discriminating 

between a STEM degree and an alternative educational outcome.  The predictive accuracy of the 

models was examined with Receiver Operating Characteristic (ROC) Curves.  Several measures 

of student academic capability, prior academic performance, attitudes, experiences, and family 

influences were consistently found to be statistically significant predictors of STEM.    

 

Introduction 

 

The progression of students through the American educational system from kindergarten to 

acquisition of a college degree is a lengthy process.  At present, the quantity of students that 

complete degrees in Science, Technology, Engineering, and Math (STEM) is not sufficient
1
.  

The volume of undergraduates enrolled from 1992 to 2004 increased steadily
2
.  However, the 

pattern of degrees earned from 1996 through 2005 indicates that only small increases have 

occurred in the bachelors, masters, and doctoral degrees achieved by U.S. citizens and permanent 

residents.  The number of mathematics degrees earned during this period also exhibited little 

growth.  The volume of full-time graduate students increased but the number earning advanced 

degrees in other science topics exhibited slight increases or declines through 2001
3
.   

 

Producing STEM degree-holders is a process that depends upon the students, educators, and the 

means by which students are educated.  The students are a vital portion of the raw materials to 

this process and issues that affect their quantity and quality also affect the resulting number of 

degree-holders.  Studying this process in order to identify significant factors that affect the 

production of degree-holders could provide a guide towards improving the process.  A 

methodology to test the effect of these factors could aid in designing an intervention program to 

encourage and assist more students in pursuing a college degree in STEM.   

 

Developing such a methodology starts with examining the work of education researchers who 

have explored the motivations of students and the predictors of student success in school.  

Variables found by other education researchers to have been significant predictors of STEM 

interest, persistence, and successes are a natural starting point for this analysis.  
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Prior research into the degree acquisition process has found that previous academic performance 

and personal attitudes are good predictors of success in earning a degree.  Astin
4
 used data from 

the Cooperative Institutional research Program (CIRP)
5
 for a set of 36,581 students at many 

colleges.  He identified high school academic performance and standardized test scores like those 

of the SAT and ACT as strong predictors of academic performance in college.  Zhang, Anderson, 

Ohland, and Thorndyke
6
 reported similar results after examining the records at nine different 

schools of 87,167 engineering students who attended from 1987 to 1996.  The longitudinal study 

tracked graduation rates and used multiple logistic regression to estimate the time to graduation.  

Verbal SAT scores, gender, ethnicity, and citizenship were also found to be significant predictors 

for college graduation.  

 

Smythe and McArdle
7
 examined CIRP data for average high school grades, anticipated majors, 

and SAT scores.  The students’ college transcripts were obtained separately to test for 

significance of racial/ethnic and gender variables in STEM degree acquisition.  The colleges 

were ranked by their selectivity, and a series of models were constructed to estimate the effects 

on the log-transformed odds of STEM graduation.  They found that Asian students were the most 

likely to obtain a STEM degree followed by Caucasian students and then minority students.  

Female students were less likely to graduate with a STEM degree than male students.  SAT math 

scores, high school grades, and other quantitative measures of academic performance were 

significant in predicting degree acquisition.  Another finding was that the risk of not graduating 

with a STEM degree rose when students chose selective colleges where their own standardized 

test scores fell into a low percentile compared to their college cohort.  The authors concluded 

that students were disadvantaged by choosing schools where their individual performance 

measures compared unfavorably to those of the overall student body.   

 

Besterfield-Sacre, Atman, and Shuman
8
 explored student attitudes to determine if they predicted 

academic performance and persistence in engineering.  They designed a methodology for 

measuring the expectations, self-confidence, and attitudes of freshmen engineering students.  

They found that students who performed well but chose to leave engineering were often those 

that expressed less interest in the subject.  These students were capable of succeeding but had 

less motivation to pursue engineering after identifying other subjects that were more personally 

appealing.  In contrast, the students that departed the engineering track after poor performance 

had tended to have high expectations of the subject.   

 

Huang, Taddese, and Walter
9
 studied students’ pursuit of college science and engineering 

degrees to identify factors affecting minority and female students.  They found that persistence to 

degree was more likely in students with greater academic strength in mathematics/science, 

greater personal interest in STEM, higher parental expectations, and a more supportive family.  

Racial/ethnic and gender gaps in STEM degree acquisition shrank when these factors were 

controlled.  Interestingly, although smaller numbers of female students pursued a STEM degree 

compared to their male cohort, they tended to perform well after choosing that course of study. 

