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Algorithmic Thinking and Matlab in a  

Computational Materials Science Course 

 

 

 

Abstract 

 

A course was developed to teach aspects of materials science, numerical methods, and 

programming in an integrated fashion.  During the second teaching of the course, it was modified 

to enhance its delivery by focusing on the aspects which gave the students the most difficulty in 

its first offering: syntax and organization of operations in programming.  This was achieved 

through the use of Matlab as a meta-language platform, development of Matlab tutorials for the 

course, and an emphasis on algorithmic thinking.   

 

In this paper, algorithmic thinking involves developing a complete understanding of the 

operations required via hand calculations and block diagrams before attempting to generate any 

code. Students were graded on their ability to relate what the program/algorithm should do next 

verbally and pictorially and then tasked with translating those known operations into Matlab 

code using Matlab’s extensive help menus. The help menus allow users to employ keyword 

searches to find descriptions and examples of commands with the needed functionality. 

 

Results of student projects show improvement from the first to second years.  Student response 

to the course also shows an increased respect for Matlab as a useful engineering tool. In both 

years, students who were unable to verbally describe the needed operations in the programs 

generated less efficient or inoperable code. 

 

Introduction 

 

Computational Materials Science (CMS) is a cross-listed senior elective and graduate course in 

Mechanical Engineering that meets for 75 minutes twice weekly. The course is also part of a 

newly created Materials Science Concentration.  The course covers topics in three fundamental 

areas: numerical techniques, geometric and potential-energy aspects of materials science, and 

programming.  Numerical techniques primarily involve minimization of potential functions 

while the materials science concepts center around Lennard-Jones potential functions and the 

network structure of polymers.  The course is offered biannually and was last offered in the Fall 

2004-2005 academic year.  During this last teaching, the course was revised to better facilitate 

student comprehension and application of concepts based on observations from previous 

teachings.  The content of the 3 semester hour course is broken into roughly 40% numerical 

techniques, 25% materials science, and 35% programming using the text: Andrew Leach, 

Molecular Modeling: Principles and Applications
3
.  

 

While students in mechanical engineering are well versed and comfortable with the theory 

behind numerical minimization techniques ("if df/dx=0 then you are done") and the basic 

theories behind materials science concepts ("the structure wants to achieve a minimum energy"), 

they are quite uncomfortable with programming.  Furthermore, they rarely, at the undergraduate 
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level, are given the opportunity to see explicit links between the material science and numerical 

minimization.  This course attempts to draw students into the intersection of numerical 

techniques, materials science, and programming by removing, as much as possible, the 

programming aspect that causes students the most difficulty: syntax. The course relies heavily on 

Matlab and the students' ability to think through what a given algorithm should do to aid them in 

bridging the gap between the three areas. To achieve this, formal graded emphasis was placed on 

teaching students to think and work through the rote operations of numerical techniques before 

attempting to generate programs. The goal was to generate, as Connolloy put it, a "Prior 

Knowledge Environment"
1
 wherein students had thorough prior knowledge of a technique before 

trying to translate that knowledge into programming language to solve numerical problems in 

materials science. 

 

Students in our mechanical engineering program are required to have had a computer course 

prior to entering college and are also required to take an entry level computer programming 

course during their first year (though many test out of this requirement).  These courses do not 

teach matlab and cover only rudimentary topics such as if-else statements, for/while loops, and 

assignments to variables and matrices.  It is only recently that the computer science department 

has moved from teaching Visual Basic to teaching C++.  By the time our students reach their 

senior years they have had only what programming has been incorporated into projects or 

assignments throughout our curriculum.  The author knows of only one course on our curriculum 

below the senior level that engages the students in significant programming, hence they are not 

well versed in programming upon entering the course and often do not remember using Matlab. 

 

This paper will begin by giving a cursory overview of the numerical  methods involved, 

emphasizing how they are presented to students, followed by example assignment used to 

address these concepts.  Next, the links between Materials Science and Numerical Techniques 

are discussed, again with an emphasis on how they are presented to students.  Finally, the 

schema for incorporating programming is introduced.  The paper ends with some qualitative 

observations and comparisons between the academic years. 

