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Abstract 
 

This paper discusses a new remotely-accessible, serial-manipulator platform for robotics 

education. The hardware is an 18 degree of freedom manipulator that can lock any combination 

of its joints in any position in their continuous range to emulate a manipulator with fewer degrees 

of freedom. The manipulator is controlled by an integrated design and simulation environment 

running on a host workstation, which links through a target processor to the manipulator 

hardware. The software application is remotely accessible by students via an eLaboratory portal, 

which manages students’ remote experimentation and on-line collaboration. The purpose of this 

system is to provide a unified educational platform with which students can experience a wide 

range of serial-manipulator configurations without the need of multiple hardware setups. 
 

1. Introduction 
 

A broad spectrum of approaches has recently been suggested by educators to effectively expose 

students to the field of robotics. A traditional approach is to have students interact with the 

physical systems, and perform tasks and experiments designed to teach them the fundamental 

aspects of robotics, both for robotic manipulation 
[1]

 and mobile robotics 
[2]

. A shortcoming of 

interacting with the hardware, however, is that students only get to experience a specific type of 

robot, and most institutions cannot afford a complete (or even partial) collection of robots for 

laboratory exercises. Therefore, many approaches for virtual robotic exposure have been 

developed, including virtual environments for teaching the kinematics and dynamics of robots, 

software environments for visualizing a wide range of robot manipulators, and simulation 

environments for showing how these robots behave in the real world, some with an emphasis on 

multiple robotic configurations. Simultaneous to the development of various instructional 

robotics laboratories, there has been a development of strategies in educating students remotely 

through what has been labeled as eLaboratories
[3][4]

. The motivation for such laboratories 

includes allowing students to utilize a physical apparatus with fewer constraints on time and/or 

geography
[5]

, and thus helping to compensate with the increasing size of engineering 

classrooms
[6]

, providing better instruction and more effective utilization of the specialized and 

expensive equipment
[7]

, and enhancing the existing distance education programs by 

standardization of eLaboratory setups to improve modularity, portability and scalability
[8]

. 

Applying eLaboratory practices to robot manipulators requires a platform that does not need a 

human operator in close proximity to the apparatus. For conventional manipulators, this raises 

some unique challenges in terms of safety, workspace and robustness. However, it does not solve 

the issue of having only one specific apparatus for students to interact with. Reconfigurable 

manipulators, on the other hand, can alter their kinematic, dynamic, and control properties, thus 

allowing for a range of robots to be emulated on a single platform. To be feasible for an 

eLabratory, a reconfigurable manipulator must be automatically or autonomously reconfigurable, 

such that it has no need for a proximal human operator for the operation or reconfiguration. 
 

This paper discusses the design and development of a new remotely-accessible reconfigurable 

serial manipulator platform for robotics education, labeled as Modular Autonomously 

Reconfigurable Serial (MARS) Manipulator. The platform is made up of three components: i) an 

18-Degree-of-Freedom (DOF) serial manipulator capable of locking any of its joints at every 

point in their continuous range, such that it can emulate lesser DOF serial manipulators with 

different kinematic and dynamic parameters; ii) an integrated simulation and design environment 

P
age 23.97.3



which provides control over the manipulator hardware, as well as tools to aid students in 

designing and simulating new configurations for various tasks; and iii) a portal that allows 

students to access the complete platform remotely and communicate and share resources for 

performing experiments and analyzing and reporting the results collectively. 
 

2. The MARS Manipulator 
 

The MARS Manipulator platform consists of two components: an 18-DOF reconfigurable serial 

manipulator, and an Integrated Design and Simulation Environment (IDSE). The manipulator 

hardware is able to lock any combination of its joints, in any position in order to reduce its 

DOF’s to match the kinematics and dynamics of a specific manipulator. This matching does not 

necessarily have to be to an existing serial-manipulator; rather, to one that has been designed 

specifically for the task at hand. 

 

Figure 1: MARS Manipulator CAD Model and Photo 

 

The manipulator hardware and its CAD model are shown in Figure 1. The manipulator is of 

modular design, consisting of three module sizes in cascading order. In total, six modules, two of 

each size, comprise the MARS Manipulator hardware. Each module is homogeneous in layout, 

consisting of one prismatic joint and two rotary joints, which are mutually perpendicular 