 

Nicholls, Wolfe, Besterfield-Sacre, Shuman, and Larpkiattaworn
10

 examined CIRP data to 

identify variables which exhibited significant differences between college freshmen with STEM 

and Non-STEM majors.  Qualitative variables found to have significant differences included 
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students’ self-ratings of academic ability, computer skills, social interests, and future goals.  

Significant quantitative variables included high school grade point average and mathematics 

SAT scores.  The verbal SAT score was found to be significant but this was less consistent 

across the students.   

 

Data Collection 

 

The means of obtaining data for this analysis was one of the key initial decisions.  Designing and 

conducting a study to collect the volume of data required was judged to be impractical.  Instead, 

existing data sources that could be adapted for the purposes of this analysis were sought.  

Extensive research has been performed about students’ educational experiences in high school 

and college so several sources were considered.  Among them were a series of longitudinal 

studies conducted by the Department of Education’s National Center for Education Statistics 

(NCES) collecting information about students as they progress through secondary education and 

college.  The most recent of these studies to be completed is the National Education Longitudinal 

Study of 1988 (NELS:88)
11

 which collected extensive demographic, experiential, attitudinal, 

educational, and career data from students at set points in their lives.   

 

The NELS:88 sample was chosen to be a representative cohort of students nationally.  The study 

began in 1988 with students in the 8
th

 grade and continued through four follow up waves of data 

collection in 1990 (10
th

 grade), 1992 (12
th

 grade), 1994, and 2000.  Academic performance was 

assessed through cognitive tests administered by NCES, high school grades, standardized test 

scores, high school transcripts, and college transcripts if available.  The students’ parents, 

teachers, and school administrators were asked to answer survey questions about themselves, the 

students, and the schools.  The dataset’s breadth was impressive with over 7,000 variables from 

just the students’ high school years.  Special focus was placed by the NELS:88 study designers 

on retaining sample members who were minority students or who had dropped out of school at 

some point.  The final follow up sample included 12,144 students of which 11,328 had 

participated during all five waves of data collection.  The size of the NELS dataset, its lengthy 

time span, and the volume of prior educational research based upon it were factors in favor of 

utilizing it for this research. 

 

Most of the NELS:88 data was categorical with many variables possessing an ordinal scale while 

other were strictly nominal.  Potential answers to the NELS survey questions were often 

numerical and represented either single values or ranges of values.  Some of the questions had 

only two possible answers.  Very few variables were continuous in scale.  The categorical 

qualities of the data led to a decision to use a nonlinear statistical technique in order to analyze it.  

Logistic regression
12

 was chosen because of its ability to handle ordinal, nominal and continuous 

variables.    

 

A process of recoding the variables was undertaken to resolve problems in variables with disjoint 

values that disrupted the modeling.  For example, the variable measuring a student’s overall 

reading proficiency quartile from the cognitive test in the 1988 base year (BY) data collection, 

“BY2XRQ,” had seven potential values.  These values were members of the set [1, 2, 3, 4, 6, 8, 

9] and represented “Quartile 1 Low,” “Quartile 2,” “Quartile 3,” “Quartile 4 High,” “Legitimate 

Skip/Not in wave,” “Missing”, and “Test Not Completed,” respectively.  There were 1,180 
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records out of the original 12,144 that had a value other than 1 through 4 for the BY2XRQ 

variable.  Since the potential values were not purely ordinal the variable’s utility for model-

fitting was hampered.   

 

Other categorical variables had dichotomous responses but were not truly binary since the 

potential values were [1, 2] as opposed to [0, 1].  For example, the 2000 fourth follow up (F4) 

variable for students’ sex, “F4SEX,” was originally coded as 1 for male and 2 for female.  Still 

other variables possessed a purely nominal set of potential values.  The variable “F4Race2” had 

potential values within the set [1, 2, 3, 4, 5, -9] representing American Indian/Alaska Native, 

Asian/Pacific Islander, Black – not Hispanic, White – not Hispanic, Hispanic/Latino, or Missing, 

respectively. 

 

The variables measuring standardized test scores for the SAT and ACT were categorical but 

resembled a series of mostly ordinal integer values.  For example, the 1992 second follow up 

(F2) variable “F2RACTE” provided a student’s ACT English score and included integer values 

of 6 through 36, 98, and 99.  The first range of values represented an actual point score on the 

English portion of the ACT test while “98” indicated “Missing Data,” and “99” represented 

“Legitimate Skip/Not in wave.” 

