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Abstraction Thresholds in Undergraduate Electrical Engineering Curricula 
 
 
Abstract 
 
A great deal of work has been done to study the types of problems posed to students in various 
disciplines and to examine the approaches used by students and experts to solve these 
problems.  This paper describes a knowledge representation framework developed by Hahn and 
Chater [41] for analyzing a person’s episode of reasoning while solving a problem and presents 
some preliminary results of the application of this framework to students taking a course in 
signal and systems.  This course occurs in the junior year of an electrical engineering 
undergraduate curriculum at a larger public university.  The preliminary results demonstrate that 
the framework can be successfully used to distinguish between different types of reasoning that 
students use when solving problems in this course.  This study is part of a larger effort that is 
trying to determine if there is a specific point in a typical undergraduate electrical engineering 
curriculum at which the cognitive demand of the problems being posed exceeds the cognitive 
supply being brought to the problem by a typical student.  The Hahn and Chater framework is 
being used to assess cognitive supply. 
 
1. Introduction 
 
According to Jonassen [1], problem solving is one of the most important cognitive activities in 
everyday life (p. 63), as well as in the practice of science, technology, engineering, and 
mathematics (STEM). Professionals in STEM areas must solve problems in order to achieve the 
goals of a current activity in a specific context. In the context of engineering solving a problem 
might involve a structured and stated process [2] or the problem may have no specific path solution 
and require the integration of multiple knowledge domains [3, 4]. When solving an engineering 
problem students must define the problem and evaluate what the problem entails. After 
understanding the problem, they must be ready to propose a possible solution, analyze it and 
decide whether to use it or find alternatives [2].  
 
When analyzing students’ solution attempts in a typical undergraduate electrical engineering 
curriculum, problem solving is complicated by two factors. First, many adult development theories 
have demonstrated that high-level reasoning and abstraction skills are not reached until one reaches 
the mid-20s or later [5], after a typical student has completed the undergraduate curriculum.  
Second, many problems in an undergraduate engineering curricula, particularly in the upper levels, 
require the ability to abstract a specific problem to a more generalized one, and then translate the 
results from the generalized problem back to the specific one. As a consequence, we hypothesize 
that: One, many undergraduate students do not have fully developed reasoning and abstraction 
abilities, i.e., their cognitive supply is not fully developed, and two, there exists in some 
undergraduate STEM curricula a point at which the disciplinary content and its associated 
problems have a cognitive demand that exceeds the students’ current capacity for abstraction.  

 
In over two decades of teaching undergraduate electrical engineering courses, we have observed 
that students who are proficient at solving high-level, complex problems are equipped with two 
abilities.  First, they are able to hold multiple abstractions in their minds and manipulate them, and, 



 

second, they are able to determine which abstractions are valuable when approaching a specific 
problem. Abstraction in solving a problem is operationally defined as the ability to consult multiple 
similar scenarios stored in the mind, extract relevant features, and apply conclusions about the 
cases to the problem at hand [6]. This is often done by inventing and solving tractable problems, 
synthesizing solutions, and applying insights gained from them to solve the original problem. 
Thus, abstraction involves problem decomposition, or extraction, and rebuilding, or both. 
Abstractness is defined as the degree of abstraction present in the way in which a person is 
representing a problem. We define the notion of an abstraction threshold as a gap between the 
cognitive supply, i.e., the ability of a student to abstract and reason, and the cognitive demand 
required to solve a given problem. If such a threshold exists, we further hypothesize that it will 
become prominent for students in one course in a given undergraduate STEM curriculum. In order 
to determine if there is an abstraction threshold, it is necessary to analyze the cognitive supply 
brought by a student in solving a problem and the cognitive demand of a given problem.  
 
