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A Multicourse Effort for Instilling Systematic Engineering Problem Solving 

Skills Through the Use of a Mathematic Computer Aided Environment. 

 

Abstract 

This paper describes a coordinated, multicourse effort at the Mechanical Engineering (ME) 
Department at Mississippi State University (MSU) to inculcate disciplined/systematic 
engineering problem solving skills through the use of mathematical worksheets such as those 
found in Mathcad. It is important to understand that the worksheets addressed here are not forms 
that are pre-designed for students to fill in the blanks. Students are required to solve problems in 
much the same manner they traditionally do with pencil and paper. These mathematical CAD 
programs include: a) word processing features that allow students to present their work in a 
professional manner, b) automatic recalculation and sophisticated graphing capabilities, which 
allow students to quickly fix their errors and perform parametric studies, c) symbolic and 
numerical processing which allows students to tackle more complex and realistic problems, and 
d) a large number of mathematical tools that greatly facilitate the analysis of engineering 
problems.  Fully exploiting the above features require careful guidance so students can learn a 
systematic methodology that allows for a better understanding on how to approach and solve 
engineering problems. For ME students at MSU, these worksheets are required in three courses: 
Engineering Analysis, System Dynamics, and Energy Systems Design. A significant advantage 
to sequencing courses in this manner is that students spend more time (and effort) in engineering 
functions (formulation, verification, and validations) than in the arithmetic function (primarily 
accomplished by Mathcad).  Details, examples, and assessment of effectiveness are discussed in 
the paper. 

Introduction 

One important objective in engineering education is to inculcate in the students a systematic and 
practical approach to problem solving. Traditionally, this has been largely accomplished through 
the use of homework following guidelines for problem formulation and solution using 
engineering paper and handheld calculators. However, the widespread availability of laptops and 
user-friendly mathematical computer solvers is displacing the use of calculators in favor of 
worksheets from mathematical CAD programs such as Mathcad, Maple, etc.  The features 
available in these programs include automatic recalculation, copy, pasting, and line editing of 
equations and text, symbolic processing, automatic handling of engineering units, and 
instantaneous graphic capabilities. Students can spend more time and effort in engineering 
functions such as problem formulation, solution, verification, and validation rather than 
recalculating results and plots each time a mistake is found or a parameter is perturbed.    

On the other hand, without careful guidance, the use of these worksheets can quickly degenerate 
into careless and pointless use of equation solvers, displaying the solutions using a mismatch set 
of units, generating the wrong algebraic solutions, etc.  Also, often, the software itself is not fully 
debugged and display erroneous results.   Thus, the students must be carefully coached on the 
correct use of these mathematical worksheets.  This is achieved by raising the expectations on 
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the problem formulation/solving documentation procedure plus an added emphasis on 
verification and validation (V&V) of the results.  A benefit of V&V is that students spend more 
time rethinking the entire solution process in terms of the physical meaning of the results and the 
mathematical well-posedness.  The genesis of the evolution of the authors’ realization of the 
pedagogical impacts of mathematical computer solvers on engineering education is documented 
in Hodge and Taylor (1998), Hodge (2005), and Hodge and Luck (2006). 

At the ME department at MSU, these worksheets are used in three courses: Engineering Analysis 
(EA), System Dynamics (SD), and Energy Systems Design (ESD).  Disciplined, systematic 
problem solving skills are inculcated through the use of strictly enforced homework format in 
EA and SD.  The homework format consists of clearly formulated Given, Find, Solution, and 
Verification/Validation sections.  Pictures and sketches are introduced into the worksheets by 
copying and pasting from computer generated sketches or drawings, by browsing the internet, or 
by scanning.   Students are required to carefully read the problem statement and summarize this 
information in the Given section of the homework. The variables to be found or the design 
requirements are to be listed in the Find section.  It is interesting that the Given and Find sections 
of the homework format are in congruence with the Given and Find formulations in Mathcad for 
solutions of algebraic and differential equations. This helps reinforce the importance of 
describing the problems in a well-posed manner.  The Verification/Validation section is 
considered of equal importance as the Solution section and is addressed and graded accordingly. 
Students are required to show that their answers are reasonable by checking the units are 
consistent, the magnitudes are reasonable, and the models/equations behave as expected.  The 
physical units processing as well as the 2D and 3D plotting features of Mathcad are heavily used 
in these sections. Finally, the ESD course, takes the previously acquired problem solving skills 
one step further into engineering design scenarios.  

The sections below will describe the philosophy behind the courses and details and examples of 
typical homework. 