 

The difficulties caused by the categorical nature of the data were addressed by reviewing each 

variable’s potential values and creating companion recoded variables that conveyed the 

information in a strictly ordinal or binary fashion.  This required a process of examining the 

potential values and recoding non-ordinal values such as those for “Missing,” “Legitimate Skip,” 

etc. to a value of “0” indicating that no useful information was provided by that variable for that 

individual record.  Other responses were grouped to create stronger delineations between 

answers.  An example of this was a recoded variable for the father’s highest educational level 

that categorized the answer as either “College and above” or “No college degree.”   

 

Categorical variables with dichotomous potential values were recoded as needed to make them 

truly binary.  Thus, a recoded version of the variable F4SEX variable, “F4SEXro,” was created 

with 0 for male and 1 for female.  In such a case, the reference or base case was set to 0.  

Similarly, the nominal values for the variable measuring students’ race, “F4Race2” was recoded 

into a set of binary dummy variables in which the base case was Caucasian with a value of 0.  

For these dummy variables “F4RACE2AI,” “F4RACE2As,” “F4RACE2Bl,” and “F4RACE2Hi” 

the value was 1 if the student’s race was American Indian/Pacific Islander, Asian, African-

American, or Hispanic, respectively.  Thus Caucasian students were represented by having each 

of these four dummy variables equal to 0.   

 

The complexity of reviewing each potential variable to develop a recoded version was deemed 

too time-consuming and not practical for future applications.  In order to apply the findings of 

this research to future school settings, the data collection would have to be limited to a quantity 

and scope that would not be onerous to busy educators.  Thus a strategic decision was made to 

limit the set of potential variables to a more manageable size.  The BY data from 8
th

 grade was 

the earliest data collected about the students and represented the earliest point in the NELS study 

at which academic assessments could be made.  Prior research findings in the literature were 

used to select a smaller set of variables to be tested.  A set of 66 variables was selected.  These 
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variables reflected aspects of students for which prior educational research had found significant 

differences existed between outcomes
13

.  These variables included basic demographic measures 

of sex, race, socioeconomic status, and family structure.  Performance variables indicating 

standardized test results, NELS cognitive testing measures, subject competency ratings, and 

average grades were also included.  Several attitudinal/behavioral variables were also selected.  

These included measures of student and parental attitudes about education, individual subjects, 

degree aspirations, and student capabilities.  Behavioral variables examined how students spent 

time on homework, social activities, television watching, etc.  Once the recoding process was 

completed including creation of several dummy variables a set of 76 potential predictors was 

available for model development. 

 

The final step in data preparation was to classify the students’ educational outcomes to create a 

dependent variable for the logistic regression models.  Students with degrees in the “hard” 

Sciences, Engineering, and Mathematics were categorized as having a “STEM” outcome.  

Students with majors that did not generally involve extensive coursework in quantitative, 

technical subjects were classified as “Non-STEM.”  This category included the Fine Arts, 

English, and Other Humanities.  A third class was created for four year college degrees that 

involved extensive quantitative coursework and represented a potential “gray” area between 

STEM and Non-STEM.  This included the Health professions (medicine, dentistry, veterinary, 

pharmacy, nursing, and clinical therapies), Agriculture, Forestry, Social Sciences, Psychology, 

Business (Accounting, Business Administration, Finance, Marketing, and Management), and 

technical fields such as Computer Programming.  Students who achieved a less than four year 

college degree were classified as “Sub 4-Yr Degree,” and those who did not earn a college 

degree were classified as “No Degree.”  Another category was created by grouping the four 

outcomes other than STEM together into “All Else” to predict STEM vs All Else.    

 

Analysis 

 

Models were fitted using SAS® statistical analysis software with the set of 76 potential variables 

and the Stepwise selection method with an alpha (α)  error level threshold of 0.05 to enter or 

leave.  This variable selection method ensured that SAS constructed the model by first 

identifying the most valuable predictor with a chi-square p-value of at least ≤ 0.05.  Once this 

variable had been entered into the model SAS continued choosing potential variables in the same 

fashion with the provision that if a variable’s entry caused a prior entrant’s individual p-value to 

increase above 0.05 it was automatically removed from the model.  SAS stopped after 

considering all the potential variables for inclusion or reaching a user-defined limitation on the 

number of potential cycles.  Using the Stepwise selection method to test potential variables for 

inclusion in the model was far more efficient in considering a large set of variables.  It would 

have been impractical to test such a large group of potential variables by constructing separate 

models with different fixed combinations of variables.  The records used in model fitting were 

selected from the 11,328 students that had participated in each of the five waves of data 

collection. 

