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1.  Introduction 

The availability of inexpensive, capable synthesis software tool has a significant impact on 

the design and implementation of digital systems.  Many curriculums, as well as a number of 

textbooks3,12, have integrated HDL (Hardware Description Language), such as VHDL, and 

synthesis tool into the introductory digital systems course1,5,9,11,13.  VHDL is a very rich language 

and includes many constructs resembling a conventional programming language, including 

variables, loop and complex branch structures2,6,10.  These constructs are intended to describe the 

“behavior” of a circuit, but not its internal implementation.  These constructs are frequently 

abused by students who use them for synthesis.  Instead of thinking hardware, some students just 

describe their design as a C-like program and hope the synthesis software can derive the 

hardware for them.  This usually leads to inefficient, excessively complex implementation4.   

To remedy the problem, we introduce a small, but effective, subset of VHDL for the 

introductory digital systems course.  The constructs in this set have clear mappings to hardware 

components so that a VHDL description can be easily transformed into a block diagram and vice 

versa.  This approach forces students to be conscious about hardware structure but at the same 

time let them exercise the modern design practice and take advantage of the synthesis software.  

The paper is organized as follows: Section 2 provides background information and discusses the 

use and abuse of VHDL; Section 3 discusses the languages constructs selected for the subset and 

their hardware implementation; Section 4 illustrates the application of the subset for various 

circuits and the last section summarizes the paper.  

2.  Background 

2.1 Content of the Digital Systems course  

Digital systems is a core undergraduate course in the curriculum of electrical engineering, 

computer engineering or computer science.  As indicated in the proposed IEEE/ACM Computing 

Curricula7, this course “covers the digital building blocks, tools, and techniques in digital design 

and emphasis is on a building-block approach”8.  The main focus is on the theory and practice of 

using gate-level components, such as simple logic gates and FF (Flip-Flop), and module-level 

components, such as adder, comparator, multiplexer and register.  While HDL and synthesis 

software may be covered, they are not the main focus for this course.  As suggested in the 

curricula8, only a small fraction of time is allocated for these topics.  

2.2 Overview on VHDL  

An HDL should faithfully and accurately model and describe a circuit, whether already built 

or under development, from either structural or behavioral views, at the desired level of 
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abstraction6.  VHDL is one of the two widely used HDLs.  It is designed to model the basic 

characteristics of a digital circuit, which include the concepts of entity, connectivity, concurrency 

and timing2.  The semantics of VHDL is entirely different from conventional programming 

languages, such as C or Java.  It normally needs an entire book and an advanced course to 

completely cover the features and uses of the VHDL language.   

2.3 Use and abuse of VHDL and synthesis software 

Recent advancements make HDL and EDA (Electronic Design Automation) software 

available to everyday engineering design.  Many curriculums and some textbooks are 

incorporating VHDL and synthesis and simulation software into instruction.  There are several 

advantages of this approach.  First, this helps students to get familiar with modern tools and 

design practice.  Second, simulation allows students to observe the circuit operation in computer 

and better understand the basic principles.  Third, synthesis software can realize the circuit in 

FPGA (Field Programmable Gate Array) device so that students can quickly obtain a physical 

prototype and test their design. 

One major problem of this approach is the students’ “software mentality”.  Most students in 

this course have some, or even extensive, prior programming experience, normally in C or C++.  

Since VHDL includes languages constructs, such as variable, loop, function, procedure etc., that 

are similar to the conventional programming languages, it is sometimes easier for the students to 

think in term of software algorithms rather than hardware circuitry.  However, these language 

constructs are intended to model abstract, high-level system behavior.  While they describe the 

desired external behavior, the resulting code does not provide any hint about the internal 

hardware components and the underlying implementation.  This kind of code actually works 

against the “a building-block approach” philosophy described in the Computing Curricula and 

distracts the students from the real design issues.  