Philosophy behind the Engineering Analysis (EA) course:  

A main objective behind the EA course is to consolidate the mathematical skills acquired during 
the freshman and sophomore years while emphasizing their use in posing and solving 
engineering problems. This is partly accomplished through the process of learning how to use 
Mathcad. Students are introduced to Mathcad functionality by demonstrating how to define 
functions, perform differentiation and integration, simplify systems of algebraic and 
trigonometric expressions, perform series analysis, find optimal solutions, fit equations to data, 
and solve differential equations. They are asked to verify and interpret the results using units, 
magnitudes, and graphical comparisons.  This process of verification and interpretation allows 
them to focus on the definition and meaning of the mathematical expressions used to describe 
engineering problems.  
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Example 1  

Figure 1 below illustrates an instructor provided solution for a problem in a first homework set. 
Starting from a blank worksheet, students are expected to generate their own solution but 
keeping the same format of providing sections labeled as Given, Find, Solution, and Verification.  
This particular homework set is designed to review basic concepts of integration and 
differentiation, and, more importantly, to introduce the process of verification. Fresh from 
calculus courses, students often lack practice and good understanding on the meaning and 
practical aspects of basic algebra and calculus skills. In this homework students not only learn 
how to graph a function, use the trace and zoom functions, provide markers and set appropriate 
limits to the plots but also learn how to use all these ideas within the context of the graphical 
meaning of derivatives and integrals. This simple philosophy of teaching students the features in 
the software by requiring them to provide clear, intuitive, graphical interpretation of concepts 
learned in calculus allows for a very effective way to reinforce their knowledge while preparing 
them for typical interpretations expected in engineering practice. The same philosophy of 
verifying the results in order to review key mathematical concepts is used in several homework 
sets covering topics such as Taylor Series and truncation errors, root finding, 
maximization/minimization, polynomial fitting, and differential equation solvers. 

Example 2  

Figure 2 illustrates an after-the-fact, instructor provided solution to a homework problem from 
the course textbook where students practice how to setup a problem in matrix form and verify the 
solution.  Again, it is important to understand that students are responsible to generate their own 
solutions starting from a completely blank worksheet.  This homework is an example of a series 
of homework sets where students practice basic matrix notation, solving a system of linear 
algebraic equations, and provide a conceptual explanation on the meaning of the results.  Again, 
student review all these skills while learning how to create and invert matrices using the 
software.  Note how they are forced to interpret the meaning of the terms in the inverse of the 
matrix in part (b) of the problem. In this problem student are given air flowrates in and out of a 
restaurant and carbon dioxide concentrations in the incoming air as well as carbon dioxide 
generation by smokers and by the kitchen grill. Students are then asked to find the equilibrium 
concentrations of carbon dioxide in each room in the restaurant. This time, the verification is 
based on an important engineering concept: conservation of mass. The idea here is to use basic 
understanding of equilibrium, compatibility, and energy and mass conservation equations to 
verify the solutions. The objective is for students to be able to relate the latter engineering 
concepts to a simple system of equations, linear in this problem.  

Note how students are introduced to the use of units in this assignment. The consistency of the 
units of the results of the calculations is verified automatically by the software.   Mathcad will 
not proceed with a calculation unless all units are consistent. This forces the students to carefully 
retrace their calculations and correct any errors in the consistency of the units in the equations 
they define. 
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Example 3  

Figure 3 illustrates a homework problem where students practice solving systems of first order 
differential equations using the built-in differential equation solvers from Mathcad and verify the 
solutions using steady state information as well as conservation of energy.  Again, the figure 
displayed is not the actual work of the students but rather the solution provided by the instructor 
as an example of the approach and the overall format required from their homework.  Students 
are required to start from a blank worksheet. The only requirement for each worksheet is that 
Given, Find, Solution, and Verification headings be provided as well as meaningful content 
under each heading.  Students are given ample of guidance during the lecture sessions on how to 
understand the basic equilibrium processes, solve the resulting differential equations and verify 
similar type of problems.  

This homework example requires a more mature set of analytical engineering skills from the 
students. Note the careful use of units throughout the entire solution.  Requiring using units 
forces the students to carefully consider the meaning of each additive term in the differential 
equations. Inconsistent units will result in the software refusing to run. Note the graphical 
interpretation of the results during the verification process. Also note the use of the word 
“Slopes” in the definition of the first order differential equations.  This approach of using simpler 
words such as “slopes” while discussing differential equations makes the students much more 
comfortable with the subject.   For instance, higher order differential equations are typically 
solved numerically as a system of first order differential equations. That is, a system of equations 
describing slopes. Students are very receptive to the simpler concept stating that a slope is just 
the ratio of “rise” over “run” and the system of first order differential equations is merely a 
process of simultaneously finding all the slopes so that the next incremental changes in the 
dependent variables can be identified.   