The overall goal of our project is to determine whether or not such an abstraction threshold exists 
and, if so, whether it occurs most frequently in a specific course in the undergraduate electrical 
engineering curriculum.  To do so required the assessment of the cognitive demand of problems in 
several electrical engineering courses and the assessment of the cognitive supply of the students 
who attempted to solve the problems. Cognitive demand may be defined as the level of thinking 
required of students in order to successfully engage with and solve a specific problem [7]. For 
example, Bloom’s Taxonomy has been used as a tool for characterizing the cognitive demand of 
problems [8]. We are still refining our method for assessing the cognitive demand of problems and 
the focus of this paper is on the analysis of cognitive supply using the representation mapping 
framework of Hahn and Chater[41] 
 
2. Types of Problems and Problem Solving 
 
Jonassen [1] defines a problem as an unknown entity in some situation, the difference between a 
goal state and a current state. Finding the unknown is the process of problem solving. Woods [9] 
states that a problem consists of sets of initial states, goal states, and path constraints. Solving the 
problem is the act of finding a path that starts with some initial states, follows paths that satisfy the 
path constraints and ends in the goal states [9]. Much research has been in done in STEM 
disciplines to define and analyzes the types of problem being posed and to determine approaches or 
methods for solving various problems. 
 
2.1 Types of Problems 
 
Problems According to Bloom’s Taxonomy 
 
Blooms’ taxonomy of educational objectives was originally created as a framework for 
classifying statements of what educators were expecting students to learn and was based on 
different categories in the cognitive domain [10].  The taxonomy was hierarchical and progressed 
from simple to complex and from concrete to abstract. These categories have been revised 
several times and most recently Krathwohl [10] presented a revision of Bloom’s taxonomy that 
separated and made explicit the knowledge dimension and the cognitive process dimension [10, 
11, 12, 13]. Each category represents a scheme of educational goals, objectives, and standards. 



 

Versions of Bloom’s taxonomy have been used to study types of problems in many disciplines.  
Clark and Ernst [11] applied the categories of the Bloom’s taxonomy in the field of Geometrics 
and Technical Graphics Education (GTCE) with the purpose of bridging students learning, 
assessment, and curriculum development. Ferguson [12] conducted a study over 100 sophomore 
students to determine the applicability of the Bloom’s taxonomy in an English as a second 
language course [13]. The Center for Teaching and Learning of the University of North Carolina 
(Charlotte) [14] has developed a series of key words to be used and the type of questions that 
may help in the development of statements of problems with the purpose to establish and 
encourage the critical thinking at different categories of the Bloom’s taxonomy. These are but a 
few of the many examples that illustrate the utility of Bloom’s taxonomy in classifying problems 
based on their cognitive demand.  
 
Well-Structured versus Ill-Structured Problems 
 
Jonassen [15] differentiated between well-structured and ill-structured problems and 
recommended different approaches for solving each type of problem. Well-structured problems 
require the use of a finite number of formulas and concepts and have a specific goal and a set of 
logical operations.  They have easily comprehensible solutions where the relationship between 
the solution decisions and the problem statement is known [15, 16]. On the other hand, ill-
structured problems tend to require the use of several content domains and includes unknown 
elements with any grade of confidence [16]. They may have multiple criteria for evaluating 
solutions [17] and they often require the learner to make judgements about the problem [18]. 
Frederiksen [19] described these two types of problems using the cognitive theory of instruction.  
He stated that well-structured problems present all the needed information with the appropriate 
algorithm in order to find the correct solution. On the other hand, he also noted that many that we 
real life problems are ill-structured.  That is, they are not clearly stated, need additional information 
that it is not readily available, and there may be multiple solutions. 
 
In the subsequent literature in engineering education, many researchers refer to well- and ill-
structured problems in their discussions about problem solving. Kumsaikaew, Jackman and Dark 
[20] conducted a study to determine how expertise affects the identification of task relevant 
information in engineering problem solving. In their experiment, they used four problem-solving 
scenarios in which the structure of the problems was mixed with relevant and irrelevant 
information, similar to engineering problem. This posed the difficultly of challenging the subjects 
to identify the relevant information to solve the problem. Jonassen, Strobel and Lee [21] described 
the process used to identify attributes of problems in engineering workplaces. They noted that 
these problems are substantively different from the problems most often seen in the classroom. 
Workplace engineering problems are “ill-structured” and complex because they pose conflicting 
goals, multiple solution methods, non-engineering constraints, and multiple forms of problem 
representations [21].  
 