(P ⊥ R ⊥ R). Each module is connected to the previous one so that the kinematic layout for the 

complete manipulator is (P ⊥ R ⊥ R ∥ P ⊥ R ⊥ R ∥ ⋯ ∥ P ⊥ R ⊥ P).This layout was selected for 

three reasons. First, many serial manipulators have a wrist mechanism located at the end of the 

manipulator. The wrist configuration is usually either roll-pitch-roll or only pitch-roll. Such a 

wrist configuration would be readily available with the selected layout. This would aid in 

creating existing configurations, as well as in developing new configurations effectively. Further, 

having such a wrist in each module, located throughout the manipulator, increases the versatility 

of the reconfiguration task. The second reason for the selected manipulator layout is that by 

having the first DOF in the module as a prismatic joint, various link lengths of the final 

configuration can be achieved. Without a prismatic motion capability, link lengths would be 

limited to combinations of unchanging module lengths, which would drastically reduce the 

variety of the possible configurations that the manipulator can assume. The third reason for the 

selected manipulator layout is related to the mutual orientation of the 3 DOF’s of each module, 
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as well as the orientation of the adjacent modules. With their selected layout orientation, it is 

easy to have two or more prismatic joints parallel to each other. This allows for the stroke of the 

prismatic actuators to stack, increasing the stroke of the active DOF. Further, the stacking of 

actuators also allows for a significant increase in speed of the linear actuations, which is a design 

issue for serial manipulators employing a prismatic joint. 
 

3. Software System 
 

The software system for the MARS Manipulator platform is distributed across two PC’s: a Host 

PC and a Target PC, as shown in Figure 2. The target PC is directly connected to the manipulator 

hardware, and acts as a low-level controller for the entire system. Its software consists largely of 

interface libraries for the specific motor controller and sensors on the manipulator. As such, the 

Target’s software also contains rudimentary functions to send commands to the motors and 

collect data from the sensors. It also has a database, called Joint Trajectory Lookup Table, which 

has the specific positions that the joints of the manipulator have to assume in order to complete 

the assigned task. In addition to the Joint Trajectory Lookup Table, there is a Watchdog module 

that contains joint positions, velocities and accelerations which would cause self-collisions, 

robot-to-environment-collisions, and motions that create inertial forces in excess of what the 

manipulator can handle. This Watchdog module, therefore, protects the user from issuing a 

dangerous or inappropriate command to the robot hardware. Finally, the Target PC also contains 

a simple Graphical User Interface (GUI), for controlling the manipulator independently of the 

Host PC. Nevertheless, the target application is designed to be free of user interactions, and 

instead follow commands issued by the Host PC. The Host PC, therefore, is the intended system 

in which the users of the MARS Manipulator platform mainly interact with. It contains the 

Integrated Design and Simulation Environment, which will be discussed in the next section, and 

several other tools which help the user to effectively utilize the manipulator. The Host machine is 

remotely accessible via the remote access portal resulting in the entire MARS Manipulator 

platform being remotely accessible by anyone, anywhere in the world, provided they have an 

internet connection, and permission to use the setup. 
 

 
Figure 2: Software Architecture 
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By distributing the software between two PC’s, there is a natural buffer against some of the 

common failings of modern computers. This feature can be broken down into three categories: 

upgradability, reliability, and processor separation. The upgradability category refers to 

separating the system into parts that benefit from regular hardware and software upgrades, and 

parts that do not. The Target machine does not have high demands on its computational ability, 

memory or software interface. Therefore, upgrading the target is a low priority of the system. 

The Host, however, has the bulk of the user-interfaces, a complicated model of the manipulator 

hardware, a simulation environment and other resource-intensive components. As new software 

packages or faster hardware become available, the Host PC would benefit greatly from system 

upgrades.  The upgradability factor reduces the costs (both monetary and time wise) of the 

upgrades into the areas of highest benefit. This feature leads into the next category which is 

reliability. With any regular upgrade task, there is an inherent risk of system instability or failure. 

New hardware may not be fully compatible with existing software (or vice versa), and new 

software could have un-tested bugs. Of the two systems, the host will have a less disastrous 

potential from system instability. The Watchdog system on the Target, which will remain 

unchanged, will catch bugs from the Host, and stop damage to the physical hardware and/or the 

environment. The third category is processor separation, which refers to the decoupling of low-

level and high-level manipulator control onto to two processors. Even in a dual- or quad-core 

system, there is a threat of, for example, the simulation software taking computational priority 

over the low-level manipulator control. This could cause poor experimental results, as the 

manipulator will have a resulting system lag, or it could cause damage by delaying the response 

of the Watchdog Module.  

 

4. Integrated Design and Simulation Environment 

 

The Integrated Design and Simulation Environment (IDSE) is a software interface that allows 

and aids users in effectively utilizing the MARS Manipulator hardware. The architecture of the 

IDSE follows the Model View Controller architecture
[9]

, as shown in Figure 2. This architecture 

allows the user interface components of the IDSE to be decoupled from the analytical 

components for the purpose of better organization and upgradability.  
 