Finally, note the subtle use of the Mathcad “Given” and “Find” solver commands in the 
Verification section. These commands are covered with much detail during the lectures.  
Students learn that, at steady state, differential equations become simple algebraic or even 
transcendental equations that are readily solved through root solving algorithms. Finally, it can 
be observed how the students are reminded in the verification process that simple equilibrium 
equations such as conservation of energy, or mass, or just summation of forces can be very 
effective tools in double checking the consistency of the results and hence, allowing for a higher 
level of confidence on the results.   
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Problem 1.

Given : The function  f x( ) e
sin x( )

cos x( )∧ 1−<? . 

Find : Use Mathcad to

a)  Calculate the derivative of f(x) when x
π

4
<?

b)  Calculate the integral of f(x) in the interval  0 x∞ π∞

Use mathcad graphic capabilities to verify the solutions.

Solution :

Answer a) Answer b)

x
f x( )

d

d
0.42/?

0

π

xf x( )
⌠

⌡

d 3.14?

Verification :

The validation consists in approximating the derivatives by the approximate slopes

and the areas (integrals) by the areas of a box of height equal to the mean value in

the interval of interest.

0.7 0.8
2.3

2.4 2.4

2.45
f z( )

f
π

4








0.737 0.847

z
π

4
.∀

a)

The trace function was used to collect the following data from the plot on the left:

point 1 x1 0.737<? y1 2.45<?

point 2: x2 0.847<? y2 2.40<?

slope at x=
π

4
Slope

y2 y1/

x2 x1/
<? Slope 0.45/?

Thus the slope left of -0.45 is quite close to the exact value of -0.42 
 

Figure 1.  Worksheet for Example 1 P
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b)

sqr

0

ρ

ρ

0

0

0

0

1

1

0

















<?
area1

2.2

.7









<? area2
.2/

2.5









<?

0 1 2 3
1/

0

1

2

3

0

2f z( )

sqr
1〈 〉

area10

area20

z sqr
0〈 〉

.∀ area11.∀ area21.∀

Note that the area (X) bounded on the top by the red curve and on the bottom by y= 2

cancels out the area (X) bounded on the top by y=0 and the bottom by the red curve.  

The area of the blue box is roughly equal to the area f(z).

ApproxArea 1 ρ∧<? ApproxArea 3.142?

Thus, the answer appears reasonable as it is quite close to the graphical

approximation.
 

Figure 1.  Concluded. 
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Given: The following schematic for Carbon Monoxide Distribution in a Restaurant

Entrance

1

Non-

Smoking

2

Smoking

3

Kitchen

Grill Load

(3000 mg/hr)

Q
d
=150 m3/hr

30 m3/hr

30 m3/hr

60 m3/hr

Q
c
=200 m3/hr

Q
b
=100 m3/hr

c
b
 = 2 mg/m3

Q
a
=250 m3/hr

c
a
 = 2 mg/m3

Smoker Load

(300 mg/hr)

Smoker Load

(1000 mg/hr)

15 m3/hr

4                 5

Monoxide Gas Distribution in a Restaurant

Find: a) steady state carbon monoxide concentration in each room

b) percent contribution in section 4 from smokers, grill, and outside air

Solution:

Labelling the volumetric flowrates and the concentrations of carbon monoxide.

E1 30
m

3

hr
<? Qa 250

m
3

hr
<? Qb 100

m
3

hr
<? Qc 200

m
3

hr
<? Qd 150

m
3

hr
<?

E2 15
m

3

hr
<? Ca 2

mg

m
3

<? Cb 2
mg

m
3

<?

E3 30
m

3

hr
<? S1 300

mg

hr
<? S3 1000

mg

hr
<? S5 3000

mg

hr
<? E4 60

m
3

hr
<?

The following equations represent the balance of the carbon dioxide flow in each room.