 

Stepwise logistic regression was used to create models predicting a STEM outcome between two 

possibilities such as STEM vs. All Else, STEM vs. STEM-Related, STEM vs. Non-STEM, etc.  

The models were fitted with randomly selected samples of students that were constructed to 
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proportionally represent their numbers in the population with those outcomes.    Thus, a model to 

predict between STEM and STEM-Related was fitted using records randomly drawn from the 

sets of STEM and STEM-Related students.  The samples were stratified by the outcome of 

interest with 70% of the total records from each stratum randomly selected for the model fitting.  

For example, in modeling STEM vs. All Else the total number of student records was 11,328 of 

which 738 obtained a STEM degree.  These records were stratified by STEM = 1 for STEM 

students and STEM = 0 for all other outcomes.  Of the 11,328 records approximately 70% of the 

STEM (517 records) and All Else students (7,414 records) were randomly selected for the model 

fitting.   

 

Subsequently, each of the logistic regression models were validated by taking the model 

developed and applying it to predicting the outcome for the remaining 30% of the records from 

each stratum.  Thus in the STEM vs. All Else case, the records of the remaining 221 STEM 

students and 3,176 of the All Else students were used to validate the model created with the 

original 70% of the total records.   

 

Prediction models were evaluated by how well they employed data to choose between potential 

results.  Each model was validated by constructing a Receiver Operating Characteristics (ROC) 

curve
14

 to assess its predictive ability.  The curves visually depicted the impact on 

correct/incorrect predictions of STEM based on the probability of STEM estimated.  ROC curves 

were a valuable tool in assessing the sensitivity of the discrimination between the two potential 

educational outcomes.  These curves plotted the probability of a correct STEM prediction 

(sensitivity) vs. the probability of an incorrect STEM prediction (1 – specificity).  The prediction 

accuracy is function of the sensitivity and its corresponding specificity.  They are balanced with 

sensitivity increasing as specificity decreases.   

 

Predicting a student’s educational outcome as STEM vs. All Else was done using a threshold 

value for the probability of a STEM outcome.  The estimated probability of STEM lies in the 

range [0, 1] and the threshold value is the dividing line or “cutpoint” within that range.  The 

model predicted the educational outcome depending on whether the estimated probability of 

STEM was greater than or equal to the cutpoint value.  The potential cutpoints considered ran 

from 0.01 to 0.99.  If the model estimated a student’s probability of earning a STEM degree at 

0.3 and the cutpoint was equal to 0.2, then the outcome was predicted to be STEM.  Conversely, 

if a student’s probability of earning a STEM degree was estimated by the model to be 0.1, then 

the model predicted the outcome was not STEM.  The lower the cutpoint value, the more student 

records were classified by the model as STEM outcome predictions.  This resulted in the model 

correctly predicting more of the actual STEM students to have a STEM outcome, but it also 

resulted in more actual All Else students being incorrectly predicted to have a STEM outcome.  

Low cutpoint values produced high sensitivity in the model but correspondingly low specificity 

(probability of correct All Else predictions).  The higher the cutpoint value, the fewer true STEM 

students were correctly classified as having a STEM outcome, but the more true All Else 

students were correctly classified as All Else.  High cutpoint values produced low sensitivity but 

high specificity.  The selection of the threshold value governed the model’s ability to accurately 

discriminate between the students’ potential educational outcomes.   
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The ROC curves visually conveyed the predictive abilities of the models.  Those models that had 

strong predictive ability produced ROC curves with a curve that rose sharply showing a high 

probability of correct STEM predictions and an associated low probability of incorrect 

predictions of All Else students as STEM.  The area under the ROC curve (“AUC”) was the 

primary method of assessing a model’s predictive strength.  The AUC value lay within [0, 1] 

with a high AUC value suggesting greater predictive accuracy.  Hosmer and Lemeshow
15

 rated 

ROC curves with AUC values of 0.7 ≤ AUC < 0.8 as having “acceptable” discrimination ability; 

0.8 ≤ AUC < 0.9 having “excellent” discrimination ability; and AUC ≥ 0.9 having “outstanding” 

discrimination ability.   

