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An Automated Object-Task Mining Model for Providing Students 

with Real Time Performance Feedback  

Abstract 

This paper proposes an automated learning system that provides students with real time 

performance feedback during engineering laboratory assignments by discovering associations 

between objects that students interact with, and the manner of interaction. Technological 

advancements in computer vision and machine learning techniques are creating opportunities for 

STEM researchers to integrate commercial, off-the-shelf technologies in the design and 

development of automated learning systems in STEM classrooms. In this work, the authors 

employ the Microsoft Kinect to serve as the computer vision system to observe objects in the 

laboratory environment and how students utilize those objects. Machine learning metrics are 

utilized to quantify the veracity of the object-student associations generated by the proposed 

automated feedback system.  

  

The knowledge gained from this research has broad impacts within engineering education and 

beyond, as researchers seek novel technology solutions that have the potential to transform the 

manner in which students learn and receive feedback, towards more customized modes of STEM 

education delivery.  

 

1.  Introduction 

Each year, Universities spend millions of dollars constructing new laboratory facilities or 

maintaining existing ones 1. However, these laboratory facilities are typically only available to 

students during “normal working hours”, as the time constraints of instructors and teaching 

assistants limit the availability of these resources. Furthermore, due to the instructor/student ratio 

in a typical engineering classroom/laboratory, it is challenging for students to get one-on-one 

instruction on demand, if they are faced with challenges while performing engineering laboratory 

tasks. Figure 1 presents the fundamental challenge of customizing laboratory instruction to 

satisfy students’ needs: 

Scenario 1: The student to instructor ratio: This scenario results when the number of students is 

greater than the number of instructors or teaching assistants available to help provide customized 

feedback for each student. Given student (i), (j), (k), and only one instructor, the challenges of 

providing students with individual feedback increases, as the heterogeneity of students’ queries 

increases. Due to time and distance constraints, it therefore becomes infeasible for a single 

instructor to simultaneously provide feedback to students (i), (j) and (k) in a timely manner that 

would address their concerns. This may present challenges and learning biases amongst different 

student characteristic types such as introverts and extroverts 2. P
age 26.178.2



 
Figure 1: Typical Challenges Facing Students and Instructors During Engineering Design Laboratories 

Scenario 2: Student interest availability, instructor/laboratory facility unavailability: In many 

engineering laboratories, students are not allowed to work without direct supervision from a 

teaching assistant or instructor. Unfortunately, many engineering laboratory facilities are based 

on the schedules of the instructor, teaching assistant or university, and may be misaligned with 

students’ schedules. For example, certain engineering and science majors are known to work and 

study at night such as Computer Science students 3. However, if their work hours are not aligned 

with that of their instructors, they are forced to adjust their schedules and miss out on work 

productivity. 

  

In scenarios 1 and 2, the fundamental challenge is balancing cost of learning with value attained. 

For the student, paying for an individual instructor, solely catering to their every needs may 

enhance their learning and productivity, but may be infeasible due to the tremendous financial 

burden that that would impose. For the instructor, catering to each student’s question at any time 

period, would be fulfilling, as the instructor will be assured that each student grasped a concept. 

However, such level of customization would require a tremendous amount of time, that would 

ultimately delay the completion of course content and extend the length of the course offerings to 

time periods that may not be acceptable to students.  

 

Hence the fundamental research question is: how can educators achieve student specific 

customization in a cost effective, timely manner? 

 

To answer the above research question, the authors of this work propose an automated learning 

system that is constructed using off-the-shelf components and open source machine learning 

algorithms to achieve real time student feedback on certain laboratory specific tasks. A 

successful integration of automated learning systems into undergraduate engineering education 

has the potential to expand the availability of laboratory facilities by providing students with real 

time performance feedback, comparable to that of an instructor or teaching assistant. However, 

in the context of engineering education, there exists a knowledge gap in terms of whether the 

integration of these automated learning systems would have a meaningful impact in enhancing 

students’ performance during laboratory activities. In order for automated learning systems to 
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provide meaningful performance feedback to students, they must themselves acquire knowledge 

about the laboratory environments. Specifically, automated learning systems must be able to 

detect objects within a laboratory environment that students may use during laboratory activities. 

