
Paper ID #7900

A Systematic Approach for Development and Simulation of Digital Control
Algorithms using SIMULINK

Prof. Matthew G Feemster, U.S. Naval Academy

Matthew Feemster received his Ph.D in Electrical Engineering from Clemson University in 2000. From
2000 to 2002, he was the lead Controls Engineer at WaveCrest Laboratories based in Dulles, VA. In 2002,
he accepted a position at the U.S. Naval Academy where he is currently an Associate Professor. His
current research interests include nonlinear/adaptive control techniques applied to marine applications.

c©American Society for Engineering Education, 2013

P
age 23.119.1

A Systematic Approach for Development and Simulation of Digital

Control Algorithms using SIMULINK

I. ABSTRACT

In this paper, a methodology is presented to assist students in the development of a digital control algorithm.

Specifically, the recent ability to embed functions within the SIMULINK environment of the software package

MATLAB has facilitated the ability to simulate “C-like” digital control algorithms. The proposed methodology is

presented through a laboratory exercise that develops a digital heading controller implemented within the Dynamic

C environment for an autonomous ground vehicle.

II. INTRODUCTION

With the development of readily available inertial measurement units (IMUs) board such as the ArduPilot® for

mobile applications, measurement of states such as position, heading, roll, pitch, and yaw is greatly simplified. As a

result, developing control students need only to focus on the design and implementation of the digital control

algorithm that utilizes the sensor measurements to calculate the proper actuator commands. However from review of

final capstone reports and presentations over the years, students expressed continued difficulties when implementing

even simple PID based control algorithms on digital processor. This difficulty in C based implementation seems

surprising in since all students are required to take a two hour lab based course dedicated to the design and

implementation of control algorithms on the Rabbit single board computer (a select microprocessor from Digi®

shown in Figure 1). Specifically this course targets the design of classical compensators sKGc for a typical DC

motor with implementation of the algorithm on a Rabbit single board computer.

Figure 1: Rabbit single board computer

The conversion of the continuous time compensator to the corresponding digital compensator zKGc is

accomplished via Tustin’s Transformation (utilizing the c2d command in MATLAB). From the structure of

 zKGc , students subsequently develop the corresponding difference equations that can now be transferred to the

Rabbit SBC for implementation. The major oversight here is that students did not simulate their difference control

equations to verify that the conversion from zKGc to difference equations was performed properly. If the control

experiments did not perform as expected from the continuous time simulation, students were unsure 1) if there were

hardware problems (bad connections, improper sensor calibration, etc) or if 2) their digital compensator was not

developed correctly to difference equations.

In response to this observation, this paper will present a sequence within the MATLAB/SIMULINK software

environment to provide students with assurance that the structure of their difference control algorithm is correct.

Specifically, the recent ability to utilize embedded function blocks within the SIMULINK modeling environment

has facilitated a straightforward method for verifying digital control algorithms. In order to showcase these

capabilities, the remainder of the paper traces through a laboratory exercise (conducted over several lab periods in a

Rabbit 3000 processor

P
age 23.119.2

digital controls course) that targets the development of a digital heading control algorithm for an autonomous

ground vehicle. In addition, a brief survey was conducted at the close of the course to gauge the effectiveness of the

introduced process.

III. DIGITAL HEADING CONTROL OF THE TRAXXAS GROUND VEHICLE

The primary objective of the laboratory exercise is the development of a digital control algorithm to be implemented

on the Traxxas® ground vehicle of Figure 2 to promote heading tracking.

Figure 2: Traxxas EMaxx RC Vehicle

Students are provided with the following information to begin their design process:

 A linear transfer function is provided that relates the steering angle of the front wheels to the heading of

the vehicle , is given by

 /s v L
G s

s s

 where v is the vehicle’s longitudinal velocity, and L is

the distance between the front/rear axles. For the above EMaxx vehicle, the model parameter values are

given in Table 1

 1.5 / secv m - this

constant longitudinal

velocity is maintained by a

separate speed control

loop implemented on the

vehicle.