Qa Ca∧ S1− E1 C2 C1/∗ +∧− Qa C1∧/ 0=

Qb Cb∧ Qa C1∧− E1 C1 C2/∗ +− E3 C3 C2/∗ +− Qc C2∧/ Qd C2∧/ E2 C4 C2/∗ +− 0=

Qc C2∧ E3 C2 C3/∗ +− Qc C3∧/ S3− 0=

Qd C2∧ E2 C2 C4/∗ +∧− Qd C4∧/ E4 C5 C4/∗ +∧− 0=

Qd C4∧ E4 C4 C5/∗ +∧− S5− Qd C5∧/ 0=
 

Figure 2. Worksheet for Example 2. 
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Solution using the inverse matrix method:

F

E1/ Qa/

Qa E1−

0

0

0

E1

E1/ E3/ Qc/ Qd/ E2/

Qc E3−

Qd E2−

0

0

E3

E3/ Qc/

0

0

0

E2

0

E2/ Qd/ E4/

Qd E4−

0

0

0

E4

E4/ Qd/

















<? R

Qa/ Ca∧ S1/

Qb/ Cb∧

S3/

0

S5/



















<?

Answer a)
C1

C2

C3

C4

C5









F
1/

R∧<?

C1

C2

C3

C4

C5









3.227

3.452

7.8

8.647

22.933









mg

m
3

∧?

b) percentage contributions in Room #4

coeffsinverse F
1/

<?
Answer b)

smoker

coeffsinverse
3 0.∀

S1/∧ coeffsinverse
3 2.∀

S3/∧−

C4

<? smoker 14.222 %∧?

grill

coeffsinverse
3 4.∀

S5/∧

C4

<? grill 62.649 %∧?

intake

coeffsinverse
3 0.∀

Qa/ Ca∧∗ +∧ coeffsinverse
3 1.∀

Qb/ Cb∧∗ +∧−

C4

<? intake 23.129 %∧?

Verification:

Conservation of mass means that the total amount of carbon monoxide entering the building

must equal the amount leaving.  Because we are writting this equation independently of the

previous derivations, these answers seem to be reasonable as shown below.

Qa Ca∧ S1− Qb Cb∧− S3− S5− Qd C5∧/ Qc C3∧/ 0
kg

s
?

The carbon monoxide contributions from each area are reasonable in that they add up to 100 %.

smoker grill− intake− 100 %∧?
 

Figure 2.  Concluded. 
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Problem 1 .

Given : Consider the water heater problem shown below. The thermostat setting for turning the heaters

off is 130 F. Assume a water flowrate demand of 2gpm starting 100 minutes after turning on the

heaters and the same thermostat settings for both water heaters.

Find  : plot the temperature of the water leaving each water heater until steady state temperatures are

reached.

Solution :

Example of a household water heater :

KfromF T( ) T 32/( )
5

9
∧ 273−<? ( Convertion function from degrees F to K )

FfromK T( ) T 273/( )
9

5
∧ 32−<? ( Convertion function from degrees K to F )

kJ 1000 J∧<?

Cp 1
cal

gm K∧
∧<? ( Cp of water ) τ 1000

kg

m
3

<? ( Density of water )

V1 50 gal∧<? V2 25gal<? ( Volume of water tank 1 & 2 )

Tin KfromF 50( ) K∧<? Tin 283 K? ( Inlet water temperature )

Ta KfromF 65( ) K∧<? Ta 291.333 K? ( Ambient temperature )

 

Figure 3. Worksheet for Example 3. 
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Q t( ) 2
gal

min
∧ t 100min≅if

0 otherwise

<? ( Flowrate : Start the flow after 100 min )

Qgen1 T( ) 6600 W∧ T KfromF 130( ) K∧>if

0 otherwise

<? ( Heater ON if the temp. is below 130F )

Qgen2 T( ) 4400 W∧ T KfromF 130( ) K∧>if

0 otherwise

<?

Using an energy balance to solve for the time rate of change (Slopes) of the temperatures :

Slopes t T.∀( )

1

τ Cp∧ V1∧
τ Cp∧ Tin Ta/∗ +∧ Q t s∧( )∧ τ Cp∧ T

0
K∧ Ta/∗ +∧ Q t s∧( )∧/ Qgen1 T

0
K∧∗ +− ∧

s

K
∧

1

τ Cp∧ V2∧
τ Cp∧ T

0
K∧ Ta/∗ +∧ Q t s∧( )∧ τ Cp∧ T

1
K∧ Ta/∗ +∧ Q t s∧( )∧/ Qgen2 T

1
K∧∗ +− ∧

s

K
∧















<?

Tinit
KfromF 50( )

KfromF 50( )









K∧<? tinit 0 s∧<? tfin 3600 4∧ s∧<? N 1000<?