This would enable the automated learning systems to provide feedback to students while they use 

these objects.  

 

This paper is organized as follows: this section provides an overview of the concepts motivating 

this research. Section 2 presents research works most closely related to this research. Section 3 

presents the methodology of automated learning systems. Section 4 presents the application and 

results from this study and Section 5 concludes that paper. 

 

2.  Literature Review 

2.1 Co-robots and Automated Learning Systems 

The term co-robots refers to a class of robots that work side by side with humans, rather than being 

completely autonomous and isolated 4. The term “robot” is used broadly to represent that which is 

not human, ranging from a physical hardware system to a machine learning algorithms. In this 

work, the use of the term Automated Learning System focuses on the “brains” of a co-robot system. 

This represents the configurable hardware component, based on a wide range of existing robotic 

technologies5. Automated Learning Systems are gaining interest in both research and application 

domains ranging from autonomous self-driving vehicles 6,7 to adaptive personal assistants with 

real time voice interactions 8–10. Several challenges have been outlined in order for co-learning 

systems to be seamlessly integrated in the social fabric of modern society 11; 1) Dynamic Spaces 
5,12–15 (i.e., the ability of co-learning systems to successfully navigate and adapt to the fluid nature 

of environments that humans interact in),  2) Social Learning 16–19(i.e., the ability of co-learning 

systems to continuously learn about human behavior and their surrounding environment), 3) 

Sustainability 20,21 (i.e., the ability of co-learning systems to remain relevant to the interests of their 

human counterparts by either updating their behavior or functionality), 4) Affect and Social Signal 

Awareness 22–24 (i.e., the ability of co-learning systems to infer meaning from human facial, body 

movement, etc. expressions), 5) Social Norms 25–28 (i.e., the ability of co-learning systems to abide 

by the constraints of society and minimize deviations from them) and 6) Societal Issues 29–33 (i.e., 

the ability of co-learning systems to mitigate the societal concerns such as sensor data acquisition, 

data privacy, knowledge dissemination, etc. that may result due to the ability of co-learning 

systems to sense, gather data and generate models that could be used to both enhance or potentially 

harm humans). 

 Beyond simply existing, automated learning systems have the potential to provide tangible 

learning benefits to individuals. For example, robots have also been developed to help students 

with autism enhance their social interaction skills 34. Recent initiatives such as the RoboPlay at the P
age 26.178.4



University of California Davis continue to explore the creativity of K-12 students through 

workshops such as UC Davis C-STEM Day 35,36.  

 

2.2 Educational Data Mining  

Data is generated throughout the pedagogical process of learning, from homework and quizzes to 

student surveys and assessments. With the abundance of data in the education domain, there has 

been an expansion of data mining/machine learning approaches for making sense of education data. 

The term educational data mining has emerged as the novel application of data mining techniques 

to educational data in order to understand the factors that influence students’ learning37. There 

have been a wide range of researchers that have proposed data mining driven techniques for 

modeling education data38. Mostow et al. propose an educational data mining tool to browse 

student interactions 39. Merceron et al. propose a visualization tool that enables instructors to 

discover pedagogically relevant patterns by mining and visualizing students’ on-line exercise work 
40. Online platforms such as Massively Open Online Courses (MOOCs) have increased the size 

and availability of educational related data 41. Text mining algorithms have been proposed by 

several authors in an attempt to quantify students’ sentiments, relating to a specific educational 

topic of interest 41,42. 

 While there exist extensive research on educational related data, existing methodologies 

are limited in their ability to provide students with real time feedback relating to their task 

performance or understanding of critical engineering laboratory assignments. Through the 

proposed automated feedback system, this research aims to fill this research gap. 

 

 
Figure 2: Proposed Automated Feedback System for Customized Student Feedback 

3.  Research Methodology 

The automated feedback system (AFS) presented in Figure 2 provides students with real time 

performance feedback during engineering laboratory assignments by discovering associations 

between objects that students interact with, and the manner in which students interact with those 

objects. The components needed to create the ASF are commercial, off-the-shelf, with the two 

primary components being a i) depth-vision system (e.g., Microsoft Kinect) and ii) a machine 
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learning processing unit and feedback visualization system (e.g., a tablet).  Machine learning 

metrics are employed to quantify the veracity of the object-student associations generated by 

automated learning systems. Based on this feedback, automated learning systems provide 

feedback to students, whenever their association with an object deviates from the history of 

associations with that object. 

