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Abstract 

This paper describes a one-semester course developed to address a gap in undergraduate 
engineering education – preparing students for creating and maintaining Internet-of-Things (IoT) 
products and services.  The principles that drove the course content and organization are 
explained, along with a novel courseware delivery mechanism and organization to facilitate 
repeatability, as well as some additional tools the authors have found useful.  The two-part 
organization of the IoT course content – building a complete IoT system, and then investigating 
system properties, behaviors, and concerns of that system – is explained in some depth.  A 
detailed course outline illustrates the wide variety of technologies students gain hands-on 
experience with during the course, including embedded, web/cloud, mobile, analytics, load 
testing, security.  A novel application of DevOps tools to incrementally deliver multi-platform 
(systems) solutions each week is discussed.  Finally, lessons learned from several offerings of the 
course are presented, along with challenges, opportunities and successes, and directions for 
future work. 
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Introduction 

Forecasts for the growth in the number of connected devices are staggering.  One report [1] 
predicts 8.4 billion connected things in use worldwide in 2017 and 20.4 billion by 2020.  The 
scale of this growth makes it critical that computer science and engineering students and others 
in related fields are instilled with the core concepts, technologies, architectures, and system-level 
perspective of this IoT revolution.  The authors are not the first to identify this need; both [2] and 
[3] have pointed out the need and the challenges. This paper describes the design of a single, 
undergraduate course that addresses this need, as well as a description of how this course can be 
replicated at other institutions.  



 

 

Background & Motivation 

The course described in this paper was developed to address a perceived need in the 
undergraduate engineering curriculum to prepare students for building, deploying, and managing 
Internet of Things (IoT) products and services.  Building IoT products requires connecting 
different platforms, often with a variety of technologies and programming languages, into a 
system.  Both the variety of platforms and the “systems” nature of IoT often make it hard to 
approach.  Undergraduate students in Computer Science (CS), Computer Engineering (CE), and 
Electrical Engineering (EE) typically have limited hands-on experience with multiple platforms, 
and rarely any experience with systems.   Many current undergraduate IoT courses focus 
individually on embedded systems [4] [5], hardware [6] [7], or networking [8] , which are 
important, but possibly miss the educational opportunity of exposing students to the greater 
breadth of technologies required to deliver an IoT product or service.  Similarly, cloud 
computing courses focus on the cloud infrastructure [9], and less on systems.  Other 
undergraduate IoT educational opportunities appear as undergraduate research opportunities [10] 
[11], also important, but not necessarily scalable.  A few graduate courses exist, such as 
described in [12], but we believe this topic needs to be more broadly accessible to 
undergraduates.  [13] describes a course that introduces students to embedded systems, sensors, 
networks, and cloud computing, but does not appear to tackle system-level concepts such as 
analytics and security, both critical to modern IoT systems. 

This course was intended to address these gaps in as comprehensible a manner as possible, 
subject to the constraints of a 1-semester, 3 credit-hour course.  The course was developed as an 
undergraduate technical elective, targeting juniors and seniors in CS, CE, and EE. 

This course was developed as part of an unusual partnership between higher education and 
industry. Expert practitioners, with deep, specialized technical knowledge from a software 
consultancy, LeanDog, Inc., partnered with Case Western Reserve University (CWRU) in 
Cleveland, Ohio, to build the initial courseware in 2015.  The course was initially offered in the 
Fall of 2015 and again, with updates, in the Spring of 2017.  The third course offering was a 
special joint-offering, with students from both CWRU and Cleveland State University (CSU) in 
the Spring of 2018. 

Basic principles for creating the class include: 

• Class lectures and assignments should be experiential (hands-on) 
• The class should focus on state-of-the art technologies, protocols, and platforms in 

current industry use 
• The class should provide students with authentic experiences with real-world software 

systems, including IoT, using a variety of languages, protocols, etc.  