Atman, Adams, Cardella, Turns, Mosborg and Saleem [22] mentioned the ill-structured problems 
in engineering design. They conducted a study comparing the design process activity of 
engineering students and expert engineers in which the participants designed a solution to a design 
problem in a laboratory-based setting [22, 23]. This kind of problem is an ill-structured problem 
because there is no single correct solution, only solutions that better meet the constraints and 



 

preferences of the problem statement. Moreover, Atman et al. stated that engineering students and 
expert engineers have to iterate through different stages rather than following a linear process to 
handle the ill-structured nature of design problems. Many other researchers have also conducted 
studies in engineering design identifying design problems as ill-structured that require judgements 
about the solution and high metacognitive skills [23, 24, 25]. In general, engineering problems are 
frequently identified as analytical problems (well-structured) or design problems (ill-structured), 
with the former being highly structured and amenable to algorithmic solutions and the latter 
requiring nonlinear and iterative solutions [26, 27, 28].  
 
Convergent versus Divergent Problems 
 
Problems have also been categorized as being convergent or divergent.  In general, convergent 
problems are the problems of the physical world, i.e., the laws of nature govern the solutions, 
and these solutions lie along one converging path [29, 30]. Divergent problems are problems that 
have more than one solution, or a complex mix of seemingly contrary solutions, or no solutions 
at all. Divergent problems cannot be solved in the sense of establishing a “correct formula”, and 
the answer must be solved at a higher level [29, 30].  
 
Most of the problems of the textbooks are well-structured or convergent allowing a converging 
path in finding a unique solution. On the other hand, we can relate ill-structured problems or 
design problems to divergent problems because of the complex nature of these problems. The 
most common type of divergent problem in engineering curricula is a design type task and there 
has been significant work done on this in similar domains such as technology education (e.g. 
Kimbell and Stables 2008, Midouser 2012) and studies of experts and novices in engineering 
design (e.g. Jacobson 2000, Cross 2004). 
 
2.2 Problem Solving Approaches 
 
Problem solving occurs by means of mental processes such as acquiring information or defining 
procedures to arrive at an acceptable solution [19].  The use of an analytical step-by-step 
approach is typical in the process of solving well-structured problems. On the other hand, ill-
structured problems require the use of a combination of knowledge, intuition and expertise to 
generate alternatives and choose a suitable solution. There has been a great deal of effort exerted 
to describe different approaches to solving problems in engineering, from quantitative to 
cognitive reasoning (i.e., step-by-step, engineering design, rule- and similarity-based). 
 
Solving analytical problems in engineering may require the use of the widely accepted process 
developed by Polya [31]	that consists of the following steps: (1) Represent the Problem, (2) Goal 
Setting and Planning, (3) Execute the Plan, and (4) Evaluate the Solution. In the first step, the 
student reads the problem statement and identifies the objective. This step depends of the 
students’ ability to determine the structure of the problem and identify the concepts and formulas 
necessary to solve it. During the second step, students must develop a path to reach the solution. 
The Execution step is where the student carries out the procedures to solve the problem. In fourth 
and final step, students verify that their final solution correctly answered the given problem. A 
additional step that focuses on the symbol system used to understand and express elements and 
their relationships may be necessary to solve engineering problems[31]. Gray, Constanzo and 



 

Plesha [32] created a five-step problem solving process to be used in mechanical engineering 
problems. The five steps are: (1) Road Map, (2) Modeling, (3) Governing Equations, (4) 
Computation, and (5) Discussion & Verification. The Road Map summarizes the given pieces of 
information, and an outline of the overall solution strategy. The Modeling step is a discussion of 
the assumptions needed to make the problem manageable. The Governing Equations are all the 
equations needed for the solution of the problem. These equations must be organized according 
the topic (e.g. Newton-Euler equations or Kinematic equations). The Computation step is the 
manipulation and solutions of the equations used in step 3. Finally, the fifth step is a verification 
that the solution is correct and a discussion of the meaning of the solution [32].  
 