 0.35L m

 0.52 rad . The

maximum steering angle is

approximately 30 deg .

4.23s

G s
s s

Table 1: Model parameter values for the Traxxas EMaxx vehicle

 The students are then required to design a controller to achieve the following control objectives:

a) Closed-loop stability.

b) Steady state error is zero for a step heading reference command of ref 90 .

c) The vehicle must exhibit a settling time of approximately 5.0 secsT and an overshoot of

approximately % 2%OS for a step heading reference command of ref 90 .

d) The control algorithm must not request more than 30 of steering angle (30).

IV. THE CONTROL DESIGN PROCESS

Based on the above control objectives, the following desired closed-loop transfer function T s is calculated in the

following manner

Rabbit 3000

processor with

magnetic compass

P
age 23.119.3

4

sT
 ,

%
ln

100

OS

,

2

2

2

2 2

1.053

1.6 1.053
T s

s ss

Note: The numerator of the above closed-loop transfer function T s was crafted in a manner to produce a DC gain

of 1.0 (
0

lim 1
s

T s

) such that the steady state error objective is promoted (for a step input reference command).

In order to achieve the desired closed-loop transfer function T s , the following compensator cKG s is calculated

0.24957

1.61
c

s T s
KG s

E s sG s T s

where refE s s represents the error signal.

Step #1: Prior to going forward, the continuous time compensator cKG s must be evaluated against the

established control objectives (there is no purpose in developing a digital compensator based on cKG s if this

compensator does not meet the objectives) through the utilization of the following MATLAB SIMULINK block

diagram.

Figure 3: Continuous time simulation

Step #1 Simulation Results: The designed compensator cKG s meets all control objectives as shown in Figure 4

and Figure 5; therefore, one may proceed with the digitization process.

delta(s) psi(s)

psi delta

Triggered

Subsystem

Pulse

Generator
G

Plant

G

Plant

G

Plant

pi/2

Heading

reference

KGcz

Digital controller

KGc

Continuous Controler

E(s) delta(s) psi(s)

E(s) delta(s) psi(s)

0 2.5 5 7.5 10 12.5 15
0

10

20

30

40

50

60

70

80

90

100

X: 4.89

Y: 91.82

Time (sec)

 (

d
e
g
)

Simulated heading response

KGc(s)

KGc(z)

Diff. eqns.

Evaluation of control objectives

91.82 90.0
% 100% 2.02%

90.0

4.89 sec

SSE 0 deg

s

OS

T

P
age 23.119.4

Figure 4: Simulated heading response for cKG s , cKG z , and Difference equations

Figure 5: Simulated steering command angles for cKG s , cKG z , and difference equations

Note: the response for heading and the steering command for all three approaches are identical and therefore are

difficult to discern individually in Figure 4 and Figure 5.

Step #2: The digital compensator cKG z can be calculated via the c2d command in MATLAB using a sampling

time of 0.01 secsampT and Tustin’s approximation method. Note that other approximation methods can be

employed.

 0.0012379 1

c2d , , 'tustin'
 (- 0.9841)

c c samp

z
KG z KG T

z

Figure 6: Digital compensator simulation

Step #2 Simulation Results: The heading response for t utilizing the digital controller cKG z and the

sample time of 0.01 secsampT produces acceptable results (see Figure 4 and Figure 5). If acceptable results were

0 2.5 5 7.5 10 12.5 15
-5

-2.5

0

2.5

5

7.5

10

X: 1.02

Y: 9.422

Time (sec)

 (

d
e
g
)

Simulated steering command

KGc(s)

KGc(z)

Diff. eqns.

delta(s) psi(s)

psi delta

Triggered

Subsystem

Pulse

Generator
G

Plant

G

Plant

G

Plant

pi/2

Heading

reference

KGcz

Digital controller

KGc

Continuous Controler

E(s) delta(s) psi(s)

E(s) delta(s) psi(s)

Evaluation of control objectives

max 9.43

P
age 23.119.5

NOT obtained, one can now focus in on the sample time sampT as being a problematic design parameter or possibly

the approximation method utilized.