 

 

• The class should avoid the use of turn-key IoT Platforms, so that students understand the 
individual technology subsystems, and how those subsystems connect into a complete 
system 

• The class should demonstrate evolutionary, incremental product/system design, and allow 
students to gain an understanding of how complicated products/systems can be evolved 
from simple cores 

• The value of pairing for hands-on, experiential learning should be integrated throughout 
the class experience 

• The class should emphasize the value of weekly “show-and-tell” demonstrations of new, 
working functionality, along with the recognition that product evolution rests on 
incremental development of complete, working versions of the product 

• The class should encourage students with different backgrounds to participate, by 
minimizing prerequisites 

• Students should gain experience with both functional and non-functional systems (e.g., 
scaling, security, etc.) requirements in assignments 

The description of the course content, structure, etc. is based on the most recent offering.  Later 
in the paper we provide examples of how the course has evolved. 

Course Prerequisites 

Given the breadth of technologies involved in this course, there is no simple set of course 
prerequisites; making the prerequisites too restrictive defeats the overall intention of the course. 
To date there are no prerequisites, but instructor consent has been required to register.  During 
information sessions and individual student discussions and phone calls, the instructors have 
explained the course and useful experience; i.e., some programming experience, experience 
working at a Unix/Linux command-line as opposed to only working in a graphical Integrated 
Development Environment (IDE), etc. 

Pedagogy and Methods 

A key goal of the course is to create an environment where students can learn the skill of being 
introduced to a variety of new technologies in a short period of time, as well as how to integrate 
these different technology components together to build a complex system. This skill is 
representative of what is expected by software development organizations but is one that is 
difficult to include as a learning objective in a traditional lecture-based course. The collection of 
technologies that the authors have chosen to use for this course are not presented as the only ones 
to be used in IoT development; rather, students are provided with a basis in the underlying 
technical infrastructure and recognize that the particular choices are simply representative.  



 

 

The course is delivered using a combination of Lectures and hands-on Project Assignments, 
similar to other Project-Based Learning courses [14][15].  The Project Assignments rely on the 
Courseware, described in detail below.  

Courseware  

The Courseware (equivalent to a digital textbook, plus software for the various platforms) is 
delivered via Git, a popular Distributed Version Control System (DVCS).  The Courseware has 
evolved with each offering of the course, incrementally improving each time, similar to the 
concepts articulated in [16].  The Courseware resides in an instructor-only repository, and the 
content is incrementally released to students, via a second repository for students that is used 
only for the duration of the semester term.  Each week (a) the solution to the previous week’s 
assignment, (b) new textbook content for the current week, and (c) the current week’s 
assignment are incrementally released to the students.  The textbook content is written with 
Markdown [17], a simple text format that allows for rich content to be easily created and 
delivered to students (including basic styling: headings, bold, italics, URL links, cross-reference 
links within the courseware, images, etc.).  GitHub, where the repositories are hosted, 
automatically renders Markdown to HTML when the repository is viewed with a web browser.   

The organization of the courseware itself is designed using the principles of DevOps that 
students learn about during the semester, and which are used as standard practice in the software 
development industry. To facilitate the incremental delivery of content, the instructor repository 
has a somewhat novel branch organization. The chapter for each week has two branches 
associated with it:  one for the assignment and one for the solution, of the form 
“chapter_XX_assignment” and “chapter_XX_solution” (where XX is in [00-14]).  Everything in 
the “_assignment” branch appears in the related “_solution” branch, plus the assignment solution 
(and Ansible, the DevOps portion of the solution, as discussed below).  Each week after the first 
week builds on the branch that comes before it, so, for example, everything in 
“chapter_04_solution” appears in “chapter_05_assignment”; since “chapter_04_solution” also 
contains the content from “chapter_04_assignment” and “chapter_03_solution”, etc. back to the 
start, “chapter_05_assignment” also does.  This branching organization requires some thought 
and discipline to manage (e.g., an update to the content requires the change to be made on the 
branch that contains the earliest instance of that file), but experience has shown that this structure 
greatly facilitates the overall management of the course.  Some simple automated scripts have 
been developed to help manage this structure and organization, keeping content synchronized 
across branches, as well as to perform some automated checks on the Courseware (e.g., 
compliance to coding standards, integrity of internal cross-reference links, etc.). 