When solving engineering design problems, students must note that the process “is not linear: at 
any phase of the process, the engineer may need to identify and define sub-problems, then 
generate and evaluate solutions to the sub-problems to then integrate back into the overall 
process” [33]. Dym and Little [2]	divided the design problem solving process into five phases: 
problem definition, conceptual design, preliminary design, detailed design, and design 
communication. Lawanto, Butler, Cartier, Santoso, Goodridge and Lawanto [34] mentioned that 
all these five-step design process are used to describe students’ cognitive strategies when 
engaged in problem solving. Whether an electronic circuit or a new manufacturing system, the 
process of solving design problems requires applying a great deal of domain knowledge with 
considerable strategic knowledge [1]. Khandani [35] noted that solving design problems is often 
an iterative process. While implementing the solution, students must “go back to the drawing 
board” and modify the solution until it meets the requirements. Khandani also defined five steps 
for solving problems: (1) define the problem, (2) gather pertinent information, (3) generate 
multiple solutions, (4) analyze and select a solution, and (5) test and implement the solution. 
Pappas [36] stated that in order to solve engineering design problems, students require the use of 
creative critical thinking approaches that include: reflection, writing as thinking, visualization, 
unstructured brainstorming, and understanding the nature of “intentional change” in personal 
growth. 
 
Despite the proliferation of definitions, frameworks, and step-by-step approaches for problem 
solving, there is a consensus regarding some of the important skills associated with effective 
problem solving. It seems that all the approaches identify that effective problem solving includes 
the search for a clear and concise statement of the problem along with the effective generation, 
selection, and implementation of alternatives [37]. Many researchers are investigating more 
cognitive approaches. Moreno, Reisslein, and Ozogul [38] asked how we can help college 
students develop problem-solving skills in engineering. They attempt to answer the question with 
the use of the forward-fading approach consisting in the practice of fading (feedback) in every 
work-out step during problem-solving practice. Sholouhi, Skalle and Aamodt [39] present an 
overview of different applications of case-based reasoning in petroleum engineering, focusing on 
solving problems related to drilling. Case-based reasoning is an approach to solving problems 
consisting of a cyclic process of four main steps: retrieve, reuse, revise, and retain [39]. Kamble 
and Tembe [40] conducted a study to investigate the effect of a concept mapping strategy in 
problem solving in mechanical engineering courses. Students were taught to use concept maps as 
a teaching-learning method. Finally, Hahn and Chater [41] propose a core distinction between 
rule- and similarity-based processes to describe how the representation of stored information is 
matched with the representation of a novel item. For the purpose of this preliminary study, the 



 

representation mapping of Hahn and Chater is used as the theoretical framework for assessing the 
cognitive supply that students bring to engineering problem solving. 
 
2.3 Theoretical Framework: Representation Mapping of Hahn and Chater 
 
The cognitive supply provided by students during problem solving is related to mental operations 
made with ideas inside their mind [42, 43]. These mental representations may be described in 
terms of cognitive processing models based on how knowledge is organized and accessed in the 
mind [41, 42, 43]. Two long-standing research traditions in exist in cognitive processing: rules and 
similarities [44]. Rules-based cognitive processing states that cognitive activity occurs through 
mental rules involving facts about the world applied to specific instances. Many theories, including 
Piagetian development theory, are based on this tradition [44, 45]. Similarity theories, on the other 
hand, state that cognitive processing occurs through comparisons of current problems with past 
problems that are stored in a relatively unprocessed form.  Theories based on this tradition are most 
closely associated with behaviorist theories of learning [42, 43, 44]. 
 