Numerical Techniques 

 

In this course, the potential functions, Π, needed for modeling material structures can be cast in a 

form similar to  
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where x's are independent variables, c's are constants,  and f(xi,xj,ci,cj) is some function which 

operates on paired combinations of the entire set of independent variables. After introduction of 

this concept, initial class discussion is focused on how one would find the minimum of such a 

function.  The visual marker f(x) leads students back to calculus and the familiar methods of 

setting f'(x)=0 as  a starting point.  Initial in class problems also tasked students with using this 

approach to find the minimum of a simple function, 

 

(2)  f(xi,xj)=(cixi-cjxj)
2
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by hand when the constants are all given.  For N=2 the problem reduces to a parabolic equation 

which the students recognize after they have performed the summation in (1).  They can solve 

this readily by hand.  After performing the summation for Π(x1,x2,x3) the problem begins to loose 

physical meaning for undergraduates (though some recognize it as a surface in three dimensions) 

but the notion of taking derivatives still holds and they are able to generate a system of equations 

to solve after some instruction.  Next, the leap is made to the case of N=8 which would yield Π 

having 64 terms in the most general case of (1).  Students are asked in class to start taking 

derivatives and generating the list of equations to solve up to the point that someone asks, or 

suggests that, there might be a better way. 

 

At this point students understand the need for taking derivatives, fore evaluating the potential 

function, and for generating a list of equations to be solved strictly from the concept that f'(x)=0 

at an inflection point even over a possibly unlimited number of dimensions, e.g. as N goes to 

infinity.  Other concepts of linear algebra such as sparse matrices are also addressed but not 

commented on here.  Next, formal derivative- and non-derivative based numerical minimization 

methods are discussed. 

Discussion of Various Solution Techniques 

 

Students are familiar with minimization using derivatives from mathematics courses so these 

serve as a natural launching point for discussion of derivative-based numerical methods. The 

ubiquitous "ball rolling down the hill" example is used to visually convey the gradient 

philosophy, "always go down hill" (see Figure 1, left). Next, conjugate gradient methods are 

discussed with emphasis placed on line minimizations.  Line minimizations help bridge the gap 

between minimization of functions with one independent and one dependent variable (e.g. 

y=f(x)) and multivariate minimization techniques highlighting, visually, the fact that the function 

is still being minimized in only one "direction" (see Figure 1, right).   
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Figure 1: A schematic of a 1-D case highlighting how a ball will always roll down 

hill (left). A line minimization still moves to the bottom of the hill (right) but may 

not hit the very bottom on the first pass. 
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Students are given the equation for Π(x1, x2,,) of Figure 1 and the equation of a line passing 

through the Π surface. Then they are asked to estimate the minimum of Π(x1,x2) along the line 

first by plotting values, then to calculate it explicitly by using calculus when c's are known. 

 

At this point, the core concept of derivative-based methods, namely line minimizations, has been 

covered analytically and pictorially.  Students may not necessarily understand the mechanics of 

the conjugate gradient's method of choosing parameters surrounding the length of the line 

segment and other factors, but the notion of minimization beginning at a point and continuing 

along specific directions within the variable space, directions which may not necessarily lead 

directly to the global minimum, has been conveyed. 

Introduction to Algorithmic Thinking 

 

Several other non-gradient methods including the Metropolis algorithm
2
 and the so called 

Amoeba
2
 method are discussed at this point in the course.  These methods dovetail into the 

notion of numerical minimization techniques that start at a given point and travel in directions 

within the variable space that may not necessarily lead directly to the global minimum. In 

addition, these methods begin to veer away from student's familiarity with the concepts and into 

the realm of using algorithms instead of direct calculus to solve minimization problems.  Class 

discussion begins with the Amoeba method since it is similar in appearance to line 

minimizations. 

 

 Pictorially the Amoeba method looks similar to the line minimization methods, save for the fact 

that it is constantly changing directions.  Algorithmically, the method evaluates the function at 
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Figure 2: Schematic of two successive iterations (simplexes) in the Amoeba (or 

Downhill Simplex) method. The first is in gray, dotted lines.  The second is in dark 

black  lines 
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N+1 points, then draws a line from the highest valued point through the centroid of all N+1 

points.  The length of the line is arbitrarily set.  In this fashion, the method steps from a high-

valued point to a lower-valued point successively. As with the previous line minimizations, 

students are tasked with performing the algorithm by hand given the function Π for the variable 

space and a set length for the Amoeba step with N=2.  It quickly becomes apparent that the 

method has a very slow rate of convergence and that for N � infinity, the calculations become 

numerous.  Students also realize that it is not necessary to calculate derivatives, only evaluate the 

function. 