Courseware Delivery 

Each week of the course addresses a new concept or technology with a lecture, including live-
coding demonstrations, and accompanying Courseware including the assignment for the week 



 

 

(see Course Syllabus, below, for details).  Courseware, including the solution for the previous 
week and the new content for the current week, is merged from the instructor-only repository 
into the student repository.  The nature of the solutions for this course are novel enough that they 
are addressed below in DevOps for Solution Sets. 

The Courseware has detailed instructions for the new assignment, walking students through 
installing and configuring any needed software components or tools for the week’s assignment, 
followed by a demonstration of the concept or technology for the students to perform on their 
own, and the project assignment for the week, explaining the requirements to be delivered, often 
including screenshots, animated-GIFs, etc., as well as links to additional material that might be 
of help. 

Project Assignments 

Students work in pairs for each assignment.  The value of pairing for improving student 
programming efficiency and quality, particular for students in the lowest GPA quartiles, has been 
reported in [18], [19], and [20].  Pairing has also been associated with students starting projects 
earlier [18], which we believe is important for student success in this fast-paced course. 

Students “clone” the student Git repository into their own copy of the repository where they and 
their partner for the assignment do their work for the project assignment, alongside the 
Courseware.  This might involve extending source code files provided as templates to be filled 
out, creating new source code and/or configuration files, capturing data from system tests, or 
related tasks.  As the assignments become more complex, requiring more than one computing 
platform/node, they use this single repository to capture all needed software and configuration 
files for submission. 

Project Submission and Demonstration 

Before the assignment due date, students must submit the following: 

• A Git “pull-request” of their working solution for the assignment for their pair 
• A brief text write-up for the assignment, describing what each student learned and what 

surprised them in completing their assignment 
• A video demonstrating the required functionality for the assignment 

At the beginning of the next class period, students are required to demonstrate their working 
solution for the assignment (the video serves as a backup in case of technical issues, as well as 
requiring students to think through the process of demonstrating their solution before class). 



 

 

Student Support 

Students have access to the instructors and TAs during the class time and office hours.  
Additionally, and in our experience a critical aspect of the course delivery, students and 
instructors use a real-time collaboration tool, Slack, to communicate.  Instructors and TAs make 
important announcements, share suggestions and pointers for the assignment, announce last-
minute updates to the courseware, answer student questions, provide diagnostic advice, and share 
information about related events and talks.  Students are able to pose questions, ask for 
assistance, share screenshots when they have issues, etc.  Most important for scaling this course, 
and gratifying for the instructors, we have found that students begin to support each other using 
this tool, answering each other’s questions, providing tips, etc. 

For many assignments, students are required to install and configure third-party libraries and 
services (e.g., web servers, message brokers, etc.) on their Raspberry Pi 3 B (RPI3B) and 
Amazon Web Services (AWS) Elastic Compute Cloud (EC2 )virtual machines.  With these 
machines being geographically dispersed, and, in the case of the AWS EC2 virtual machines, 
managed by student accounts and cryptographic keys, it can be difficult to assist students with 
diagnosing installation and configuration issues.  To help address these issues, students have 
access to a “call for help” software application that when executed provides instructors 
temporary, secure access to the student machine as a “superuser”, using a “jump server” 
architecture [21]. 

Instructor and TA Coordination and Organization 

Once again, we emphasize that not only does this class teach students how to develop complex 
IoT systems, but it also models and demonstrates a variety of best practices that are used in the 
software development industry. These best practices are usually mentioned or discussed in a 
course on software engineering, for instance, but students rarely get to see them in action. In this 
course, the instructors and TAs make these best practices “come alive” for students to experience 
first-hand.  