Hahn and Chater [41] proposed a model based on representations of knowledge and how they are 
applied in the two main classes of cognitive processes (rules and similarity) and takes in 
consideration other types of reasoning, including prototype reasoning and memory bank 
reasoning. The authors chose the Hahn and Chater framework to analyze the cognitive supply of 
students for this study, because it captures many forms of reasoning and uses a representation 
mapping model that incorporates notions of abstraction.  The remainder of this section describes 
the representation mapping model and describes its application to several students’ attempts at 
solving problems in a junior-level electrical engineering course in signals and systems. 
 
The representation mapping model of Hahn and Chater [41] provides a means for distinguishing 
between different reasoning approaches used by students when attempting to solve problems. 
The model differentiates between the two main classes of cognitive processes (similarity and 
rules), and differentiates between four types of reasoning, as shown in Figure 1. Reasoning is 
mapped to the quadrants in Figure 1 based on the representations of knowledge stored in the 
mind and the logic processes applied to that knowledge.  
 
A representation of knowledge is a description of how a particular person organizes ideas, 
concepts, and methods associated with that knowledge.  When solving problems, an individual 
has an initial representation of knowledge that they bring to the problem and a final 
representation of knowledge when they finish solving the problem.  These representations may 
be the same or different depending on what happens during the problem-solving exercise. The y-
axis in Figure 1 is a measure of the difference in the degrees of abstraction present in the initial 
and final representations of knowledge.  Thus, an individual demonstrating either prototype 
reasoning or rules-based reasoning displays a final representation that is significantly more 
abstract than the initial representation.  An individual demonstrating either similarity-based or 
memory bank reasoning has initial and final representations of the knowledge with little 
difference in the degrees of abstraction. 



 

 
 

Figure 1.  Representation mapping model by Hahn and Chater (1998). 
 
The core distinction between rules-based and similarity processes is accounted for by the ways in 
which representations are used. In particular, they differ in how the representation of a new item 
is integrated with existing knowledge. In rules-based processes, existing knowledge is stored as 
rules (if the system is linear and time invariant, then sine waves can only be scaled and delayed). 
If the antecedent of a rule is satisfied (the system is linear and time invariant), then the category 
in the consequent applies (sine waves are only scaled and delayed). In similarity processes, 
knowledge is stored as a set of past instances with category labels (e.g., the student is familiar 
with many examples of linear and time invariant systems). A new system is classified as linear 
and time invariant if the past instance it resembles the most has this classification.  Distinction 
between the two processes is evident in how strictly a new item matches existing knowledge, and 
how specifically the new item is compared to existing knowledge. In rules processes, matching is 
strict, and the representation of the new instance is compared to a more or less abstract 
representation of the antecedent of the rule. In similarity, matching is partial and a matter of 
degree, and representations of the new instance and the existing knowledge that it is compared to 
are equally specific. This scheme explains memory bank reasoning as an antecedent of a rule being 
equally specific as the existing knowledge to which it is compared, thus providing no basis for 
generalization. On the other hand, partial matching occurs when the new and stored knowledge 
representations have different degrees of abstractness. 
 
The representation mapping framework of Hahn and Chater has been demonstrated to be a 
promising method for analyzing students’ solutions to chemistry problems []. Since representation 
mapping is not specific to a domain, it stands to reason that it should also be useful in electrical 
engineering.  
 
3 Methodology 

 
The purpose of this preliminary study was to determine whether the representation mapping of 
Hahn and Chater could be successfully applied to students’ problem-solving attempts in a junior-
level signals and systems course. The study consisted of interviewing students while they were 
solving problems from the course using a talk-out-loud protocol.  Interviews were audio recorded 
and the students’ problem solutions were recorded using a LiveScribe pen.  The audio and 
LiveScribe recordings were then analyzed using the Hahn and Chater model [42]. 