 

Findings 

 

The logistic regression model for STEM vs. All Else found numerous variables to be statistically 

significant predictive factors.  The AUC value for the associated ROC curve was 0.848 

demonstrating the fitted model possessed excellent ability to discriminate between these two 

educational outcomes.  The significant variables were overall BY math proficiency; BY science 

quartile; family composition; language minority status; frequency of parental discussions with 

the student regarding post high school plans; parental expectations of the student’s advancement; 

student expectation of personal educational attainment; parental marital status; type of high 

school the student planned to attend; the father’s highest level of education; the number of hours 

per week the student worked for pay; the student’s ability groups for math and science; the 

student’s math and science grades from grades 6 to 8; ACT math score; SAT math and verbal 

scores; Asian race, African-American race; and gender.  Figure 1 below shows that a high 

proportion of correct STEM predictions were achieved with a comparatively low proportion of 

incorrect STEM predictions for the STEM vs. All Else model. 

 

 
Figure 1 Sensitivity vs. (1-Specificity) for STEM vs. All Else model 

 

The logistic regression model for STEM vs. STEM-Related also found numerous variables to be 

statistically significant predictive factors.  The AUC value for the associated ROC curve was 

0.720 showing the fitted model possessed acceptable ability to discriminate between these two 

educational outcomes.  The significant variables were overall BY math proficiency; BY science 

and reading quartiles; family rules regarding the student’s television-watching habits; the number 
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of cigarettes the student smoked per day; the student’s ability groups for math and science; the 

student’s math and science grades from grades 6 to 8; ACT math score; SAT math score; the 

school’s percentage of white non-Hispanic 8
th

 graders; the school’s base salary for beginning 

teachers with a B.A.; Asian race, and gender.  Figure 2 below shows that a good proportion of 

correct STEM predictions were achieved with a correspondingly modest proportion of incorrect 

STEM predictions for the STEM vs. STEM-Related model.   
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Figure 2 Sensitivity vs. (1-Specificity) for STEM vs. STEM-Related model 

 

The logistic regression model for STEM vs. Non-STEM found several variables to be 

statistically significant predictive factors.  The AUC value for the associated ROC curve was 

0.743 showing the fitted model possessed acceptable ability to discriminate between these two 

educational outcomes.  The significant variables were BY science quartile; family composition; 

the number of hours per week the student spent on homework; frequency of parental discussions 

with the student regarding post high school plans; parental expectations of the student’s 

advancement; parental marital status; type of high school the student planned to attend; the 

student’s math and science grades from grades 6 to 8; ACT math and English scores; SAT math 

and verbal scores; the school’s base salary for beginning teachers with a B.A.; Asian race; 

African-American race; and gender.  Figure 3 below shows that a good proportion of correct 

STEM predictions were achieved with a correspondingly modest proportion of incorrect STEM 

predictions for the STEM vs. STEM-Related model.   
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Figure 3 Sensitivity vs. (1-Specificity) for STEM vs. Non-STEM model 

 

The logistic regression model for STEM vs. Sub-4Yr Degree found numerous variables to be 

statistically significant predictive factors.  The AUC value for the associated ROC curve was 

0.924 showing the fitted model possessed outstanding ability to discriminate between these two 

educational outcomes.  The significant variables were BY math quartile; the number of hours per 

week the student spent on homework; limited English proficiency status; having a family rule 

about the student maintaining grade point average; frequency of parental assistance with 

homework; parental expectations of the student’s advancement; student expectation of personal 

educational attainment; type of high school the student planned to attend; the father’s highest 

level of education; the number of cigarettes the student smoked per day; the student’s confidence 

of advancing beyond high school; the number of hours per week the student worked for pay; the 

student’s ability group for math; the student’s math and science grades from grades 6 to 8; ACT 

math score; SAT math score; Asian race, African-American race; and gender.  Figure 4 below 

shows that a good proportion of correct STEM predictions were achieved with a correspondingly 

low proportion of incorrect STEM predictions for the STEM vs. Sub-4Yr Degree model.   
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Figure 4 Sensitivity vs. (1-Specificity) for STEM vs. Sub-4Yr Deg model 

 

The logistic regression model for STEM vs. No-Degree found numerous variables to be 

statistically significant predictive factors.  The AUC value for the associated ROC curve was 