Step #3: At this stage, the control algorithm cKG z is now ready to be converted from a transfer function

representation to a difference equation algorithm. After cross multiplication of cKG z , the following control

difference equation can be developed:

 0.9841 1 0.0012379 1k k e k e k

where k denotes the index number. It is at this point that the contribution of the paper is illustrated. With the recent

inclusion of the embedded MATLAB function within the SIMULINK environment, the following model can now be

created to simulate the response due to k :

Figure 7: (a) Digital equation simulation with Triggered Subsystem block (b) MATLAB function block

within the Triggered Subsystem block

The Triggered Subsystem block coupled with the pulse generator of Figure 7(a) replicates the interrupt driven

approach utilized in real-time control implementation. The period of the pulse generator is set to sampT ; therefore,

the embedded MATLAB function block contained within the Triggered Subsystem block will only be executed in

the simulation every sampT seconds. The commanded steering algorithm k can now be created with the

following embedded MATLAB function code:

function delta = fcn(psi)

% Persistent definition of variables causes that variable to be remembered

between function calls. These variables would be declared as GLOBAL in C.

persistent delta1 e1

% We need to initialize variables on first function call. Check to see if the

% variables are empty. If yes, initialize them to appropriate value.

% In C environment, initialize before starting timer that generates interrupts.

if(isempty(delta1))

 delta1 = 0.0;

 e1 = 0.0;

end

% Reference heading command

psiRef = pi/2;

delta(s) psi(s)

psi delta

Triggered

Subsystem

Pulse

Generator
G

Plant

G

Plant

G

Plant

pi/2

Heading

reference

KGcz

Digital controller

KGc

Continuous Controler

E(s) delta(s) psi(s)

E(s) delta(s) psi(s)

1

delta

psi delta

fcn

MATLAB Function

Trigger

1

psi

P
age 23.119.6

% Error signal

e = psiRef-psi;

% Digital steering command algorithm

delta = 0.9841*delta1+0.0012379*(e+e1);

% Age variables (these need values need to be remembered)

e1 = e;

delta1 = delta;

return;

Table 2: Embedded MATLAB code for Digital control algorithm

The declaration of a variable as persistent in a MATLAB function causes that variable’s value to be saved between

function calls (as opposed to being erased). The ability to do this greatly simplifies the simulation of difference

equation within the SIMULINK environment (one could possible do it by exporting the variable from the function

and utilizing a memory block). Upon declaring a variable as persistent, MATLAB subsequently creates the variable

but leaves it empty; therefore on the first function call of the control program, all persistent variables will need to be

given an initial value by checking to see if that variable isempty.

Step #3 Simulation Results: The heading response and the corresponding steering angle command for the

difference algorithm of Table 2 are shown in Figure 4 and Figure 5 which demonstrates that k was correctly

coded. As a result, the difference equation algorithm of Table 2 is now ready to be ported over to the C environment

of the Rabbit 3000 microprocessor.

Without the ability to check their difference equation algorithm in simulation, students are often quick to blame the

hardware as the culprit when their experiment does not performed as expected; however, the error typically lies

within their software code. A common student mistake is to age variables in the incorrect order (youngest to oldest)

or the student forgets to initialize their aged variables prior to using them in the control equation. The above

simulation process allows the students to remove these common mistakes before integrating their software algorithm

with the hardware.