 

  
3.1 Course Selection and Participants 
 
The course selected for this study was entitled Signals and Systems. It is a course in the junior year 
of the undergraduate electrical engineering degree program at the institution where the study took 
place. The purpose of the course is to study the representation of signals in terms of Fourier series 
expansions and transforms, and the representation of linear time-invariant systems through input-
output relations and convolution. The course was chosen based on its history of being a significant 
stumbling block for students in that its content is much more abstract than, say, a basic circuits 
course. Thus, it may be a course where the cognitive demand of the material is higher than the 
cognitive supply with which the students are typically equipped. Participants were recruited from a 
traditional, large-sized university in the Midwest United States. A total of five students enrolled in 
the course during the fall 2013 semester volunteered to participate in the preliminary study. They 
were identified as junior students, and the average age was 20. The participants were informed in 
detail of the purpose of this study during the recruitment process, and they signed the IRB-
approved informed consent form before starting the process of data collection.  Participants who 
completed the interview process were given a $20 electronic gift card. 
 
3.2 Data Collection and Analysis 
 
The instructor of the Signals and Systems course was asked to select and provide two test problems 
and one additional problem from the course as suitable indicators of the students’ understanding of 
the material covered in the class. The instructor selected two problems from the first exam and a 
constructed a similar problem that had not yet been seen by the students. The problems were 
identified as problems #10 and #11, and the alternative problem (see Figure 2). Due to the 
exploratory nature of the research, data were collected through semi-structured interviews with the 
participants. The advantage of the interview methodology is its adaptability: it is possible to obtain 
information that the participant may not otherwise reveal in a more structured interview or survey. 
In addition, the method allows the interviewer to follow up on a participant’s responses, thus 
obtaining more information and clarifying vague thoughts [46]. The specific interview protocol 
chosen for this study was developed by the authors in collaboration with a colleague who had 
previously used a similar protocol for studies performed with chemistry students. Interviews were 
conducted using a LiveScribe pen to simultaneously capture hand-written solutions and spoken 
explanations. The questions asked by the interviewers were designed to elicit the participants’ 
thought processes when solving the problems. The following four questions illustrate the types of 
questions used by interview protocol. 

 
• What are the things you first noticed about the problem? 
• What was your first approach to solving the problem? 
• Can you walk me through and explain each of the things you did and your thoughts 

as you were solving this problem? 
• What was the most difficult part of this problem? 

 
The course instructor was also interviewed after giving the first exam of the course. The instructor 
talked through the major ideas of each of the problems that were used for this study, and then 
asked how they thought a proficient student would solve the problems. Participants were 



 

interviewed within 2 weeks of taking the exam. They were asked to solve the problems provided 
by the instructor of the course, and were encouraged to verbally explain (think aloud) their 
thoughts while attempting to solve the problems.  
 
After the participants finished the problems, the audio was transcribed, segmented, and coded. In 
order to ensure the inter-coder reliability, a postdoctoral research associate verified the data-coding 
process. The postdoc was trained in the IRB process, the theoretical framework of this study, and 
representation mapping model proposed by Hahn and Chater [42]. The postdoc and the 
investigator independently analyzed the first interview identifying the episodes and the type of 
reasoning used by the participants. Then, they met to discuss and revise the differences in coding, 
and any disagreements among coders were resolved for the first interview. Problems were coded 
and evaluated according to the following steps: 

 
a) The cognitive supply of the participant and the instructor of the course were assessed 

by parsing episodes of reasoning in the individual's explanation. 
b) The structure and logic of the episode were decomposed to determine the type of 

cognitive processes employed by the interviewee (similarity- or rules-based 
reasoning). 

c) The structure and logic of the episodes were decomposed to determine the degree of 
abstraction employed by the interviewee (from no abstraction to abstraction). 