Sol rkfixed
Tinit

K

tinit

s
.∀

tfin

s
.∀ N.∀ Slopes.∀







<? T1 Sol
1〈 〉

<? T2 Sol
2〈 〉

<? t Sol
0〈 〉

<?

Answer :

0 100 200 300
40

60

80

100

120

140

72.5

87.5

FfromK T1∗ +

FfromK T2∗ +

67 89

t

60
 

Figure 3. Continued. 
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Verification :

The tanks reach a temperature of 130 degrees F (thermostat setting) in 89 min (50 gal tank) and 67 min (25 gal

tank). The energy stored in the water must be equal to the energy delivered by the electric heating elements:

50 gal tank: 25 gal tank:

KfromF130( ) KfromF50( )/( ) K∧ Cp∧ τ∧ 50∧ gal 3.52 10
4

∂ kJ∧? KfromF130( ) KfromF50( )/( ) K∧ Cp∧ τ∧ 25∧ gal 1.76 10
4

∂ kJ∧?

6600W 89∧ min∧ 3.52 10
4

∂ kJ∧?
4400W 67∧ min∧ 1.77 10

4
∂ kJ∧?

The simulation appear to follow energy conservation since the energy stored in the tanks is equal to the energy delivered

by the heaters.

The steady state part of the numerical simulation can be checked by assuming that all derivatives are zero and

solving the resulting set of algebraic equations for the steady solutions: 

( initial guess for the algebraic solver)T
60

70









<?

Given

Slopes 60 250∧ T.∀( ) 0 Setting all derivatives (slopes) to zero.

Tss FfromKFind T( )( )<? Tss

72.5

87.5









?

 

Figure 3. Concluded. 

Note the use of the Given and Find (Mathcad) commands above in order to find the steady state 
solution of the differential equation.    

Philosophy behind the System Dynamics course:  

In the System Dynamics course students learn to model and obtain the transient and frequency 
response of mechanical, hydraulic, electric, and thermal systems and interpret the results based 
on the system parameters. They learn to pose and solve state variable equations using analytical 
methods as well as numerical solvers and how to combine the state variable equations into higher 
order differential equation. Verification of the homework solutions is based on the process 
learned in the Engineering Analysis course.   

 Example 4  

Figure 4 illustrates a homework set in the System Dynamics course that makes extensive use of 
Mathcad symbolic commands to simplify the algebra and obtain analytical solutions for 
differential equations. Given the step response of a spring-damper system students are asked to 
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find the time constant of the system and use this information along with the steady state 
information to determine the spring and damping constants for the system.   

Problem 3:

Given:

The unit step response of a first order system system is shown below (this is just a

spring connected in parallel to a damper through a massless plate and a force pulling on

the plate).  The units for the y-axis and x-axis are mm and seconds, respectively.

Find:

a) Write down the solution for the STEP response of the system in terms of the time

constant, the initial value and the steady state value. Use only symbols, not numbers

for this part. 

b) Use the equation for part (a) and the value of time when y = -1mm to find the time

constant. Repeat the same process when y= -3.3 mm and find the time constant.

Explain which of the two choices of y is less sensitive to errors when reading the graph?

Which of the two values of time constant is more reliable? Clearly explain your answer.

c) Take the derivative of the equation from part (a) and show how to find the time constant

based on the initial slope and the steady state value.  

  

d) Write down the differential equation of the system and use this equation along with the

steady state information from the plot below to find the spring constant assuming that

the step force is of magnitude 5.

 

e) Find the value of the damping b.  
 

Figure 4. Worksheet for Example 4 
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Solution:

a) The differential equation of the a 1st order system subject to a step input is:

ϖ
dx t( )

dt
∧ x t( )− xss Η t( )∧

The Laplace transform of this equation is:

ϖ s X s( )∧ x 0( )/( )∧ X s( )−
xss

s

rearranging,

ϖ s
2

∧ X s( )∧ s X s( )∧− ϖ s∧ x 0( )∧ xss−

Solving for X(s) and applying partial fraction expansion:

X s( )
ϖ s∧ x 0( )∧ xss−

s ϖ s∧ 1−( )

A

s

B

ϖ s∧ 1−
−

Solving for A and B:

A
ϖ s∧ x 0( )∧ xss−∗ +

s ϖ s∧ 1−( )∧
s∧ substitute s 0.∀ A xss°

B
ϖ s∧ x 0( )∧ xss−∗ +

s ϖ s∧ 1−( )∧
ϖ s∧ 1−( )∧ substitute s

1

ϖ
/.∀ B ϖ x 0( )∧ ϖ xss∧/°

So X s( )
xss

s

ϖ x 0( ) xss/∗ +
ϖ s∧ 1−

−
xss

s

x 0( ) xss/

s
1

ϖ
−

−

Applying the inverse Laplace Transform: x t( ) xss x 0( ) xss/∗ + e

t/

ϖ
∧−

 

Figure 4. Continued. 
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b) Using the Mathcad Trace tool, we find t=0.555s for y= -1.011mm, x ss= -3.5mm, and

x(0)=2mm.