As the name suggests, there are two main purposes for the IDSE: to design new configurations 

for the manipulator to assume, and to simulate the performance of the manipulator in any 

configuration. These features are tightly coupled, however, as the simulation environment is an 

important tool in the design and development of useful configurations. 

 

The main IDSE design environment is shown in Figure 3. The first feature of the IDSE is the 

configuration specification tool, in which the user can change any of the joints positions along 

their continuous domain, and lock any combination of joints. To help visualize what they are 

doing, the students have access to two virtual-reality environments which show the manipulator 

hardware: the visualization environment, and the simulation environment. The visualization 

environment is a live static representation of the current configuration of the manipulator. It 

shows exactly what the hardware would look like if the joints were in the positions specified. 

The simulation environment shows the hardware as it goes through the motions that the user 

defines. While similar in nature, the key difference is how they are used. The visualization 

environment requires no rendering or high-processing of any kind, and can be run as a side 

window while the user utilizes other aspects of the IDSE. The simulation environment, however, 
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requires a large amount of processor and memory resources, and is quite slow. Its advantage, 

however, is that it is linked to the position, velocity, acceleration and force data of each joint, 

which is useful for intuitively understanding simulation results. 

 

 

Figure 3: Main IDSE Environment 

 

There are 5 types of simulations which the user can run though the IDSE: forward kinematics, 

inverse kinematics, forward dynamics, inverse dynamics, and controls. The forward kinematics 

simulation takes the joint motion profiles as an input, and displays the robots motion as an 

output. This is useful for identifying which joints induce the desired end-effector motion and for 

better identifying the workspace of the manipulator. The inverse kinematics takes an end-effector 

trajectory as an input, and displays the motion of the robot, along with the joint trajectories 

required to make this motion. This is useful for figuring out which joint trajectory combinations 

are required to do complex motions, such as the end-effector following a linear trajectory. The 

forward dynamics allow the user to specify joint torque and forces and observe how the 

manipulator behaves. Similar to forward kinematics, it is useful for obtaining intuition in how 

joint forces affect the robot’s performance. The inverse dynamics simulation allows the user to 

specify the joints kinematic profile, and derives the forces and torques necessary to complete the 

inputted motions. This is particularly useful in identifying which motor torque is needed to 

accomplish a task, as well as which tasks are not possible due to motor limitations. Finally, the 

controls simulation shows how the manipulator will respond if the user would use a controller, 

such as a servo controller, to perform certain joint trajectories. The user is able to custom-tune 

the controller, or employ an auto-tuner for the control gains. 

 

Once the user has defined a configuration, there is a need to express the current kinematic 

configuration of the MARS Manipulator in universally used parameters. This allows for a 
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comparison to other manipulator configurations, as no other manipulator uses the MARS 

Manipulator parameters to describe their kinematics. The standard way of expressing a robot’s 

kinematic configuration is the set of Denavit-Hartenberg (DH) parameters. These parameters 

have two conventions: standard
[10]

 and modified
[11]

. Each convention has their own advantages 

and disadvantages, but both are very similar and have almost equal capabilities. For this system, 

the standard DH parameters are used. 

 

Mapping from a serial manipulator to the standard DH parameters requires assigning several 

coordinate systems to the manipulator, one for each unlocked joint. The procedure is as follows: 

 

1. Find a point and unit-vector representing all z axes (axis of joint rotation or translation) for 

the manipulator. 

2. Find a point and unit-vector representing all x-axes (along the length for the link) for the 

manipulator. 

3. Update vectors from 1 and 2 to have a single point and two unit-vectors representing each 

origin. 

4. Assign DH parameters based on the coordinate systems. 

 

Step 1: 

The MARS Manipulator was designed such that the central axis of the manipulator intersects 

every joint axis. Therefore, finding the point for each z-axis is done by transversing the central 

axis until a joint is reached, and then the point is recorded. Similarly, once a point has been 

recorded, the unit-vector for that axis is also recorded based on the knowledge of what joint has 

most recently been reached. As the manipulator is traversed, the passive joints need to be taken 

into account, as they change the direction of the manipulator’s central axis. Once a joint (active 

or passive) was reached that is at a non-orthogonal orientation, the joint rotation is applied. 