 
Following steps (a), (b), and (c), the investigators categorized the participants’ reasoning in the 
representation mapping quadrants (see Figure 1), as (1) memory-bank reasoning (2) rules-based 
reasoning, (3) similarity-based reasoning or (4) prototype reasoning.  
 

Problem #10. x(t) has the Fourier transform X(ω) shown below if y(t) = x(t) cos(1000πt),

Sketch Y(ω) the Fourier transform of y(t):

1

-1

	X(ω)

	1000π
ω

	2000π	-1000π	-2000π

Problem #11.If z(t) = y(t) cos(1000πt), where y(t) is given in the previous question, 
sketch Z(ω), the Fourier transform of z(t).

1

-1

	Y(ω)

	1000π
ω

	2000π	-1000π	-2000π

1

-1

	1000π
ω

	2000π	-1000π	-2000π

	Z(ω)

Alternative Problem.

1
	X(ω)

	300π
ω

	1000π	-300π	-1000π

Figure 2: the Fourier transform of  x(t)

Figure 3: Transfer function H(ω)

Figure 1: System

	H(ω) y(t)x(t) X

cos(ω0t)

In the system shown what is the value of ω0 such that the output y(t) is an amplitude scaled 
freuqnecy shifted version of x(t). The Fourier transform of x(t) and the transfer function H(ω) 
are shown below.

1
	H(ω)

ω
	1000π	-1000π

	



 

 
Figure 2. Problems from Signals and Systems that were used in this study. 

4 Example Data Analyses 
 
The representation mapping framework was used to identify the students' cognitive processes 
during problem-solving. According to the representation mapping, the differences between 
similarity- and rules-based processing depends on whether the matching is “partial” for 
similarity-based, or “strict” for rules-based. That is, the degree of abstraction, either partial or 
strict, determines whether or not the student falls on the left or right half plane in Figure 1.  
Similarly, the difference between the degree of abstractness of the student’s stored knowledge 
representation and their new representation determines whether or not the student fall on the 
upper or lower half plane in Figure.  If the difference in abstractness between the representations 
is small, then the student falls on the lower half plane.  If the difference in abstractness is larger, 
then the student falls on the upper half plane.   Thus, if a student is doing partial matching and 
their two representations have roughly the same degree of abstractness then they are using 
similarity-based reasoning. 

Participants were randomly identified as students A, B, C, D, and E. For each participant, the 
investigator recognized characteristics that appeared to differ in terms of the type of matching 
being used and the degree of abstractness of the stored and new knowledge representations. Here, 
examples of the analysis conducted for student A are provided (problem #10 and #11). First, the 
researcher wrote a summary of the interview in order to identify relevant aspects to be considered 
during the analysis. Second, the stored knowledge, new instance representation and actions were 
identified. Finally, the researcher identified the type of matching being used and then the type of 
reasoning.  

  
Coding and analysis of the interview for Student A, problem #10 (Figure 3) 
 
Summary: 
The student started by noticing that the problem states the function x(t) has a Fourier transform 
shown as X(ω. Then the student looked at the graph to find more information. The student started 
reading out the equation in the problem and what the problem was asking for.  The student was 
stating explicit features of the problem. Then the student went back to the graph, thought about 
the cosine function and then restated the equation in the problem. After that, the student 
remembered that the Fourier transform of cos(ωot)= π[δ(ω-ωo) + δ(ω+ωo)] and how it can be 
applied to this problem. The student identified that there were shifts left and right from the 
original graph given and the amplitude of ½.  The student started writing the equation for Z(ω) 
and then, sketching the graph of the Y(ω) identifying the shift phase of -1000π and +1000π. The 
student knew that the peaks values would be half of the original. The student looked at the peaks 
and double checked that the problem was copied correctly. The student was asked why they did 
not use inverse Fourier transform from the beginning. The student responded that they knew that 
the problem was asking for Y(ω), and identified the convolution of X(ω) with Z(ω), and because 
X(ω) was given, the student just sketched the graph left and right [77-93].  
 