The instructors and TAs use a number of tools to help organize and support the class: 

• Git, as mentioned above, for the Courseware, as well as for storing and versioning 
grading rubrics, lecture demo scripts for live-coding, and other meta-content 

• Trello, a web-based project management tool, based on a “card” being a unit of work, is 
used to coordinate and track updates to the Courseware as well as per-week tasks 
(delivering updated Courseware to students, preparing for the week’s lecture and live-
coding, grading assignments, etc.) 

• Slack, in addition to the student-instructor and student-student interaction mentioned 
above, a private, instructor-only channel is used for instructor-instructor and instructor-
TA communication and coordination 



 

 

• Google Documents, including lecture presentations (Google Slides), hardware order 
tracking (Google Sheets), and a survey that is sent to students at the beginning of the 
semester to gather information on their technical experience (Google Forms) 

Course Syllabus  

At a high-level, the course consists of two parts: 

1. Constructing the IoT System (the “product”) 
2. Instrumenting, extending, and evolving the IoT System - Properties, Behaviors, and 

Concerns of Systems 
 

The course begins by incrementally constructing an IoT System: constructing a device and then 
connecting that device to the “cloud” and to mobile devices, constructing multiple User 
Interfaces and integrating the various platforms and technologies with a publish-subscribe 
architecture (see Figure 1).  After the IoT System is completed, approximately midway through 
the semester, the course then shifts focus to the behaviors, properties, and system-level concerns 
of that system (e.g., analytics, remote firmware update, load testing, security, etc.) by 
instrumenting, extending, and evolving the IoT System built during the first part. 

This two-phase approach – constructing the IoT System and then evolving that IoT System –  
allows students to understand how the various components are individually built and how they 
are connected into a useful system, and then, further, how that system behaves (e.g., observing it 
under load), how to evolve it (e.g., remote firmware update), how to instrument and understand 
the system and user behavior (analytics) and how system-level concerns impact the various 
components (e.g., security). Note that there are several IoT products available in the market that 
do all these things out of the box; this course does not use any of these products, because the 
central point of the course is to enable students to “go into the box” to see all the individual 
components, and more importantly, how these components integrate with one another.  

Starting with the “Thing”- the Hardware Kit 

It would have been possible to construct a course or IoT platform with a required collection of 
features and services to connect to a generically wide range of devices.  We decided early on that 
making the course more concrete and less abstract would facilitate students’ understanding and 
experience, especially for an undergraduate course. 

After a number of brainstorming sessions early-on to decide what “thing” (device) to build the 
course around, we chose a simple desk lamp.  The decision to use a desk lamp was chosen based 
on several criteria: 



 

 

• The device’s use and utility should be obvious to most any user; avoid devices requiring 
substantial domain knowledge (e.g., motor control), particularly since the target audience 
of students is broad (EE, CE, CS) 

• The device should have some state to manage, but that state should not be overly 
complicated 

• The device should be easily portable, so students can develop and use it in the classroom, 
home, dorm room, laboratory, or wherever they might be, easily fit into their backpack, 
and easily powered 

• The device should be low-cost so that each student can have their own kit 

 
Figure 1: An overview of the system, showing the various technology components that students work with, and how these 
components come together in the course.  

A desk lamp’s operation should be evident to most people.  To make the device and state 
interesting, the lighting element is a low-cost Red-Green-Blue (RGB) LED strip, driven from a 
simple, low-cost circuit board.  The lamp’s state consists of: 

• Color (Hue and Saturation) 
• Brightness 
• On/Off 

This design lends itself to surviving even when bounced around in student backpacks, and has 
proven to be relatively robust. 



 

 

Whether the world needs an internet-connected desk lamp, with Wi-Fi and BLE, and full 
analytics support, is discussed during class, somewhat tongue-in-cheek. 

LAMPI 
We decided to name the custom-designed desk lamp to foster a more comprehensive IoT system, 
with a little branding, logo, common User Interface (UI), etc.  We settled on “LAMPI” as the 
product name (see Figure 2). 