3.1: Conceptual Outline of Automated Feedback System 

The proposed automated feedback system for 

engineering laboratories includes three steps as seen in 

Figure 3: 1) Laboratory Data Acquisition, 2) Data 

Mining Association Model Generation and Validation 

3) Student Anomaly Detection and Visualization. The 

components of the AFS are low cost, off-the-shelf 

components that can be purchased at a local hardware 

store or online. Due to the relatively low cost nature of 

the proposed system, it is assumed that an AFS can be 

assembled and placed at each station in the laboratory 

where students work and require feedback. The 

components of the AFS will now be explained in detail. 

3.2 Step 1: Laboratory Data Acquisition Using Multi-modal Sensor 

Multimodal sensors such as the Microsoft Kinect, Asus Xtion Live 43, Primesense Carmine 44, etc., 

coupled with OpenCV 45, are capable of capturing multiple data streams including video (RBG), 

depth and skeletal data. For this work, the skeletal data in Figure 4 is the most relevant, as it will 

be used to data mine associations between different joints on a human body (red circles in Figure 

4) and actions that students are performing.  

 

 
                                                                                 Figure 4: Multi-modal data acquisition 

The skeletal data is transformed into numeric XYZ values for each of the joints, as seen in Figure 

4, with a new data sample captured once every q milliseconds, depending on the hardware 

capabilities. For example, for the Left Hand Node in Figure 4, the first instance of data captured 

Figure 3: Components of the Automated 
Feedback System 
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is 2.4634 (Left Hand Node X), 2.8739 (Left Hand Node Y) and 0.4105 (Left Hand Node Z), 

representing the 3D position of that particular joint at an instant in time. On the far right of the 

table in Figure 4, the function is provided that represents the action that a student was engaged in. 

The model would first have to be trained in order to have ground truth data pertaining to functions 

that students perform using objects. By capturing skeletal data across multiple students, the 

automated learning system can determine, through data mining, when statistical anomalies exist 

from a student’s action that deviates from the history of actions associated with a given function. 

 

 3.3: Step 2:  Data Mining Model Generation and Validation 

Both supervised and unsupervised machine learning algorithms can be employed to enable 

the AFS to learn patterns from students’ actions during laboratory activities. Unsupervised 

machine learning discovers patterns within an unlabeled data set through techniques such as 

clustering 46–48 and association rule mining 49–54. In the case of the AFS, unsupervised machine 

learning algorithms will be needed in the absence of a class/predictor variable. For example, if a 

student is performing a set of actions that are unknown to the AFS and have not yet been provided 

by an instructor, the AFS will discover how this student’s actions relates to other functions, without 

knowing what the function actually is.  Supervised machine learning on the other hand utilizes 

training data to develop a model that predicts/classifies unseen instances of data. This is achieved 

by employing techniques such as Decision Tree Induction 55, Bayesian Inference 56–58, Support 

Vector Machines 59,60 etc. The AFS will utilize supervised machine learning algorithms in 

scenarios where the functions that students are performing (e.g., hammering a nail) are known by 

the AFS, with the objective of determining what appropriate skeletal body positions result in a safe 

use of the hammer. Both Unsupervised Learning and Supervised Learning are employed by the 

AFS, depending on the scenario being investigated.  

3.4: Step 3:  Student Anomaly Detection and Visualization 

Section 3.3 will result in the generation of a data mining model of 

students’ skeletal joint locations, as they perform specific functions in 

the classroom (e.g., using a hammer). Based on the machine learning 

models, if there is a deviation that exists with one student (compared 

to the baseline), then feedback will be provided using a visual 

feedback display such as that presented in Figure 5. The predictive 

validity of the resulting machine learning models is measured by well-

established metrics  such as %Accuracy, Root Mean Squared Error, 

Precision, Recall, etc. including n-fold cross validation techniques 61. 

 

 Instead of providing students with raw statistical values pertaining to the validity of the 

AFS’s predictive model, the visual display can simply showcases their skeletal body data, or video 

representation, which can be used to identify what areas of the body were inconsistent with 

previous joint-function associations.  