Stored knowledge: 

• Identify and differentiate between the time domain and the frequency domain. 



 

• The Fourier transform for a cosine function with frequency ωo is two delta functions, one 
centered at -ωo and one centered at ωo both with amplitude ½. 

• Multiplying a function x(t) by a cosine shifts the Fourier transform of the function to left 
and right by ωo. 

New instance representation: 
• Noticed explicit features and numeric values stated in the problem.  

 
Action: 

• Applied stored knowledge about Fourier transform for cosine function. 
• Applied stored knowledge about sketching functions and identifying the frequency shifts. 

 
Strict matching: 

• Recognized this problem as a particular case of multiplying a function by a cosine. 
• Determined specific numerical values needed to apply frequency shifting. 
• No need to discard any extraneous information. 

 
Abstractness: 

• High/low, rules-based reasoning. 
 

 
 

Figure 3. Solution of student A to problems #10. 
	

 
Coding and analysis of the interview for Student A, problem #11 (Figure 4) 
 
Summary: 
The student started recalling the equations used in the previous problem.  The student wrote the 
equation for the convolution Y(ω) with the cosine of the Fourier transform cos(ωot)= π[δ(ω-ωo) 
+ δ(ω+ωo)] that it is the same of the previous problem (referring problem #10). Then, the 
student identified the outsides of the graph and stating that the right side was 1000π and the left 



 

side of the Y axis the same value of 1000π. After that, the student added the two parts to get 
the answer of the problem. The student realized that they had to include the amplitude of ½. The 
student said that the most difficult part was to just identify that they could do simple Fourier 
transform of the cosine and then just shift to the left and right, and the easiest part was to identify 
that this problem is just a shift left and right the graph.  
 
Stored knowledge: 

• Multiplying a function Y(ω) by a cosine shifts the Fourier transform of the function to left 
and right by ωo. 

• The Fourier transform for a cosine function with frequency ωo is two delta functions, one 
centered at -ωo and one centered at ωo both with amplitude ½. 

 
New instance representation: 

• Noticed explicit features and numeric values stated in the problem.  
 
Action: 

• Applied stored knowledge about Fourier transform for cosine function. 
• Applied stored knowledge about sketching functions and identifying the frequency shifts. 

 
Strict matching: 

• Recognized this problem as a particular case of multiplying a function by a cosine. 
• Determined specific numerical values needed to apply frequency shifting. 
• No need to discard any extraneous information. 

 
Abstractness: 

• High/low, rules-based reasoning. 
 

	

	
	



 

Figure 4. Solution of student A to problems #11. 
	
This example of the data analysis used in the study demonstrates how the investigators were able to 
identify memory-bank and rules-based reasoning in one student’s problem solving episodes.  
Similar analyses were done for all of the students in the study.  The sample size that has been 
analyzed to this point is too small to draw conclusions, but it is worth noting that the majority of 
students used memory-bank reasoning to solve these problems and that prototype reasoning was 
never used.  	
	
 
5 Conclusions 
 
In this paper, we demonstrated how the representation mapping framework of Hahn and Chater 
[41] can be used to characterize the different types of reasoning used by students as they solve 
problems in a junior level signal and systems course. The representation mapping framework takes 
into the degree of abstractness of the knowledge representations of the student and also whether the 
student is abstracting using a partial matching or strict matching cognitive process.  The study is 
ongoing with data being collected in three electrical engineering courses, Circuit I, Circuits II and 
Signals and Systems.   We believe the Hahn and Chater framework provides important insights 
into the problem solving of students.  The next phase of the study is to attempt to determine the 
cognitive demand of the problems being posed in these courses using Bloom’s taxonomy or some 
other appropriate framework.  By combining the analyses of the students’ problem solving 
attempts with the analyses of the problems cognitive demand, we hope to be able test the 
hypothesis about the existence of an abstraction threshold in the undergraduate electrical 
engineering curriculum. 
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