Embedded System 

Deciding on the embedded system (processor family, memory, I/O, etc.) involved a compromise 
between a few constraints 

• Cost and form-factor of available Single-Board Computers (SBCs) and related 
development tools (embedded development often requires special hardware debuggers, 
cross-compiler toolchains, etc.) 

• Sufficient computing resources for networking (e.g., TCP/IP, 802.11 Wi-Fi, Bluetooth, 
etc.) and adequate security (e.g., SSL/TLS) 

• Active development community (software and hardware accessories) 
• Limited class time available to ramp-up students on embedded systems- this is not an 

Embedded Systems Course (see course principals, above) 

Figure 2: On the left is a picture of the fully assembled LAMPI. On the right is a picture of the custom 
PCBA that we use in the LAMPI, and the Raspberry Pi 3 B 



 

 

Given all of these, we, along with many others [22] [23] [24], settled on the ubiquitous 
Raspberry Pi 3 B (RPI3B) (see Figure 2).  The RPI3B is relatively low-cost (US$35), physically 
small, readily available from multiple distributors, is “self-hosting” with well-supported 
GNU/Linux development tools, typically runs the Linux OS that offers a complete, high-level 
OS (networking, multi-processing, etc.), and has more-than-sufficient computing resources 
(1.2GHZ Quad Core ARM processor, 1GB of DRAM, and both 802.11 Wi-Fi and Bluetooth) for 
our needs, allowing students to develop in a high-level language (avoiding the learning curve of 
C/C++, which is common in embedded systems). Right on day one of the class, we are clear with 
students that the RPI3B may not be a realistic choice for a consumer device, like a desk lamp, 
given the cost, but that it was chosen for the course for the reasons above.   

Touchscreen 
Fortunately, there are a variety of touchscreens available for the RPI3B, including several small 
form-factor options.  We chose a capacitive touchscreen from Adafruit [25]. 

Custom PCBA 
Low-cost, analog RGB LED strips were chosen to be the light-source for the desk lamp, given 
their low cost and wide availability.  To source enough power to drive these LED strips with the 
RPI3B, however, a small, simple custom Printed Circuit Board Assembly (PCBA) (see Figure 2) 
was required.  The PCBA has three Field Effect Transistors (FETs), one to drive each color 
channel of the RGB LED strip.  General Purpose Input/Output (GPIO) pins on the RPI3B control 
each FET, and Pulse-Width Modulation (PWM) allows the brightness of each color channel to 
be controlled independently.  The PCBA provides power to the RPI3B and touchscreen, 
containing a 9VDC to 5VDC step-down converter.  The PCBA also includes an FTDI USB-
Serial interface chip and a Micro-USB connector to simplify connecting to the serial port on the 
RPI3B.  The PCBA is powered by a 9VDC “wall-wart” style power supply.  

Enclosure 
The desk lamp enclosure was modeled in a CAD package with 3D printing of the parts in mind.  
The enclosure consists of 4 parts: base front, base rear, LED column, shade.  All of the parts are 
printed on hobbyist-grade Fused Deposition Modeling (FDM) 3D printers with commodity, low-
cost Polylactic Acid (PLA) filament.  The base parts are printed in black material.  The LED 
column and shade are printed in white, translucent material (see Figure 2).   

Hardware Kit Logistics 
Ordering components, custom PCBAs, materials for 3D printing, coordinating the 3D printing, 
building wiring subassemblies, etc. can be time consuming, and needs to start months before the 
course begins.  Final “kitting” occurs a day or two before the beginning of class. (In our most 



 

 

recent offering, for example, we had all the parts ordered by Thanksgiving of the previous year 
in order for everything to be ready for a Spring semester course.) 

Semester Plan 
Table 1: : The list of topics introduced in each week, along with the specific technology components that students use 

 As outlined above, the course is divided into two parts: constructing the IoT System (the 
“product”), and instrumenting, extending, and evolving the IoT System - Properties, Behaviors, 
and Concerns of Systems and the supporting courseware is divided into week-long modules, 
where each module tackles a new technology or concept. Details are provided in Table 1. 