An example of this kind of problem is illustrated by the following code.  Assume that we 

wish to implement a 4-bit priority encoder with the following function table: 

 

 

 

In this circuit, the a(3), a(2), a(1) and a(0) are four input request signals, in which a(3) has 

the highest priority.  The output code is the binary code of the highest request and the output 

valid indicates whether there is an active request.  With C programming in mind, the VHDL 
code will be written as: 

LIBRARY ieee;   

USE ieee.std_logic_1164.ALL; 

USE ieee.numeric_std.ALL; 

ENTITY p_encoder IS 

   PORT( a: IN std_logic_vector(3 DOWNTO 0); 

         valid: OUT std_logic; 

a(2)      a(2)     a(1)      a(0)  code     valid 

  1         x         x          x   1 1 1 

  0         1         x          x   1 0 1 

  0         0         1          x   0 1 1 

  0         0         0          1   0 0 1 

  0         0         0          0   0 0 0 
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         code: OUT std_logic_vector(1 DOWNTO 0)); 

END p_encoder ; 

ARCHITECTURE behavioral_arch OF p_encoder IS 

BEGIN 

   PROCESS (a) 
   BEGIN 

      valid <= '0'; 

      code <= "00"; 

      FOR i IN 3 DOWNTO 0 LOOP 

         IF a(i)='1' THEN 

            code <= std_logic_vector(to_unsigned(i,2)); 

            valid <='1'; 

            EXIT; 
         END IF; 

      END LOOP; 

   END PROCESS; 

END behavioral_arch; 

This program simply uses VHDL as the C language.  It uses variables, sequential execution of 

the code and complex loop and branch constructs.  While the description is correct, the program 

does not show any hint about its underlying circuit or how to realize the desired behavior in 

hardware.  In order to realize this circuit in hardware, the students have to blindly rely on 

synthesis software and use it as a black box.  However, since synthesis is a complex process that 

involves many untractable problems4, there is no guarantee that the software can obtain an 

efficient implementation or even can derive an implementation.   

Most of the time, this kind of “C-like” VHDL code is either not synthesizable or results in an 

unnecessarily complex circuit.  Instead of thinking hardware and circuit, some students treat the 

digital design as a “trial-and-error” process and wish to derive a VHDL code that can be 

accepted by the synthesis software.    

3.  Minimal synthesizable VHDL subset  

3.1 Selection criteria  

The goal of finding a minimal synthesizable VHDL subset is to take advantage of the modern 

EDA software tools and FPGA devices but at the same time to keep students “conscious” about 

hardware and circuits.  To achieve this goal, the subset should satisfy the following criteria.  

First, the subset should be simple so that it can be covered in a short amount of time and thus 

doesn’t interfere with the regular curriculum.  Abstract, high-level modeling language constructs 

and some more difficult VHDL concepts will be avoided.  There should be a clear mapping 

between the selected language constructs and the hardware components so that students can 

quickly covert a VHDL code to a block diagram and vice versa.  Second, the subset should be 

capable and flexible enough to describe moderately complex module-level circuits so that the 

students can simulate and synthesize their designs and eventually obtain physical prototypes.  

Third, the subset should be “upward compatible”.  This means that the concepts and principles 

introduced in this course should not contradict with the concepts and practices of a full-fledged 

VHDL course in the future curriculum. 

To satisfy the criteria, the proposed subset includes four data types that can be easily mapped 

to logic 1 and logic 0, a collection of operators corresponding to the gate-level and module-level 

components, and two concurrent signal assignment statements as routing structures.  We 

intentionally avoid VHDL process and sequential statements since they cannot be easily mapped 
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into hardware components and encourage students to develop C-like codes.  The only exception 

is the inference of a D FF (Flip-Flop) or a register, in which a “register template” is used. 

With this subset, the VHDL code can only contain concurrent signal assignment statements 

and register template.  Each statement is treated as a circuit part with a small delay (i.e., the delta 

delay of VHDL) and the parts are connected via the common signal names.  We can easily 

convert a VHDL code into a block diagram and vice versa. 

The constructs selected for this subset and their corresponding hardware implementations are 

discussed in the following subsections. 

3.2 Data types and package 

VHDL is a strongly type language and supports a wide variety of data t types.  Four data 

types are used in the subset and they can be easily mapped to logic 1 and logic 0 or an array of 

logic 0 and logic (i.e.; a bus) of digital circuit.  These types are:  

• std_logic and std_logic_vector  

• unsigned  

• boolean 

The std_logic and std_logic_vector data type defined in IEEE 1164 package are 
used for general signal representation.  The two types are selected because they are more 

versatile and general than the build-in bit and bit_vector types.   

The unsigned data type is defined in IEEE numeric_std package.  We prefer the 

unsigned data type than the VHDL’s built-in integer data type since the unsigned data type 

explicitly specifies a signal’s width and the representation (i.e., unsigned format).  Simple type 

casting can convert the std_logic_vector data type to the unsigned data type and vice 
versa.   