Step #4: The final step in the exercise is to migrate the embedded MATLAB code of Table 2 into the Dynamic C

environment. The complete Rabbit SBC Dynamic C code that implements the control strategy k (and the

longitudinal speed controller) is included in the Appendix A (Note:: the boxed in portions of code in Appendix A

represent the corresponding code of Table 2). After successful compiling, the EMaxx vehicle was subsequently

aligned to true North (0) and the Dynamic C program of Appendix A was executed with a reference heading

change of 90 (due East) . The experimental heading response and commanded steering angle are shown in

Figure 8 and Figure 9.

P
age 23.119.7

Figure 8: Experimental heading response t

Figure 9: Simulated\experimental steering command angle t

Step #4 Experimental Results: The above experimental heading response demonstrates adequate performance

though differences are observed between the simulation results. The response discrepancies can be largely attributed

to the mechanical setup of the EMaxx vehicle. For instance, the actuation of the steering command angle t via

the stock servo motors is approximate at best. Specifically, the servos that are utilized to actuate the steering linkage

are not able to accurately generate small commanded steering angle. Furthermore, the experimental test area is

sprinkled with potential magnetic interferences (large iron pipes underneath utilized walkways). Though this may be

viewed negatively, these difficulties during testing provided excellent observations for the students.

0 2.5 5 7.5 10 12.5 15
0

10

20

30

40

50

60

70

80

90

100

Time (sec)

 (

d
e
g
)

Heading response

Simulation

Experiment

0 2.5 5 7.5 10 12.5 15
-5

-2.5

0

2.5

5

7.5

10

12.5

15

Time (sec)

 (

d
e
g
)

Steering command

Simulation

Experiment

P
age 23.119.8

V. STUDENT EVALUATION

A brief questionnaire was attached to the student’s final exam to gauge if the above design process had an impact on

their ability to successfully develop a digital control algorithm. The following two questions were asked of the

twenty-six students:

1.) Please rate your ability to simulate difference equations before/after taking this course (on a scale of 1 to

10).

From the twenty six respondents, the average ability to simulate difference equations before taking this

course was 3.2 out of 10.0 while after the course an 8.6 out of 10.0

2.) Please rate your ability to implement difference equations within a C environment prior to taking this

course (on a scale of 1 to 10).

From the twenty six respondents, the average ability to implement difference equations within C before

taking this course was 3.0 out of 10.0 while after the course an 7.7 out of 10.0

Though the students seem to feel more confident of their ability to implement a digital control algorithm

successfully, it will be interesting to see if this methodology is carried over into the execution of their senior

capstone projects. In addition to the numerical scoring, some students offered the following comments on the

questionnaire form:

“I certainly learned how to simulate the C code within an embedded matlab function and the IMPLEMENTING

within a C environment”

“C code still gives me a little trouble.”

“I am confident in my ability to simulate to simulate difference equations after taking this course.”

“I now understand this topic better. Any weaknesses lie in my C-coding abilities, not in my understanding of

difference equations.”

VI. CONCLUSION

In this paper, a design process was presented that provides a straightforward methodology for undergraduate control

students to verify their digital difference equations in simulation prior to involving any hardware concerns. The

proposed method is facilitated by the recent addition of embedded functions to the MATLAB/SIMULINK

simulation environment. The resulting embedded MATLAB function code requires little (only in variable

declarations) modification to be implemented within a C environment. The process was successfully employed in

digital control course exercise where a heading controller was developed for an automated ground vehicle. Initial

student responses seem to indicate that the methodology is beneficial.

P
age 23.119.9

VII. APPENDIX A

#define SPI_SER_B // Choose serial port B for SPI bus

#define SPI_CLK_DIVISOR 5 // Minimal clock divisor

#define MM3_PERIOD_SELECT 2

#use "spi.lib" // Contains the SPI functions

#use "NAVBD3_SBC_LIB.lib" // Contains Nav Board library function

#use "ROVER_LIB.LIB" // Library with vehicle based functions

// ==

// SBC Rabbit Parameters

// ==

#define XTAL_FREQ (14.756) // (Mhz) - Crystal frequency

#define Timer_Freq (100.0) // (Hz) - Timer B routine frequency

// ==

// Function prototypes

// ==

nodebug root interrupt void TimerRoutine(void); // Control calculations

// ==

// Global definitions

// ==

int ControlIteration, LED_flag;

float psiRef, psi, delta, e, delta1, e1;

float time, enable, v, psiRefInit;

float Mx, My, Mz, steerPulseWidth;

float x, xDot, xOld;

float speedPW, ev, evOld, evInt, vRef;