WEEK TOPIC SCOPE TECHNOLOGIES 

PART 1 – BUILDING THE LAMPI IOT SYSTEM 

1 IoT and Devices; Hardware Kit Embedded Raspbian, UART, Wi-Fi, PWM 

2 User Experience & User Interfaces UI & Embedded Kivy 

3 Pub/Sub Architectures Pub/Sub MQTT, Mosquitto 

4 Connecting Devices to the Cloud Cloud AWS EC2, Mosquitto 

5 Web User Interfaces Web HTML/CSS, JavaScript, 
WebSockets 

6 Web Frameworks Web Python Django, SQL 

7 User-Device Association & Production 
Deployment 

Web NGINX 

8 Mobile Mobile iOS 

9 Bluetooth Low Energy Mobile & Embedded BLE, Core Bluetooth 

PART 2 – SYSTEM PROPERTIES, BEHAVIORS, AND CONCERNS 

10 Analytics & Dashboards System Keen.io 

11 Secure Remote Update System PKI, Cryptographic Keys & Signing 

12 User Modeling, Load Testing, Scaling System AWS EC2, Locust.io 

13 Essential Security System SSL/TLS, CA, HTTPS, MQTTS, 
NGINX 

14 Rules-Based Access Control System HTTPS, MQTTS, Mosquitto 

15 Final Projects System various 



 

 

Course Sample 

Here is an example of one week of the course, Week 10: Analytics and Dashboards.  Prior to 
this, students have incrementally constructed the LAMPI IoT System (including: the device with 
a touchscreen UI, connectivity to the cloud, a Web UI, and an iOS application with BLE 
connectivity to the device). 

At the beginning of Week 10, students are provided a complete solution for the system in the 
Courseware up through and including the previous week (including Ansible configurations to 
deploy the solution to their RPI3B device and AWS EC2 virtual machine server).   The lecture 
for the week introduces the concepts of analytics and the importance of data in IoT and features 
live-coding to demonstrate the analytics platform used for the course (Keen.io, a SaaS analytics 
platform).  The Courseware provides step by step instructions for creating a free account and 
installing required libraries for each environment (RPI3B, AWS EC2 Ubuntu, Python Django, 
and iOS), how to capture events on each platform, and how to query the analytics database and 
generate graphs.  The assignment is given in two parts: instrument each of the UIs to capture and 
record common events, and then construct a specified Web dashboard (Figure 3). 

 
Figure 3: Week 10 Analytics Dashboard Assignment 

DevOps for Solution Sets 

Unlike a typical programming course, where the solution is captured in one or a handful of 
source code files that can be shared with the students along with some explanatory text, solutions 
for this course involve deployed source code along with system configuration (installed services 
and packages, configuration files, etc.), particularly as the semester progresses and the solutions 
involve configuring and deploying code to multiple computers.  Further, given the incremental 
nature of this course, where each week’s assignment literally builds upon the previous week’s 



 

 

work, student systems must be updated to a known working solution before the current week’s 
assignment can begin. 

This course uses a DevOps [26] tool to deliver solution sets to students as part of the 
Courseware.  DevOps system automation tools, like Chef, Puppet, and Ansible, allow a 
computer’s configuration to be specified like source-code, and make the configuration process 
repeatable (Chef uses the term “recipe” to refer to the configuration file, an apt analogy).  This 
configuration includes installation of third-party packages (typically libraries and services), 
creation of accounts, file system directories, configuration of services, as well as deploying 
custom applications and source code.  This system configuration, captured in text files, can be 
versioned alongside custom software, often within the same version control repository. 

Ansible was chosen for use in this course.  Each week a portion of the new Courseware delivered 
to students includes a complete solution for the previous week’s assignment as a set of Ansible 
“playbooks” that will update student systems to a known working solution state.  Students 
execute these playbooks against their computing environment (e.g., their RPI3B and AWS EC2 
virtual machine) before beginning the new assignment.  These playbooks recreate the set of 
operations the students should have completed in the assignment. 