The boolean data type has a value of true or false.  It is mainly for the condition signals 
used in a conditional concurrent signal assignment statement.     

3.3 Operator 

Four groups of VHDL operators are selected and all the operators can be mapped to standard 

gate-level or module-level components.  These operators are: 

• Logical operator: AND, OR, XOR, NAND, NOR, XOR 

• Relational operator: =, /=, <, <=, >, >= 

• Arithmetic operator: +, -  

• Miscellaneous operator: & 
The logic operator corresponds to the basic logic function used in Boolean algebra and each 

one can be mapped to a physically gate.   

The relational operators can be mapped to physical comparators, and the arithmetic operators 

can be mapped to an adder or a subtractor.  The & operator combines several signals to form a 

single, wider signal and it involves no extra logic.  One common use of the & operator is to 

perform a fixed amount of shifting or rotation.  

3.4 Expression  

An expression can be thought as a formula that specifies how to compute a value.  An 

expression can be a simple signal but it normally utilizes operators to construct a more 

sophisticated function.  If the operators are limited to the subset defined in Section 3.3,  
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Figure 1.  Circuit diagrams of simple expressions 

 

an expression can be implemented by replacing the operators with the corresponding physical 

parts.  Three examples are shown below:   

• Example 1:  (a AND (NOT b)) OR ((NOT a) AND b) 

• Example 2: op1 + op2 - 1 

• Example 3: (x > y) AND (state = “010”) 

The circuit diagrams of the three expressions are shown in Figure 1. 

3.5 Simple concurrent signal assignment statement 

The simplified syntax of a simple concurrent signal assignment statement is  

sigal_name <= expression; 

It is actually a special case of a conditional signal assignment statement.  It is an expression 

assigned to a specific signal.  In term of hardware, we can think that the computation result of the 

expression is connected to an output signal.  For example, consider the statement   

arith_result <= op1 + op2 - 1; 

It means that the output of the op1+op2-1 circuit is connected to an output signal named 

arith_result. 

3.6 “Restricted” conditional signal assignment statement 

The simplified syntax of a restricted conditional signal assignment statement is  

sig <= exp_1 WHEN bool_1 ELSE 

       exp_2 WHEN bool_2 ELSE 

       exp_3 WHEN bool_3 ELSE 

       . . . 

       exp_n.; 

The conditional signal assignment appears to force the order of evaluation of the expressions 

(exp_i) according to the corresponding Boolean signals (bool_i).  However, in hardware, it 

actually specifies a “priority routing network”.  Consider a statement with three expressions: 

sig <= exp_1 WHEN bool_1 ELSE 

       exp_2 WHEN bool_2 ELSE 
       exp_3.; 

The block diagram is shown in Figure 2.  Each “. . . WHEN bool_i ELSE” clause corresponds 

to a 2-to-1 multiplexer in which the bool_i signal functions as the selection signal.  The two 

clauses form a priority routing network with two 2-to1 multiplexers.  Three “clouds” represent 

the three circuits used to implement the expressions.  Note that the expression circuits are 

operated concurrently and the routing network forms a path to pass the desired result to the 

output.  

 

 

op1
op2 +
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b
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x
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Figure 2.  Block diagram of a conditional signal assignment statement 

 

Figure 3.  Block diagram of a selected signal assignment statement 

 

3.7 “Restricted” selected signal assignment statement 

The simplified syntax of a restricted selected signal assignment statement is  

WITH sel SELECT 

   sig <= exp_0 WHEN value_0, 

          exp_1 WHEN value_1, 

          exp_2 WHEN value_2, 

          . . . 

          exp_n.WHEN value_n; 

The sel signal is with a data type of n+1 possible values (i.e., value_0, value_1, … , 

value_n).  According to the current value of the sel signal, the result of the corresponding 

expression will be assigned to the output sig signal.  In hardware, this statement implies an 
(n+1)-to-1 multiplexing network that has n+1 input ports.  Each port is connected to a circuit that 

implements the corresponding expression (exp_i).  The sel is the selection signal of a 
multiplexer, which has n+1 possible values.  It specifies which input port will be connected to 

the output port.  We restrict the sel signal to the std_logic_vector data type.  For a k-bit 

sel signal, it has 2k possible “valid” values and the statement specifies a 2k-to-1 multiplexer.  

sig
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F
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Note that we need WHEN OTHERS clause in the end to cover the unused meta-value combinations.  
Consider a statement with 2-bit select signal: 

WITH sel SELECT 

   sig <= exp_0 WHEN “00”, 

          exp_1 WHEN “01”, 

          exp_2 WHEN “10”, 

          exp_n.WHEN OTHERS; 

The block diagram is shown in Figure 3, using a 4-to-1 multiplexer for routing.  As in Section 

3.6, the “clouds” represent the circuits used to implement the expressions.  Again, the expression 

circuits are operated concurrently although only one computation result is routed to the output.  