Figure 5: Example setup of 
AFS with visual feedback for 
students 
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4: Application: An Automated Feedback System for Engineering Design Laboratories 

4.1. Overview of Engineering Laboratory Assignment 

To demonstrate the real world application 

of the proposed AFS in engineering 

laboratory environments, the authors 

conducted a set of experiments to test the 

skeletal data acquisition and subsequent 

data mining knowledge discovery 

components of this research. Data was 

collected in one of the engineering 

laboratory/workshops at Penn State 

University. As can be seen in Figure 6, the 

AFS consists of two major components; 

The multimodal sensing system (i.e., Microsoft Kinect in this paper) and the visual display 

feedback system that is connected to the Kinect, are used to process the raw data captured by the 

Kinect for machine learning purposes, as well as provide relevant visual feedback to both students 

and instructors.  

 In the scenario presented in Figure 6, the student is preparing to utilize the hammer. Based 

on the joint associations of the students’ skeletal data (Figure 4), the objective of the AFS is to 

detect patterns in the manner in which a student moves while performing an action (e.g., 

Hammering) and detect anomalous patterns in that action at another instant in time. Anomalous 

patterns could be as a results of: 

 A student utilizing a new object (e.g., screw driver, instead of a hammer) 

 A student utilizing the same object but to achieve a new function (e.g., hammer used to 

remove a nail, rather than hammer it) 

 A student utilizing the same object but in a manner that is not consistent to previous usage 

 

4.2 Outline of Data Acquisition 

A total of 802 instances of data was collected relating to two functions. The data set contained 

226 attributes representing different characteristics of the data. I.e., XYZ position, velocity and 

acceleration data was collected for each of the nodes, as seen in Figure 4. The data acquisition 

involves two scenarios; one in which the hammer was used to simulate hammering a small nail 

and the second in which the hammer was used to simulate hammering a metal part for shaping 

purposes (Figure 6). Without knowing what the object at hand is, the AFS should be able to 

detect that these two activities are different and classify them as individual events (supervised 

learning approach). In the event that the functions are unknown, unsupervised learning seeks to 

determine whether these two actions would fall under separate clusters. The Microsoft Kinect 

Figure 6 :Experimental Setup of AFS 
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captures data at a rate of one instance/33 milliseconds, with the data stored on the hard drive of 

the tablet system (Figure 6).  

4.3 Results and Discussion 

For the supervised learning model, the J48 classifier was employed using the Weka software 

package 62. The decision tree in Figure 7 indicates that out of the 226 data points representing a 

wide range of joint characteristics, the Z co-ordinate value of the right shoulder 

(ShoulderRight_Z in Figure 7) was shown the be the strongest attribute for predicting which of 

the functions was being performed by a student. The resulting decision rule is of the form: 

 If ShoulderRight_Z<=0.916808 meters, relative to the fixed position of the AFS, THEN 

Function A (e.g., hammering a small nail) is being performed 

 If ShoulderRight_Z>0.916708 meters, relative to the fixed position of the AFS, THEN 

Function B (e.g., hammering a large metal object) is being performed 

This prediction could also be used to determine when a student was performing an anomalous 

action. I.e., if the instructor has determined that students should be hammering a small nail but 

they are instead, hammering a large object, this would show up as an anomaly in the AFS system 

and provide feedback to the student to adjust accordingly.  

 

Correctly Classified Instances         801               99.8753 % 

Incorrectly Classified Instances         1                0.1247 % 

Kappa statistic                          0.9975 

Mean absolute error                      0.0012 

Root mean squared error                  0.0353 

Relative absolute error                  0.2494 % 

Root relative squared error              7.0622 % 

Total Number of Instances              802      

=== Detailed Accuracy By Class === 

               TP Rate   FP Rate   Precision   Recall  F-Measure   

ROC Area  Class 

                 0.998     0          1         0.998     0.999      0.999    

FunctionA 

                 1         0.002      0.998     1         0.999      0.999    

FunctionB 
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Weighted Avg.    0.999     0.001      0.999     0.999     0.999      