Building and maintaining these playbooks is a non-trivial effort, but has proven critical to 
keeping students from falling behind if they struggle on a particular assignment.  Given the 
incremental structure of the solution sets, built to support the Courseware, it also allows a 
“vanilla” OS installation to be “fast-forwarded” to any given point-in-time for the semester. This 
makes it straight-forward for students (and instructors!) to quickly recover from a hardware 
glitch or system misconfiguration - start with a clean slate, run the playbooks for the current 
week, and within minutes have a complete, from-scratch, working implementation of the 
previous week’s assignment. 

Grading 

Grading for each assignment is based on a rubric.  Each assignment’s rubric addresses point 
allocations for demonstrating aspects of functionality required by the assignment, as well as 
student submission of a demonstration video and short write-up, and an in-class demonstration. 

Results 

The course has been offered three times:  At CWRU in Fall 2015 and Spring 2017, and a joint 
offering between CWRU and CSU in Spring 2018, with increasingly larger classes.  
Approximately 55 students have completed the course so far.  Grades and student feedback 
(formal course evaluations and ad hoc discussions) indicate that students are generally mastering 
the material covered.  Students are particularly vocal in their praise for the hands-on nature of the 
course and its coverage of current industry technologies and practices.  Surveys have shown that 



 

 

most students are registering for the course because another student that took the course 
recommended it.  The authors intend to introduce more rigorous qualitative and quantitative 
assessment into the course in the next offering. 

Student comprehension may best be judged by the Final Projects, where they must work 
independently from any text or courseware.   The Final Project demonstrates the students’ ability 
to synthesize the material from the semester and solve a new, novel engineering problem – 
success at synthesizing the course material results in a successful Final Project while a failure to 
synthesize the course material results in a failed Final Project.   

A few recent Final Projects topics includes: 

• Augmented Reality - Build and integrate the LAMPI UI for Microsoft HoloLens 
• Alexa - integrate Amazon Alexa into the lamp (including adding microphone and 

speaker) and create an Alexa Skill to control LAMPI 
• Google Home - integrate Google Home into the lamp (including adding microphone and 

speaker) and create a Google Home integration to control LAMPI 
• Building Enchanted Objects [28] for student campus life (weather, laundry, campus 

transportation) 
• Extend Locust.io, the tool used for HTTP load testing in the course, to load test MQTT 
• Build a light-based alarm clock with LAMPI 
• Build an SMS interface for LAMPI with Twilio 
• Build an IFTTT integration for LAMPI 

The Final Project grading rubric has 4 sections: Written Communication (15%), Presentation 
(15%), Demonstration (20%), and Problem Solving (50%).  The first two tie to the ABET 
Student Outcomes [27] “(g) an ability to communicate effectively”; the third and fourth to ABET 
Student Outcomes “(e) an ability to identify, formulate, and solve engineering problems” and 
“(k) an ability to use the techniques, skills, and modern engineering tools necessary for 
engineering practice”. 

Evolution of the course 

The course has evolved considerably after each offering.  Feedback and periodic retrospective 
discussions with students and instructors have led to dramatic improvements in the Courseware 
content (e.g., overhaul of analytics coverage and BLE, improving text consistency with a style 
guide), Courseware delivery (e.g., the Git branch structure discussed earlier and related 
automation tools), the hardware (complete redesign after the first offering leading to a simpler, 
more easily produced desk lamp), and overall course repeatability (the addition of the Ansible 
DevOps solutions to the Courseware, clearer grading rubrics, and creation of live-coding 
demonstration scripts). 



 

 

Conclusions 

We conclude with a brief discussion of challenges for a course of this nature, opportunities and 
successes so far, and directions for future work. 