Orthogonal orientations are trivial, because orthogonal rotation matrices are well established. To 

take into account non-orthogonal rotations, the Rodriguez’ rotation formula is applied
[12]

: 

 

 R = uuT + (1 − uuT) cos θ + ũ sin θ; (1) 

 

where:  R: Rotation matrix to be applied  

 u:  vector rotation is about 

 Θ: angle of rotation 

 ũ: skew symmetric form of u 

 

Step 2: 

The x-axis must intersect the current and previous z-axes. The x unit-vector is simply the cross 

product of the z unit-vectors; the direction can be corrected later on. The following formulas are 

used to compute this point. First, the 3×3 matrix [V] is found in (2): 

 

 [V] = [V̂1 V̂2 −V̂3] (2) 

 

where V̂1, V̂2 and V̂3 are the unit vectors for the preceding z-axis, the current x-axis, and the next 

z-axis respectively. Next, the scalar c is found in (3). 
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 [
a
b
c
] = [V]−1[P3 − P1] (3) 

 

The point that describes the x axis is then computed in (4) 

 

 P2 = P3 + cV̂3 (4) 

 

where P3is the point that describes the next z-axis. Note that a proof exists stating that the matrix 

[V] is non-invertible if and only if V̂1 and V̂3 are parallel. If this is the case, the point P2 can be 

taken as equal to the point P3. Further, the sign of b in equation 3 is applied to the vector V̂2 to 

ensure it is pointing in the right direction. 

 

Step 3: 

This step is nearly trivial, as it is simply an organizational step in terms of the algorithm. The 

unit-vectors remain unchanged, just stored in a single variable. The single point is taken as P2 as 

it intersects both the x and z axes. 

 

Step 4: 

Once the origins are established, finding the DH parameters is now a simple task, following the 

established procedure for the standard DH convention: 

 

ai: The distance between origins i and i-1 along xi 

di: The distance between origins i and i-1 along zi 

αi: The angle between zi-1 and zi 

θi: The angle between xi-1 and xi 

 

The distance variables (a and d) are calculated along the unit vectors pointing to the next origin. 

The angular variables are calculated using equation (5), where θ is the angle between two 

vectors, x̂ and ŷ. 

 

 θ = cos−1[x̂ ∙ ŷ/(|x̂||ŷ|)] (5) 

 

Two solutions are present for this equation, but the second solution can always be rejected, due 

to the nature of the vectors. 

 

Once a configuration is designed by the user, the IDSE, along with other aspects of the Host PC 

can download the configuration and the desired joint trajectories to the Target PC, such that they 

can be run on the physical setup. The IDSE can monitor the sensor data from the manipulator, 

and compare it to the data predicted by the simulation. As stated previously, the simulation is 

used to protect the manipulator hardware by ensuring proposed actions are safe through 

simulation results. However, the combination of the simulation and hardware serves another 

educational purpose. This platform, through specific experiments, can highlight scenarios in 

which a simulation performs similarly to a real-world setup, and scenarios where it does not. 

This is a useful method of demonstrating the common shortcomings of a simulation in a practical 

manner. The areas of interest for the MARS Manipulator platform in which the simulation and 

the physical hardware differ include motor behavior at the extremes of their performance 
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capability and system compliance and flexibility, specifically from the harmonic drive 

transmission systems. 

 

As stated previously, the IDSE runs on the Host PC, which is remotely accessible via a remote 

desktop protocol. From this, the user has control over the entire setup as if they were physically 

sitting in-front of the robot. A visualization environment which shows a virtual representation of 

the physical manipulator, along with video and audio streams provide the user with all the 

information they need to effectively design and experiment with new configurations. This 

remote-accessibility is controlled by the remote access portal. 

 

5. Remote Access Portal 

 

The architecture of the remote access portal for the MARS manipulator is depicted in Figure 4. 

The portal consists of the following five modules:  

 

 
Figure 4: Remote Access Portal Architecture 

 

Remote Experiment Module: 
 

The remote experiment module includes the IDSE, as explained earlier, and an additional 

telecontrol interface layer on the host PC that allows it to be accessed by another machine via the 

Remote Desktop Protocol (RDP). It, therefore, allows the end-user to take control of the host 

machine, and by proxy, target machine as if they were sitting in front of the physical 

workstations. 

 

Scheduling Module: 
 

The scheduling module manages when students may access the system. This module serves two 

functions: the first is to guarantee that each student has access to the manipulator platform for the 

needed time, as specified by course assignments and due dates; the second to provide a formal 

time slot to discourage procrastination on the part of the student. Between schedule time slots, 

the system is free to whoever logs on, on a first-come-first-served basis, which can be modified 
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to have a cap on students’ time if other students are waiting for the setup. 