3.8 Template for register  

In VHDL, memory elements can be inferred in various mechanisms and can be easily 

“embedded” in code.  To enforce good design practice, our approach is to separate the memory 

elements from the remaining circuit and describe them in explicit code segments.  We use a 

process template, which is treated as a black box, to explicitly specify the desired D FFs or 

registers.  The VHDL code segment is : 

PROCESS(clk) 
BEGIN 

   IF (clk'EVENT AND clk='1') THEN 

      q <= d; 

   END IF; 

END PROCESS; 

The clk signal is the clock of the register and the q and d signals are the input and output 
respectively.    

 

4.  Application of the subset  

Although the proposed VHDL subset is very simple, it is general and powerful enough to 

cover most circuits encountered in an introductory digital systems course.  The subset can 

describe both gate-level and module-level circuits and can specify combinational circuits, regular 

sequential circuits as well as FSMs (Finite State Machine).  The following subsections illustrate 

the usage of this subset for various circuits.  

4.1 Gate-level circuit 

Gate-level circuits are the designs based on basic logic gates.  These circuits are normally 

described by logic expressions or truth tables.  The logic expression can be translated to simple 

signal assignment with logical operators.   

For example, the priority encoder can be expressed as12:  

h3= a(3);   h2 = a(2) • a(3)′ ;   h1 = a(1) • a(2)′ • a(3)′   

code(1) = h2 + h3 

code(2) = h1 + h3 

valid = a(3) + a(2) + a(1) + a(0) 

This can be directly translated to VHDL code: 
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a(3)

h2
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a(1)
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h3

code(1)

code(0)

valid

a(0)
 

Figure 4.  Gate-level implementation of 4-to-2 priority encoder 

 

ARCHITECTURE gate_level_arch OF p_encoder IS 

    SIGNAL h3, h2, h1: std_logic; 

BEGIN 
    h3 <= a(3); 

    h2 <= a(2) AND (NOT a(3)); 

    h1 <= a(1) AND (NOT a(2)) AND (NOT a(3)); 

    code(1) <= h2 OR h3; 

    code(0) <= h1 OR h3; 

    valid <= (a(3) OR a(2)) OR (a(1) OR a(0)); 

END gate_level_arch ; 

In the code, each statement represents a circuit part and the program can be easily converted to 

circuit diagram, as shown in Figure 4. 

There is no explicit “table” construct defined in VHDL.  However, the truth table or function 

table can be “emulated” by using the selected signal assignment statement.  For example, we can 

describe the priority encoder based on the function table of Section 2.3.  This table can be 

converted into the VHDL code: 

ARCHITECTURE function_table_arch OF p_encoder IS 
BEGIN 

   WITH a SELECT 

     code <= 

        "11" WHEN "1000"|"1001"|"1010"|"1011"| 

                  "1100"|"1101"|"1110"|"1111", 

        "10" WHEN "0100"|"0101"|"0110"|"0111", 

        "01" WHEN "0010"|"0011", 

        "00" WHEN OTHERS; 

    valid <= a(3) OR a(2) OR a(1) OR a(0); 
END function_table_arch ; 

Recall that any k-input function can be implemented by a 2k-to-1 multiplexer12.  The selected 

signal assignment statement essentially uses this approach to implement the truth table.  This 

particular code needs two 1-bit 16-to-1 multiplexers.  The multiplexing circuit will be simplified 

during the synthesis.   

4.2 Module-level circuit 

Module-level circuits are the designs that utilize larger components, such as comparators and 

adder, as well as routing structures.  They are more abstract than the gate-level circuits.   