Challenges 

One of the key principles articulated for this course, “class should focus on state-of-the art 
technologies, protocols, and platforms in current industry use” is critical to its relevance, but 
implicitly creates its most challenging aspect - to adhere to that principle requires that the course 
content be continually updated.  Individually, the technology platforms used in the course are all 
under rapid development (e.g., Linux, iOS, AWS, Django, etc.).  Combined, these changes 
require reviewing, revising, updating, and testing essentially all aspects of the course each time it 
is offered (Courseware, Assignments, Solutions, including the DevOps portion, Lectures, etc.), 
which is non-trivial.  Similar challenges have been pointed out for teaching cloud computing 
[29], and [30] applies DevOps to overcoming some of the challenges.   

Given the technical breadth of the material covered in the course, it also requires instructors and 
TAs with equivalent technical breadth.  The TAs in particular must also have, or rapidly develop, 
excellent diagnostic skills on a variety of platforms, as they must support students often 
experiencing the languages and platforms for the first time.  Augmenting instructor experience 
with appropriate Subject Matter Experts (SMEs) to guest lecture on particular topics (e.g., User 
Experience and User Interface Design, iOS, JavaScript) has proven valuable, both for the 
experience such SMEs can provide, but also for students still learning about the wide variety of 
engineering and software development careers available. 

The complexity added by a hardware component creates additional complexity for a course of 
this nature.  Designing an IoT product, including the enclosure and electronics, requires a variety 
of disciplines to come together.  Ordering all of the components, including the custom PCBA, 
and coordinating 3D printing of the enclosure parts, plus kitting, requires a lot of time.  The cost 
is approximately $150 per student kit, purchasing in low volumes (40 kits).  To achieve low 
costs, many of the parts must be ordered months in advance of the course. Including a hardware 
component in the course requires supporting that hardware throughout the course, diagnosing 
possible hardware issues, and, invariably, replacing damaged components. 

Opportunities and Successes 

The need for a systems-based IoT undergraduate course seems clear.  Experience with this 
course has demonstrated strong student interest, at least partially driven by the hands-on, 
experiential nature of the course.  Additionally, the broad applicability beyond IoT of many of 
the technical concepts, including analytics, load testing, and essential security, has proven a 
strong student draw. 



 

 

The range of technologies, languages, and platforms required to build a real-world IoT system 
can be daunting.  By carefully structuring an incremental build path, where students can be 
rapidly introduced to a new technology and build something of interest, on top of their previous 
work, has proven viable.  While the instructors are clear to point out that the one-week course 
assignments will not produce a mastery of any particular technology or language, students are 
often impressed at how much they have learned in a single semester (e.g., building a touch 
screen UI to control a device, connecting that device to the cloud, building a Web UI, building a 
BLE interface for the device, building an iOS app with BLE integration, etc.). 

The value of the two-phase approach to teaching IoT systems (building the system, followed by 
investigating system properties, behaviors, and concerns) has been proven in our estimation - 
students learn how to incrementally construct the system, and are thus better prepared to 
investigate and extend the system, armed with a clear understanding of its architecture. 

Directions for Future Work 

Future offerings of the course will require the periodic updates discussed above - necessary to 
keep up with changes to technologies and platforms used.  Incremental additions, such as 
building courseware to support Android BLE, along with the existing iOS support, are likely.  
More far reaching changes are possible, including full or partial virtualization/simulation to 
replace the hardware kit.  This would reduce the cost of the course, and hopefully reduce barriers 
to broader, large-scale adoption.   

Building a Continuous Integration (CI) system to support the maintenance of the Courseware is a 
likely future path.  A CI system with appropriate tests could simplify the periodic updates 
required by automatically testing changes to the Courseware and testing the Courseware with 
updated versions of the technologies and platforms used. 

Expanding this course to more institutions and more students is of special interest, including  
building the systems and processes necessary to support faculty at other institutions in adopting 
the material and tools.  Beyond scaling the course to the target audience of juniors and seniors in 
undergraduate engineering disciplines, the instructors are considering adapting the course to 
reach broader audiences, including college freshmen, high school seniors, and industry 
practitioners.  The authors invite collaborative discussions in any of these areas. 
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