Substituting these values in the equation of part a) gives:

ϖ 1 1.011/ mm∧ 3.5/ mm∧ 2 3.5−( ) mm∧ e

0.56/ s∧

ϖ 1
∧−

solve ϖ 1.∀

float 3.∀
0.706 s∧°<?

ϖ 1 0.706s?

Using the Mathcad Trace  tool, we find t=2.355s  for y= -3.3098mm.

Putting these values in the equation of part a) gives:

ϖ 2 3.3098/ mm∧ 3.5/ mm∧ 2 3.5−( ) mm∧ e

2.36/ s

ϖ 2
∧−

solve ϖ 2.∀

float 3.∀
0.701 s∧°<? ϖ 2 0.701s?

The first choice using the value of time when y=-1mm is the less sensitive to errors when

reading the graph because around y= -1mm the slope of the curve is higher so it is

easier to determine the corresponding time value. Thus it is the first value of the time

constant who is the more reliable since it is calculated with the values of t and y that are

the less sensitive to errors.

c) The derivative of the equation from part a) is:

dx t( )

dt

x 0( ) xss/∗ +/

ϖ
e

t/

ϖ
∧

substituting t=0:

dx 0( )

dt

xss x 0( )/

ϖ
e

0
∧

xss x 0( )/

ϖ

solving fot ϖ ϖ
xss x 0( )/

dx 0( )

dt
 

Figure 4. Continued. 

P
age 14.65.15



d) The differential equation of the system, assuming that the step force is magnitude

5N, is:

b
dx t( )

dt
∧ k x t( )∧− f t( ) 5/ N

At steady state x = x ss and the derivative term dx(t)/dt is zero. This yields

xss 3.5/ mm<? k xss∧ 5/ N or k
5/ N

xss

<? k 1.429
N

mm
?

e) Since ϖ
b

k
the damping coefficient b is: b ϖ1 k∧<? b 1.009

N

mm

s

?

Verification:

The plot below shows that the results from parts a) through e) are consistent because they

reproduce the plot given.

x0 2 mm∧<? ϖ
b

k
<?

x t( ) xss x0 xss/∗ + e

t/ s∧

ϖ 1
∧−<? x' t( )

t
x t( )

d

d
<? x' 0( ) 7.79/ 10

3/
∂ m?

 

Figure 4. Continued. 
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The blue straight line intersects the steady state line at a time equal to ϖ. This verifies

the equation from part (c) which can be written as:
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Figure 4. Concluded. 
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Philosophy behind the Energy Systems Design course 

In the Energy Systems Design course students learn to analyze and design energy systems 
components (series and parallel piping systems, piping networks, and heat exchangers), to select 
and confirm the appropriateness of pumps, and to model and understand the operation of energy 
systems.  The evolution of the Energy Systems Design course was delineated in Hodge (1998).  
Hodge and Taylor (1999) is a textbook based on the materials covered in the course.  Example 4 
was taken from a typical homework assignment in this course. 

Example 5 
 
A system to pump oil between two reservoirs is illustrated in Figure 5.  The pipe, which is 300 ft 
long, is made of commercial steel and is to handle 0.4 cfs.  The oil has a density of 56.1lbm/ft3 
and a viscosity of 0.00576 lbm/ft-sec.  The pump/motor efficiency is 67 percent.  Electricity 
costs $0.05 per kWh, and the demand charge is $10.00 per kW per month.  As a function of 
diameter, determine the power required to pump the oil from the lower reservoir to the upper 
reservoir.  Select a diameter, and defend your diameter selection. 

A schematic of the system is presented in Figure 5.   

 

 

 

 

 

 
 

 

Figure 5.  Oil Pumping System Schematic. 