The previous priority encoder can be described in more abstract VHDL code: 
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Figure 5.  Module-level implementation of 4-to-2 priority encoder 

 

ARCHITECTURE cond_assign_arch OF p_encoder IS 

    SIGNAL b3, b2, b1: BOOLEAN; 

BEGIN 

    b3 <= a(3)='1';    b2 <= a(2)='1';    b1 <= a(1)='1'; 

    code <= "11" WHEN b3 ELSE 

            "10" WHEN b2 ELSE 

            "01" WHEN b1 ELSE 

            "00"; 
    valid <= a(3) OR a(2) OR a(1) OR a(0); 

END cond_assign_arch ; 

Instead of using logic expression, the code describes the circuit using the “priority routing 

network” specified by the conditional signal assignment statement.  The conceptual block 

diagram to obtain the code signal is shown in Figure 5.   

Unlike the gate-level circuits, synthesis software is less efficient in performing optimization 

in module level.  The simplicity of the proposed subset allows students to “visualize” the VHDL 

code in block diagram and to explore more efficient design.  Consider a circuit that determines 

the difference between inputs a and b; i.e., |a-b|.  A straightforward design is to first compute 

compare the magnitude of a and b, and then use the result to route either a-b or b-a to the output.  

The VHDL code is 

LIBRARY ieee;   

USE ieee.std_logic_1164.ALL; 

USE ieee.numeric_std.ALL; 

ENTITY difference IS 

   PORT( a, b: IN unsigned(3 DOWNTO 0); 

         diff: OUT unsigned(3 DOWNTO 0)); 

END difference; 
ARCHITECTURE design1_arch OF difference IS 

    SIGNAL agtb: BOOLEAN; 

BEGIN 

    agtb <= (a > b); 

    diff <= (a - b) WHEN agtb ELSE 

            (b - a); 

END design1_arch; 
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Figure 6.  Block diagrams of two difference circuits 

 

The conceptual diagram is shown in the left of Figure 6.  Since the subtractor is a much more 

complex than a multiplexer, the circuit can be simplified by sharing the subtractor.  We can first 

route the inputs a and b to the proper ports of subtractor and then perform the subtraction.  The 

revised bock diagram is shown in the right of Figure 6 and the VHDL code becomes: 

ARCHITECTURE design2_arch OF difference IS 

    SIGNAL agtb: BOOLEAN; 

    SIGNAL op1, op2: unsigned(3 DOWNTO 0); 

BEGIN 

    agtb <= (a > b); 

    op1 <= a WHEN agtb ELSE b; 

    op2 <= b WHEN agtb ELSE a; 
    diff <= op1 - op2; 

END design2_arch; 

4.3 Regular sequential circuit 

Sequential circuits are circuits with “memory”.  While there are a variety of sequential circuit 

models, the proposed subset is intended to support the most commonly used one - synchronous 

sequential circuit, in which all memory elements (FF or register) are controlled by the same 

clock signal.  In this model, the memory elements are separated from other combinational 

circuits (next-state logic and output logic).  The basic diagram is shown in Figure 7.  Our VHDL 

code follows this model and uses the register templates for the memory elements.  For the 

discussion purpose, we divide the sequential circuit into regular sequential circuits, such as 

counter, shift register etc. and FSM, which has “random” next-state logic.   

Let us first examine a simple regular sequential circuit example.  Consider a 4-bit free-

running binary counter.  The block diagram, modeled after the basic sequential circuit diagram of 

Figure 7, is shown in Figure 8.  The next-state logic is an incrementor that increases the current 

register value by 1.  At the rising edge of the clock, this new value is stored into the register and 

the process repeats.  The VHDL code is: 

LIBRARY ieee;   

USE ieee.std_logic_1164.ALL; 

USE ieee.numeric_std.ALL; 

ENTITY binary_counter IS 

   PORT( clk: IN std_logic; 

         count: OUT unsigned(3 DOWNTO 0)); 
END binary_counter; 
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Figure 7.  Conceptual diagram of a synchronous sequential circuit 
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Figure 8.  Conceptual diagram of a free-running binary counter 

 

 
ARCHITECTURE arch OF binary_counter IS 

    SIGNAL q_next, q_reg: unsigned(3 DOWNTO 0); 

BEGIN 
    -- register 

    PROCESS(clk) 

    BEGIN 

      IF (clk'EVENT AND clk='1') THEN 

         q_reg <= q_next; 

      END IF; 

    END PROCESS; 

    -- next_state logic 
    q_next <= q_reg + 1; 

    -- output logic 

    count <= q_reg; 

END arch; 

Note that the code follows the conceptual diagram.  The first segment uses the register template 

to specify a 4-bit register and the next two segments describe the operation of the next-state logic 

and output logic (in this case, a wire) respectively.   