// ==

// main()

// ==

void main()

{

 // Board initializations

 NavBd3_Init();

 // Initialize encoder

 qd_init(1); qd_zero(1);

 // Set all PWM ports back to 1.5 (msec)

 set_servo(1,1.5); set_servo(2,1.5); set_servo(3,1.5);

 // Variable initializations

 time = 0.0; enable = 1.0; xOld = 0.0; evOld = 0.0; evInt = 0.0;

 delta1 = 0.0; e1 = 0.0;

 // Start timer routine execution

 TimerBInit(Timer_Freq);

 // Get initial heading. Use it as the reference heading

 psiRefInit = getCompass(MM3_PERIOD_SELECT,&Mx, &My, &Mz)*PI/180.0;

P
age 23.119.10

 // Main loop

 while(time<20.0)

 printf("%.2f,%.2f, %.1f, %.1f, %.2f

\n",time,v,psiRef*180.0/PI,psi*180.0/PI,delta*180.0/PI);

 // Stop timer routine execution

 TimerBUninit();

 // Set all PWM ports back to 1.5 (msec)

 set_servo(1,1.5); set_servo(2,1.5); set_servo(3,1.5);

 while(1);

}

// ==

// TimerRoutine() - This routine gets executed every 1/Timer_Freq (sec)

// ==

nodebug root interrupt void TimerRoutine(void)

{

 // Reset IRQ

 RdPortI(TBCSR); WrPortI(TBL1R,NULL,0); WrPortI(TBM1R,NULL,0); ipres();

 // Increment time variable

 time = time + 1.0/Timer_Freq;

 // Measure longitudinal position/velocity

 x = ((float)qd_read(1))/(-11460.0)*(0.5016);

 xDot = (x-xOld)*Timer_Freq;

 xOld = x;

 v = xDot;

 // Measurement of ture heading

 psi = getCompass(MM3_PERIOD_SELECT,&Mx, &My, &Mz)*PI/180.0;

 // Wait 5 seconds to command change in heading (let’s vehicle get up to

speed)

 if(time>5.0)

 psiRef = psiRefInit+PI/2.0;

 else

 psiRef = psiRefInit;

 e = psiRef-psi;

 delta = 0.9841*delta1+0.0012379*(e+e1);

 // Age variables

 e1 = e;

 delta1 = delta;

 // Saturate steering command

 if(delta> (30.0)*PI/180.0)

 delta = (30.0)*PI/180.0;

 if(delta< (-30.0)*PI/180.0)

 delta = (-30.0)*PI/180.0;

 // Calculate appropriate pulse width to generate delta steering angle

P
age 23.119.11

 steerPulseWidth = 1.5-enable*delta/((25.0)*PI/180.0)*(0.5);

 // Set PWM port #1 and #2 (steering servos) to a pulse width in mSec

 set_servo(1,steerPulseWidth); set_servo(2,steerPulseWidth);

 // Linear speed controller

 vRef = 1.5; // (m/sec)

 ev = vRef-v;

 evInt = evInt+0.5*(1.0/Timer_Freq)*(ev+evOld);

 evOld = ev;

 speedPW = (0.2)*ev+(0.01)*evInt;

 // Saturate command for speed

 if(speedPW> 0.5)

 speedPW = 0.5;

 if(speedPW< -0.5)

 speedPW = -0.5;

 // Set PWM port #3 (speed controller) to a pulse width in mSec

 set_servo(3,1.5+enable*speedPW);

}

P
age 23.119.12