 

The Metropolis algorithm is a novel technique that seeks to minimize a function by varying the 

independent variables either randomly or in some preset method then either accepting or 

rejecting the new values based on probabilistic criteria.   This algorithm is the farthest from the 

students prior knowledge but builds on the concepts of using function evaluations based on 

values of the independent variables and the idea that it is not necessary to move directly toward 

the global minimum since it is usually unknown.  Algorithmically, Metropolis chooses an initial 

set of values for all N variables, evaluates the functional in this configuration, then chooses a 

new set of variable values and either (1) automatically accepts the new configuration if the 

functional value was reduced,  or (2) has the probability, p, of accepting the new configuration.  

The probability has the form 

 

(3) 
( )






 Π
−=

τ
φ

expp  

 

where φ(Π) is related to the value of the functional and τ is a scaling factor which adjusts the 

acceptance rate.  In this fashion, new choices of variables which do not lead toward a minimum 

can be accepted.  In class discussions this concept is related to thinking outside the box and, 

more importantly, related to the primary flaw of conjugate gradient methods, e.g. they can get 

caught near local minimums and never find the true global minimum. 

 

At this point in the class the students have been exposed to several numerical solution techniques 

for multivariate problems and the mechanics of the operation of each method.  Strengths and 

weaknesses of each method are also discussed.   In addition to hand-calculations on exams, 

students are asked to explain the methods in annotated sketches and by giving written 

descriptions of the operations.  Looking at the responses for all methods, the pictorial 

representations showed better overall understanding of the various methods than the written 

descriptions. 

 

The next segment of the course is the linchpin that introduces the concept of algorithmic thinking 

which is defined as a repetitive sequence of operations. Looking back at the solution methods, 

students were asked to formulate the basic operations that make-up each method with respect to 

the objective function Π.  Eventually the discussion distills the methods down to the operation 

given in Table 1. 

 

Table I: Steps in the Completion of Numerical Minimization 

 

Step Description 
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1 Choose a configuration: this may be an initial configuration (i.e. 

values for all variables) or the next configuration in an iteration. 

2 Evaluate the functional: calculate the value of the functional in the 

configuration. 

3 Evaluate the derivative of the functional: calculate the derivative with 

respect to an independent variable (possibly all independent 

variables); some methods do not require this step. 

4 Accept or reject the configuration: most methods accept 

automatically save for Metropolis which places additional criteria on 

the new configuration. 

 

In this coarsely grained description the process of numerical minimization is reduced to three or 

four necessary operations.  The mechanics of the operations are preset either by the functional 

(steps (2) and (3)) or by the method (steps (1) and (4)).   In terms of programming, the key is to 

find a tool which allows students to translate these operations into code with as little difficulty as 

possible. The next section details the link between minimization and material science concepts 

and is followed by the culmination of linking these aspects to Matlab and programming. 

The Lennard-Jones Potential Function in Materials Science 

 

An introductory concept in Material Science is that of the Lennard-Jones (LJ) potential function 

which gives the energy associated with the charge interaction of two atoms, see Figure 3.  A 

standard form of the LJ potential function is given by 
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where 
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Figure 3: Lennard Jones Potential Function 
 

for the interaction between two atoms at positions xi and xj separated by distance rij.   The 

constants, σ and ε represent the equilibrium spacing and energy well, respectively. When more 

atoms are present, the LJ potential operates pair-wise between all atoms requiring summation to 

find the total energy. The forms of (4-5) are quantitatively similar to that of (1).  

 

In the sophomore level materials science course the LJ potential is used to highlight the idea that 

pairs of atoms reside at an equilibrium spacing that minimizes the potential energy between 

them. When introduced in concert with a simple cubic lattice structure such as a BCC crystal it 

becomes clear to students that the number of calculations is too large for pen and paper.  The fact 

is even more evident when considering even low molecular weight polymer chains. A full 

analysis requires N
2
-sum(0…N-1) evaluations of (4-5) which would yield 10 pairings for the 

BCC structure and 36 pairings for simple polyethylene molecule with only three backbone 

chains.   