We can expand the circuit to make it function like a 74163 counter, which has control signals 

clr, ld and en, for clear, load and enable functions, as well as an additional rco output pulse, 

which is asserted when the counter is in state “1111”.  The function table of this counter is 

shown below.   

       clr        ld        en next q 

   1          x          x          0 

   0          1          x        d 

   0          0          1     q+1 

   0          0          0      q 
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Figure 9.  Conceptual diagram of a 74163-like counter 

 

The VHDL code becomes: 

LIBRARY ieee;   

USE ieee.std_logic_1164.ALL; 
USE ieee.numeric_std.ALL; 

ENTITY fancy_counter IS 

   PORT( clk: IN std_logic; 

         clr, ld, en: IN std_logic; 

         d: IN unsigned(3 DOWNTO 0); 

         count: OUT unsigned(3 DOWNTO 0); 

         rco: OUT std_logic); 

END fancy_counter; 
 

ARCHITECTURE arch OF fancy_counter IS 

   SIGNAL q_next, q_reg: unsigned(3 DOWNTO 0); 

   SIGNAL clr1, ld1, en1: BOOLEAN; 

   SIGNAL fifteen: BOOLEAN; 

BEGIN 

   -- register 

   PROCESS(clk) 

   BEGIN 
      IF (clk'EVENT AND clk='1') THEN 

         q_reg <= q_next; 

      END IF; 

   END PROCESS; 

   -- next_state logic 

   clr1 <= (clr='1'); 

   ld1 <= (ld='1'); 

   en1 <= (en='1');    
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State assignment:  s0=00, s1=01, s2=10

 
Figure 10.  State diagram and state table of a simple FSM 

 
   q_next <= "0000"     WHEN clr1 ELSE 

              d         WHEN ld1  ELSE 

              q_reg + 1 WHEN en1 ELSE 

              q_reg; 

    -- output logic 

    fifteen <= (q_reg="1111"); 
    rco <= '1' WHEN fifteen ELSE '0'; 

    count <= q_reg; 

END arch; 

The code still follows the basic sequential circuit diagram, with segments for register, next-state 

logic and output logic.  The next-state logic is more involved and uses a conditional signal 

assignment to accommodate the control functions.  The complete diagram is shown in Figure 9.   

4.4 FSM 

The conceptual diagram of an FSM is still modeled after the diagram of Figure 7.  However, 

unlike the regular sequential circuit, the next-state logic does not show a specific pattern and has 

to be implemented by “random” logic.  Let us consider the simple FSM, whose state diagram, 

state table and state assignment are shown in Figure 10.  The VHDL code of this FSM is: 

LIBRARY ieee;   

USE ieee.std_logic_1164.ALL; 

ENTITY fsm IS 

   PORT( clk: IN std_logic; 

         a: IN std_logic; 
         z: OUT std_logic); 

END fsm; 

 

ARCHITECTURE arch OF fsm IS 

   SIGNAL state_next, state_reg: std_logic_vector(1 DOWNTO 0); 

   SIGNAL state_input: std_logic_vector(2 DOWNTO 0); 

BEGIN 

   -- state register 
   PROCESS(clk) 

   BEGIN 

      IF (clk'EVENT AND clk='1') THEN 
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         state_reg <= state_next; 

      END IF; 

   END PROCESS; 

   -- next_state logic 

   state_input <= state_reg & a; 
   WITH state_input SELECT 

      state_next <=  "00" WHEN "000", 

                     "01" WHEN "001", 

                     "10" WHEN "010", 

                     "10" WHEN "011", 

                     "10" WHEN "100", 

                     "00" WHEN OTHERS; 

   -- output logic 
   z <= '1' WHEN state_reg ="01" ELSE '0'; 

END arch; 

The VHDL code fllows the basic diagram of Figure 7, containing segments for register, next-

state logic and output logic.  The next-state logic utilizes a selected signal assignment statement 

to obtain the next state, which is patterned after the state table.  It will be optimized during 

synthesis.     

5.  Conclusion 

We introduce a small VHDL subset for the introductory digital systems course.  The 

constructs of the subset can be mapped directly into physical components or routing structures so 

that the students are “conscious” about hardware and circuits.  Despite of its simplicity, the 

subset can be used to describe most circuits encountered in the courses, including both 

combination circuits and sequential circuits, either in gate level or in and module level.  Using 

this subset allows the course to focus its original goal of “building block approach” but at the 

same time let students learn the modern design practice and EDA software tool.   
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