0.999 

=== Confusion Matrix === 

   a   b   <-- classified as 

 400   1 |   a = FunctionA 

   0 401 |   b = FunctionB 

Figure 7: Decision Tree Model of Student Joint Associations 

For unsupervised learning, where the AFS is unsure about the class/predictor variable, 

unsupervised clustering algorithms can be employed. For example, in Figure 8, it can be seen 

that for the same ShoulderRight_Z joint, there exists two separate clusters; one in the far left in 

blue (i.e., associated with Function A) and one in the far right in red (associated with Function 

B). While the blue clusters seem to be homogenous, it can be seen that the second cluster has 

some heterogeneity, including a mix of blue and red. However, red points are dominating this 

cluster. This indicates that while this skeletal joint attribute is a good discriminating feature, 

there exists some impurity in the cluster assignment.  

 
Figure 8: K-means clustering of Joint Actions 

 

Depending on the instructor’s objectives during an engineering laboratory assignment, all or a 

subset of these results could be provided to students in real time using the AFS’ visual display, 

shown in Figure 6. Alternatively, the instructor could choose to only provide students with 

intervention content whenever there is an anomalous event detected.  

5: Conclusions and Path forward  

This paper proposes an automated feedback system (AFS) that provides students with real time 

performance feedback during engineering laboratory assignments by discovering associations 

between objects that students interact with, and the manner in which students interact with those 

objects. The AFS proposed in this work utilizes commercial, off-the-shelf hardware to 
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demonstrate the feasibility of such as system being implemented in a typical laboratory setting.  

In this work, the authors employ the Microsoft Kinect to serve as the computer vision system. 

Using skeletal data pertaining to students’ body language poses during laboratory assignments, 

the AFS discovers joint-associations using both supervised (when the function being performed 

is known a priori) and unsupervised (when the function being performed is not known a priori) 

machine learning algorithms to make statistical inferences about students’ actions. Using the 

visual display of the AFS, student feedback can be provided in real time in cases intervention 

may be relevant in correcting students’ actions. 

The knowledge gained from this research has broad impacts within engineering education and 

beyond, as researchers seek novel technology solutions that have the potential to transform the 

manner in which students learn and receive feedback, towards more customized modes of STEM 

education delivery that is cost effective and scalable.  

 

Acknowledgement 

This research is funded by the National Science Foundation NSF DUE- #1449650: Investigating 

the Impact of Co-Learning Systems in Providing Customized, Real-Time Student Feedback. Any 

opinions, findings, or conclusions found in this paper are those of the authors and do not 

necessarily reflect the views of the sponsors. 

 

References 

1. Chan, T. C. & Richardson, M. D. Ins and outs of school facility management: More than bricks and mortar. 

(2005). 

2. Braden, S. W. & Smith, D. N. Managing the College Classroom: Perspectives from an Introvert and an 

Extrovert. Coll. Q. 9, n1 (2006). 

3. Bernstein, D. R. Java, women and the culture of computing. in Proceedings of the 12th Annual Conference of 

the National Advisory Committee on Computing Qualifications: The new learning environment 21–28 (1999). 

4. Butler, Z., Raj, R. K. & Kwon, M. Integrating highly-capable corobots into a computing curriculum. in 2013 

IEEE Frontiers in Education Conference 1173–1175 (2013). doi:10.1109/FIE.2013.6685015 

5. Maaref, H. & Barret, C. Sensor-based navigation of a mobile robot in an indoor environment. Robot. Auton. 

Syst. 38, 1–18 (2002). 

6. Guizzo, E. How google’s self-driving car works. IEEE Spectr. Online Oct. 18, (2011). 

7. Markoff, J. Google Cars Drive Themselves, in Traffic. N. Y. Times 9, (2010). 

8. Lieberman, H., Fry, C. & Rosenzweig, E. The New Era of High-‐Functionality Interfaces. (2011). 

9. Riccardi, G. Towards healthcare personal agents. in Proceedings of the 2014 Workshop on Roadmapping the 

Future of Multimodal Interaction Research including Business Opportunities and Challenges 53–56 (ACM, 

2014). 

10. Topol, E. J., Steinhubl, S. R. & Torkamani, A. Digital Medical Tools and Sensors. JAMA 313, 353–354 (2015). 

11. Riek, L. D. The Social Co-Robotics Problem Space: Six Key Challenges. in In Proceedings of Robotics: 

Science, and Systems (RSS), (2013). 