The energy equation for the system can be written as 
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The minor losses are the entrance, the elbows, and the exit.  Since A and B are located at free 
surfaces of reservoirs open to the atmosphere, PA = PB and VA = VB = 0.  The energy equation 
thus reduces to the form: 
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The Mathcad worksheet containing the problem solution is included as Figure 6.  The power 
input to the pump is required as a function of the pipe diameter. The pipe diameter will be varied, 
and the pump increase in head and the power required calculated for each diameter.  Diameters 
from 1.5 to 9 inches, in increments of 0.5 inches, are prescribed by Di = (1 + 0.5·i), where i is the 
Mathcad range variable.   

The calculation of the increase in head of the pump, Ws, required for a given pipe diameter is a 
Category I problem.  The pump increase in head, Ws, cab be calculated directly for each pipe 
diameter.  The power required by the pump is 

ϕ

τQW
PowerR s?                     (3) 

Graphical representations of variables of interest are provided in the worksheet.  For the 
relatively small diameter range considered, the power required by the pump changes by two 
orders of magnitude (from 406 hp to 5.9 hp).  The figures provide graphic evidence of the almost 
D5 dependence that power required and pressure drop have on diameter when major losses are 
dominant in piping systems.  An examination of the power required graph provides some insight 
into diameter selection.  The power required has a diminishing returns relationship as the 
diameter is increased.   At about D = 3 inches (the “knee” in the curve) further increases in 
diameter yield little decreases in either the pump power required or the pump increase in head.  
Thus, a cursory examination eliminates diameters near 1 inch (too much power) or near 6 inches 
(too large a pipe) and indicates a diameter of 3 inches to be a rational choice. 

Economic metrics, such as the minimum present worth, are often used to determine the desired 
configuration of a system.  The present worth depends on the system operating costs as well as 
the initial system costs.  Since the hours per week of use is not provided, a two-shift operation 
(80 hours/week) is assumed.  Additionally, the expected lifetime of the system is taken as 10 
years and an interest rate of 7 percent is reasonable.  The total system operating costs consist of 
the energy cost and the demand cost.    The total system operating costs per year as a function of 
pipe diameter is depicted in the worksheet.  For very large pipe diameters, the yearly operating 
costs asymptotically approach a small number ($250), depending on the pipe diameter. 

The initial system costs are composed of the pipe purchase/installation cost and the pump cost.   
Pipe and pump costs are taken from Hodge and Taylor (1999).   The total initial cost of the 
system is the sum of the pipe and pump costs.  The initial costs of the system are dependent only 
on the pipe diameter and not on the hours per week of operation.  The initial system cost as a 
function of pipe diameter is presented in the worksheet.  The system initial costs are dependent 
mostly on the pipe diameter and length since the pump cost is very small compared to the pipe 
cost except at the smaller diameters. P
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With the operating costs per year and the total initial costs known, the present worth for a n-year 
operating period is 

CostInitCostTotesentW
n

n

−
−∧

/−
∧?

int)1(int

1int)1(
Pr                 (4) 

where int is the interest rate (7 percent) and n (10 years) is the number of years considered.  The 
present worth for the system as functions of pipe diameter is shown in the worksheet.  A 
minimum present worth exists since operating costs decrease as diameter increases and total 
initial costs increase as diameter increases.  The minimum present worth corresponds to a pipe 
diameter of 3.5 inches.  Hence, the cursory indication of about 3 inches from power required is 
amazingly accurate. 

The recommended pipe diameter is 3 .5inches for this system.  The results of both the simple 
analysis examining only the behavior of the increase in power (or pump increase in pressure) and 
the more complex present worth economic analysis are essentially the same.  

Verification of the solution is provided by observing that the value of the increase in head of the 
pump, Ws, asymptotically approaches the elevation difference of 15 feet.  This is appropriate as 
frictional losses decrease as D5 and for large pipe diameters become very small.  Consider the 
fluid velocity as a function of pipe diameter.  At a diameter of 3 inches, the fluid velocity is 
about 8 ft/sec, and at a pipe diameter of 3.5 inches, the fluid velocity is near 6 ft/sec.  A general 
rule of thumb in piping systems is that economic constraints dictate that the velocity should not 
exceed 10 ft/sec.  This solution is very congruent with the rule of thumb thus providing 
additional verification for the solution. 
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Figure 6. Worksheet for Example 5. 

ORIGIN 1…  Set origin for counters to 1 from the default value of 0. 

Input the pipe geometry: 
      Diameter in feet                                            Length in feet               Roughness in feet: 

i 1 1600<?     L 300 ft∧<?   γ 0.00015 ft∧<?  

Di 1 0.5 i∧−( ) in∧<?  