 

The method of finding the equilibrium spacing for a set of atoms is qualitatively and 

quantitatively similar to finding the minimum of the basic functions discussed earlier in (1) and 

(2).  Students are presented with the fact that 
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forms the basic set of equations to be solved which is seen as tractable when N is small.   This is 

equivalent to minimizing the functional, Π, itself. 
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At this juncture, the concept of the algorithmic approach reintroduced as a means to solve the 

problem.  The steps are shown to be the same: choose xi's, evaluate Π,  choose new xi's, and 

either keep or reject the new configuration.   To place the focus on algorithmic thinking, e.g. 

repetitive operations, students are tasked with utilizing the Ameoba and metropolis algorithms, 

first by stepping through the algorithms by hand calculations for small systems before 

programming methods are introduced. 

Simulations of Polymer Network Formation 

 

Some simplified computational models the formation of polymer networks begin by seeding a 

virtual reaction space with randomly arranged points that represent chemical crosslinks and 

randomly arranged line segments which represent individual polymer  

molecules
3,5 – 9

.  In the simulations performed for this class, a chain end was allowed to bond 

with a reactive agent only once while reactive agents could join with up to four chain ends.  This 

simulation contains difunctional polymer chains and tetrafunctional reactive agents. Simulation 

of polymerization, the actual linking of the molecules and the crosslinking agents, is carried out 

in a nearest neighbor fashion. The nearest neighbor approach seeks to find the closest crosslink, 

a, to chain end, b, that is itself not closer to any other crosslink. 

 

Students are first given a set of random x-y points representing crosslink and chain end positions.  

Next they are given the problem of determining the crosslinks which are  nearest neighbors of 

each chain end. Students quickly see that the problem, though simply stated, is nontrivial. In fact 

in computer science fields it is classified as an intractable problem since the number of 

operations required to solve it cannot be reduced or truncated. The nearest neighbor search is 

introduced as the final problem for the course since it moves away from calculus-based 

mathematics altogether and focuses on more fundamental repetitive operations, searches and 

value comparisons. 

 

Figure 4: Virtual reaction space with 

chain-ends (circles) and reactive agents 

(squares) 
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In terms of an algorithm, the nearest neighbor search requires the steps in Table II. 

 

Table II: Steps to Completion of Polymer Network Simulation 

 

Step Description 

1 Generate random numbers to seed the reaction space. 

2 Calculate the distances between all reactive agents and chain-

ends in the virtual reaction space. 

3 Sort and store the distances. 

4 Find the reactive agent, k, closest to chain end i and check to see 

if k is closer to any other chain-end than it is to chain-end i. 

5 If agent k is closest to chain-end i and vice versa, then the two 

may bond together. 

6 if reactive agent k, has a bonding site available, reduce the 

number of available sites on k by one and record its link with 

chain-end i. 

7 If (4) through (6) are true, then remove chain end i from the list of 

available reactive chain ends and return to (4) looking at the next 

chain-end, incrementing i=i+1, until all chain-ends or all reactive 

agents are used. 

 

Students understood the methodology well enough to perform the operations by-hand as 

evidenced by homework, but generating code in a programming language to perform the tasks 

was more challenging.  Syntax is usually the largest barrier by students to learning programming 

languages.  Consequently, even when all the required operations are understood, utilizing a 

programming language to perform them is still daunting.  To facilitate turning existing 

knowledge into a programming language, students were given instruction in Matlab, a command-

line, interpreted language use by scientists, engineers, and mathematicians. 

Programming 

 

Matlab is an interpreted or meta language which can be run from either a command line or from 

'batch' files.  Matlab supports thousands of commands to perform both basic algebraic functions 

such as adding and subtracting, as well as much more powerful functions such as sorting and 

searching. In addition, Matlab programs require little or no variable declarations or sizing of 

arrays.  A powerful feature of the newest version of Matlab is its help functions which allow the 

user to search for commands by keyword.  The help files contain formal definitions of functions 

as well as examples of their use.  With Matlab's broad functionality an integrated help functions, 

users can search for predefined functions that complete the tasks they require; one can usually 

find an example that shows a relevant implementation of the function as well.  The program also 

checks commands for syntax, often providing guidance on how to fix mistakes. 