0.919 showing the fitted model possessed outstanding ability to discriminate between these two 

educational outcomes.  The significant variables were BY math and science quartiles; family 

composition; language minority status; having family rules about the student’s television 

watching habits; having a family rule about the student maintaining grade point average; the 

highest levels of education earned by the student’s father and mother; student expectation of 

personal educational attainment; the student’s confidence of advancing beyond high school; the 

number of hours per week the student worked for pay; the student’s math, science, and English 

grades from grades 6 to 8; ACT math and English scores; SAT math and verbal scores; the 

school’s number of students in remedial reading; and Asian race.  Figure 5 below shows that a 

good proportion of correct STEM predictions were achieved with a correspondingly low 

proportion of incorrect STEM predictions for the STEM vs. No-Degree model.   

 

STEM vs No Degree ROC Curve Original Seed

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.20 0.40 0.60 0.80 1.00

(1 - Specificity)

S
e
n
s
it
iv

it
y

 
Figure 5 Sensitivity vs. (1-Specificity) for STEM vs. No-Degree model 
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Conclusions 

 

The findings corroborated the prior research in that academic ability, previous academic 

performance, personal attitudes, race/ethnicity, and gender are predictors of STEM degree 

achievement.  The results also demonstrated that logistic regression models can achieve excellent 

predictive accuracy between two educational outcomes.  The predictive accuracy improved when 

the two educational outcomes were less similar.  For example, the models for STEM vs. All Else, 

Sub-4Yr Degree, or No-Degree had much greater predictive ability than those for STEM vs. 

STEM-Related or Non-STEM.  The ROC curves for the different models indicated the tradeoffs 

between correct and incorrect STEM predictions.  They illustrate the percentage of incorrect 

STEM predictions that would be incurred to achieve a corresponding level of 80% of the correct 

STEM predictions. 

 

If the goal of an intervention program is to balance the sensitivity and specificity then both are 

plotted against a range of prediction cutpoint values and the intersection point is the ideal 

cutpoint value.  If the goal is to optimize correct predictions of STEM, then the cutpoint can be 

selected accordingly with little concern for the specificity.  More likely, there will be cost 

constraints that require education policy makers to balance the potential increase in STEM 

students resulting from a potential pro-STEM intervention with the cost per pupil.  If this is the 

case, the cutpoint can be chosen to offer an intervention to all students that are suggested to be 

moderate STEM degree candidates without exceeding the budgetary limit.  This would mean 

potentially leaving out the students who are already highly capable and likely to consider a 

STEM degree in favor of offering the intervention to more students that might not otherwise 

achieve a STEM degree.   

 

The type of intervention program(s) envisioned would focus on students that could succeed in 

obtaining a STEM degree but might not already possess an interest in the topic as well those 

students who require extra assistance in order to succeed in studying STEM.  A program to 

increase the students’ awareness of STEM and their personal motivation to pursue it could assist 

in increasing the number of students that choose a STEM major vs. a STEM-Related or Non-

STEM major.  A program to assist the students at risk of not succeeding in STEM to strengthen 

their academic skills could increase the number of students that are capable of attempting and 

completing a STEM degree.   

 

Adapting these findings for future research would involve gathering comparable measures of 

academic ability, academic performance to date, attitudes towards school and career, English 

proficiency, school/social/professional time commitments, family structure, parental involvement 

in the student’s education, parental education levels, demographic data, and school 

characteristics.  Some of these variables such as academic performance and ability are capable of 

being influenced with educational intervention programs.  Other variables such as highest level 

of parental educational attainment, family composition, and parental marital status are beyond 

the scope of educators to affect.  These variables as well as race/ethnicity and gender can be used 

by educators in identifying students “at risk” of not pursuing a STEM degree for special 

encouragement efforts.  Some variables cannot be directly affected by educators but could be 

indirectly affected by encouraging parents to consider adopting new habits.  For example, school 

administrators could attempt to impress upon parents the benefits of supporting students’ 
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educational attainment; having family rules about academic performance; and encouraging 

students to focus on school.   

 

Future work is anticipated in understanding the effect of the individual variables in predicting a 

STEM degree.  Quantifying the benefit of shifting a student’s academic picture through changing 

the values of individual variables by one unit will allow educators to determine the resulting 

value in intervention efforts.  The most valuable variables for developing intervention programs 

will be those that are directly controllable and have the greatest impact on increasing the 

estimated probability of a STEM outcome.   
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