Input the system boundary (initial and end) conditions: 
Pressures in psi:  Elevations in feet: 

Pa

Pb









0

0








lbf

in
2

∧<?

  

Za

Zb









0

15.0









ft∧<?  

Input the loss coefficients: 
       K factor                                       Equivalent length 

K 1.5<?          C 60<?  

Input the fluid properties: 

    Density in lbm/ft3   Viscosity in lbm/ft-s 

τ 56.1
lb

ft
3

∧<?

   

ο 0.00576
lb

ft sec∧
∧<?  

Input the flow rate in cfs: 

Q 0.4
ft

3

sec
∧<?  

Define constants and adjust units for consistency: g 32.174
ft

sec
2

∧<?

 

 

gc 32.174
ft lb∧

lbf sec
2

∧

∧<?  

Define the functions for Reynolds number, fully-rough friction factor, and friction factor: 

Re q D.( )
4 τ∧ q∧

ρ D∧ ο∧
<?

 
f q D. γ.( )

0.3086

log
6.9

Re q D.( )

γ

3.7 D∧









1.11

−









2
Re q D.( ) 2300≅if

64

Re q D.( )
otherwise

<?  

fT D γ.( )
0.3086

log
γ

3.7 D∧









1.11







2
<?  

The generalized energy equation is: 

Ws
i

Pb Pa/

τ
Zb Za/∗ +

g

gc

∧−
8

ρ
2

Q
2

gc Di∗ +4
∧

∧ f Q Di. γ.∗ +
L

Di
∧ K− C fT Di γ.∗ +∧−









∧−<?  

Power imparted to fluid: Power Ws Q∧ τ∧<?
 

Pump mechanical efficiency. ϕ 0.67<?  

Power
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Figure 6. Continued. 
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Consider the cost of running the pump for 80 hours per week (two shifts). 

wk 7 day∧<?  month 4.33 wk∧<?  HW 80
hr

wk
∧<?  

Energy Costs: 
The total electricity cost is composed of an energy cost (kWh) and a demand cost (kW). 
The energy cost is the product of the kWh used per year and the kWh rate: 

CostE PowerR HW∧ 52∧ wk∧
0.05

kW hr∧
∧<?  

The demand cost is the product of the demand (kW) per billing period times the number of billing 
periods in a year (usually 12) times the demand rate per billing period. 

CostD PowerR 12∧ month∧
10.0

kW month∧
∧<?  

The total electricity cost is the sum. 

CTot CostE CostD−<?  

0 2 4 6 8 10
0

5000

1 010
4
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4

2 010
4

CTot

D
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 Figure 6. Continued. 

Initial Costs: 
The initial costs are composed of the pipe cost (purchase and installation) and the pump cost 
(purchase and installation). 
Pipe  pumpcosts (estimated using information in Hodge and Taylor, 1999). 
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2
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0.5

∧<?  

The total cost is the sum of the pipe and pump costs. 
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Consider the present worth for 10-years of operation at 7 percent. 

n 10<?  Number of years considered  int 0.07<?       Interest rate 

PresW CTot
1 int−( )

n
1/

int 1 int−( )
n

∧

∧ CostInit−<?

 

Present worth for n years at int interest rate 
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Figure 6. Concluded. 

 

A more useful representation of the present worth is achieved if the plot is confined to the region of 
interest. 
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Fluid velocity calculation.  
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Assessment and Conclusions 

The purpose of this paper is to discuss a process for inculcating a systematic and practical 
problem solving approach in engineering students.  In all the examples explored in this paper, the 
same process is used.  The treatments of all the example problems are identical and emphasize 
the three steps: (1) formulate a well-posed system of equations, (2) utilize user-friendly 
mathematical computer solvers  to do the “arithmetic,” and (3) verify the results.  In this paper, 
the arithmetic has been accomplished by using Mathcad.  Other computational software systems 
(Mathematics, Matlab,….) offer the same capability, albeit in different formats, but with the 
same results.   

Anecdotally, students appreciate the attention to problem solution using the three-step unified 
approach.  The use of Mathcad relieves the student from assimilating different numerical 
techniques (“procedures”) to solve a system of equations.  The net result is that more involved 
and more realistic problems can be assigned.  With less time spent on arithmetic, more time is 
available for students to engage is higher-level synthesis and understanding. 

Examples illustrating a unified approach to solutions of engineering problems in three requied 
courses in ME at MSU have been presented and discussed.  The approach offers advantages in 
providing students with capability to solve more “real world” problems while concentrating on 
the engineering aspects of the problems. 
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