 

In the programming section of the course, students were given two large projects. The first was 

the generation of polymer networks and the second was the annealing of those networks into 

equilibrium structures.  The annealing process was simply the minimization of the energy of the 

network when each polymer was treated as a nonlinear spring having a stored energy equal to 
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Equations (7) and (8) give the energy in each chain according the freely jointed chain model 

which uses the length of a chain with ends at xj and xk in a truncated inverse Langevin series 

before summing over n reactive agents
4
. The rubbery modulus, G, summation from 1 – 4, and the 

maximum chain length, dmax are constants associated with the type of polymer being simulated.   

The form of the energy is identical to (1). These two projects were direct applications of the 

topics covered earlier in the course. 

 

To start off the projects the class discussed the operations needed to complete the steps in Tables 

1 and 2 which included: adding, subtracting, raising to a power, generating random numbers, 

sorting arrays, storing arrays,  and  indexing arrays. In the larger context, the first project, 

forming the network, was necessary to complete the second, annealing the network.  Next, 

students where given a "Boot Camp Matlab Tutorial" which performed step (1) of Table 2 

utilizing commands to perform all eight operations discussed.  The assignment forced students to 

reverse engineer the Matlab code in order to understand the uses of each function and then tasked 

them with performing steps (2) and (3) using those commands. The tutorial was purposefully 

made hard. 

 

The progression toward this assignment was to first teach students how to perform the mechanics 

of the operations involved in each simulation by hand calculations, next to place those operations 

into context of the larger algorithm, and finally, once they had an understanding of the problem 

as evidenced by homework and exams, to immerse them into the problem in another language. 

The author would suggest that the methods are similar, at least at a surface level, to the way in 

which immersive verbal language courses operate.  One is placed into familiar situations but 

forced to communicate in an unfamiliar language.  The final four  weeks of the course were spent 

working on the two large projects.  During that period class time was spent each week discussing 

what commands and functions students had found in Matlab that were useful to the project, 

similar to learning another language by speaking it regularly. 

 

An important series of assignment also tasked students with generating block diagrams of their 

programs which incorporated variable names and detailed what operations were required, their 

timing within the program, what information was required in the operation, and what variables 

were generated or modified. During the 2002 teaching of this course it was seen that a failure to 

clearly understand these relationships early on caused students either to generate inefficient 

algorithms that attempted to account for early lapses in logic in an ad hoc fashion or would lead 

to their inability to generate the solutions altogether. Students who successfully generated the 

complex methodology on paper were better able to translate that into Matlab pseudo-code. 

 

P
age 11.168.11



Results, Assessment, and Observations 

 

Several factors point to the overall success of the methodology used in the  2003 teaching of the 

course over the standard methods used in the 2001 teaching. 

 

o Eighty percent of students completed both projects successfully in the 2003 teaching of 

the course as compared to less than half the students in the 2001 teaching. In the 2001 

teaching formal, graded emphasis was not placed on thinking through complex 

algorithms before attempting to generate code whereas 2003 included this at several 

stages. 

o Response to the tutorial was exceptional.  Several students commented that they wished 

they had learned Matlab in this fashion earlier in their college careers. 

o Two-thirds of students engaged in self-guided learning of programming language as 

evidence by a special challenge assignment.  Students where challenged with generating 

Matlab code to perform the computational simulation of polymer formation in as few 

commands as possible. Two thirds of students developed functioning programs utilizing 

fewer commands than the professor's.  This was accomplished by finding Matlab 

commands which combined necessary functions.  

o During and following the course 1/3 of all students commented positively on the course 

in communication with the professor. Comments included, "I now see Matlab as a useful 

tool", "I can use this in my other courses", "I wish I had learned this for/in my other 

courses", and "I may never use this[Matlab] again, but I could if I had to". 

 

Issues that were present in the 2001 teaching of the course also reoccurred in the 2003 teaching.  

 

o Students with good block diagrams generated more streamlined programs. 

o Students who did not complete correct block diagrams generated inefficient (spaghetti) or 

inoperable code. Their programs attempted to correct for lapses in initial organization by 

"tacking on" fixes which rarely worked. 
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