 

Telepresence Module:  
 

The telepresence module provides the user with more information than a standard Remote 

Desktop connection. Webcams and microphones on the experimental setup allow for video and 

audio information to be transmitted real-time to the user. Further, communication tools can link 

the student to the instructor, teaching assistants, and peers through a variety of methods, such as 

instant messages, live audio or video chat. 

 

Application Publishing Module:  
 

The application publishing module is an extension of the telecontrol layer from the remote 

experiment module. It allows students to access laboratory software and computing resources 

from a centralized application server using RDP. The instructor can define a list of pre-approved 

applications that students can run, along with a set of permissions for each application (i.e., what 

the user can do with the application). Software usage is logged to a database so that the instructor 

can monitor the utilization of resources. 

 

Administration Module: 
 

The administration module is a central web-based gateway that allows students, instructors and 

teaching assistants to interact with each other and with the manipulator platform. This module 

hosts administrative information such as course details, lab manuals and notes, student accounts 

where they can store information privately or publically as they so choose, a list of all time slots 

scheduled for the experiments and any other information and/or tools needed. The architectural 

core of the administration module is the eCollaboration framework, which provides students 

with contextual-based learning tools through a combination of communication and resource-

sharing components. Each student is given a personal site on the portal, analogous to a lab 

notebook, for storing and managing their documents and laboratory work. Students can select 

portions of their personal site to publish to the portal, or post on the internet. The entire 

administration module is presented through a web interface layer, which is a collection of 

dynamic templates that display various content sources using reusable wrappers called Web 

Parts. Web Parts allow users to build a web their site and contribute from a collection of 

distributed content and resource without having to script any code directly.  

 

6. Expected Results 

 

The MARS manipulator platform is scheduled to be implemented in a senior robotics course in 

the near future. In preparation for this, several studies have been performed on other remotely 

accessible systems using a similar framework and infrastructure. One area of interest is in the 

student’s preference between using the experimental hardware proximally versus remotely. A 

study involving an airfoil experiment in a wind tunnel was reported in [13], which used the same 

portal architecture to allow proximal and remote access to the hardware setup. The students’ 

attitudes and performances were analyzed and discussed in [13].  Figure 5 shows the students’ 

preference on the method of utilizing the experimental hardware both before and after the 

experiment. It reveals a lesser preference towards the proximal usage after the experiment was 
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undertaken compared with before the experiment was performed. Further analysis showed that 

students who accessed the setup remotely would tend to prefer this mode more strongly versus 

students who performed the experiment only proximally. It is expected that results of the MARS 

Manipulator platform would enhance these results. Due to the higher complexity of the MARS 

experimental hardware, however, it will be interesting to see if the students find the greater time 

allocation of the remote system a benefit worth the trade-off of a physically removed experience. 

 

 
Figure 5: Student’s preferred method of experimental access to airfoil experiment 

 

To gain insight into how the increase in complexity will affect students’ preference for mode of 

access, another study was conducted, comparing the results above to another more complicated 

system. The second system is from a course which follows the previously mentioned course in 

the engineering curriculum, and had experiments of slightly more challenging design and 

comprehension; the concepts involved photoelasticity and supersonic flow and shockwaves. 

These experiments used the same portal infrastructure. In [14], the results of this study showed 

an 8% point overall reduction in preference of the proximal mode for the more complicated 

experiment. While minor, it suggests that for more complicated setups, or perhaps with greater 

student maturity and understanding, the remote accessibility may become more attractive. These 

results are also to be examined using the MARS manipulator setup. 

 

7. Conclusions and Future Work 

 

Engineering education continues to progress alongside with the advancement of 

telecommunications. Hence, there is a need for developing educational means that facilitate such 

an emergence. In the field of robotics, a remotely-accessible, reconfigurable manipulator 

platform would be an asset for teaching the related theoretical and practical notions. The MARS 

Manipulator platform, as discussed in this paper, allows students to access and experiment with 

various configurations of serial-link manipulators remotely and safely. The platform does not 

require any proximal human operator to reconfigure, and can be fully utilized from any computer 

capable of a remote connection. 
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The MARS Manipulator platform is to be used as a key laboratory means for a senior robotics 

course. A series of experiments will be designed for the students to study the effect of kinematic, 

dynamic, and control parameters in performing various tasks using different configurations. The 

learning outcomes will be analyzed for two groups of students, those who have proximal access 

to the platform and those who can only access the system remotely. These results will be 

compared with experiments in [13] and [14] in which a similar system was utilized for different 

experimental setups. It is also planned to invite students from other institutes to perform 

experiments in association with their robotics courses and in collaboration with the local 

students. The results of such inter-university learning collaborations will also be analyzed 

through various studies. 
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