12. Fox, D., Burgard, W. & Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. 

Mag. 4, 23–33 (1997). 

13. Kulyukin, V., Gharpure, C., Nicholson, J. & Pavithran, S. RFID in robot-assisted indoor navigation for the 

visually impaired. in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004. (IROS 

2004). Proceedings 2, 1979–1984 vol.2 (2004). 

P
age 26.178.11



14. Blanc, G., Mezouar, Y. & Martinet, P. Indoor Navigation of a Wheeled Mobile Robot along Visual Routes. in 

Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005 3354–

3359 (2005). doi:10.1109/ROBOT.2005.1570628 

15. Ngah, W. A. J. W. A Simple Local Path Planning Algorithm for Autonomous Mobile Robots. at 

<http://www.academia.edu/837604/A_Simple_Local_Path_Planning_Algorithm_for_Autonomous_Mobile_Ro

bots> 

16. Lockerd, A. & Breazeal, C. Tutelage and socially guided robot learning. in 2004 IEEE/RSJ International 

Conference on Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings 4, 3475–3480 vol.4 (2004). 

17. Konidaris, G., Kuindersma, S., Grupen, R. & Barto, A. Robot learning from demonstration by constructing skill 

trees. Int. J. Robot. Res. 31, 360–375 (2012). 

18. Ammar, B., Rokbani, N. & Alimi, A. M. Learning system for standing human detection. in Computer Science 

and Automation Engineering (CSAE), 2011 IEEE International Conference on 4, 300 –304 (2011). 

19. Argall, B. D., Chernova, S., Veloso, M. & Browning, B. A survey of robot learning from demonstration. Robot. 

Auton. Syst. 57, 469–483 (2009). 

20. Jensen, E., Franklin, M., Lahr, S. & Gini, M. Sustainable multi-robot patrol of an open polyline. in 2011 IEEE 

International Conference on Robotics and Automation (ICRA) 4792–4797 (2011). 

doi:10.1109/ICRA.2011.5980279 

21. Thrun, S. & Mitchell, T. M. Lifelong robot learning. Robot. Auton. Syst. 15, 25–46 (1995). 

22. Zhou, H. & Sakane, S. Sensor planning for mobile robot localization based on probabilistic inference using 

Bayesian network. in Proceedings of the IEEE International Symposium on Assembly and Task Planning, 2001 

7–12 (2001). doi:10.1109/ISATP.2001.928958 

23. Elfes, A. Dynamic control of robot perception using multi-property inference grids. in , 1992 IEEE 

International Conference on Robotics and Automation, 1992. Proceedings 2561–2567 vol.3 (1992). 

doi:10.1109/ROBOT.1992.220056 

24. Sugie, H., Inagaki, Y., Ono, S., Aisu, H. & Unemi, T. Placing objects with multiple mobile robots-mutual help 

using intention inference. in , 1995 IEEE International Conference on Robotics and Automation, 1995. 

Proceedings 2, 2181–2186 vol.2 (1995). 

25. Lin, P., Abney, K. & Bekey, G. A. Robot Ethics: The Ethical and Social Implications of Robotics. (The MIT 

Press, 2011). 

26. Anderson, M. & Anderson, S. L. Machine Ethics. (Cambridge University Press, 2011). 

27. Allen, C., Wallach, W. & Smit, I. Why Machine Ethics? IEEE Intell. Syst. 21, 12–17 (2006). 

28. Wyrobek, K. A., Berger, E. H., Van der Loos, H. F. M. & Salisbury, J. K. Towards a personal robotics 

development platform: Rationale and design of an intrinsically safe personal robot. in IEEE International 

Conference on Robotics and Automation, 2008. ICRA 2008 2165–2170 (2008). 

doi:10.1109/ROBOT.2008.4543527 

29. Bringsjord, S. Ethical robots: the future can heed us. AI Soc. 22, 539–550 (2008). 

30. Arkoudas, K., Bringsjord, S. & Bello, P. Toward Ethical Robots via Mechanized Deontic. (Logic”, AAAI Fall 

Symposium on Machine Ethics, AAAI, 2005). 

31. McCulloch, W. S. Toward some circuitry of ethical robots or an observational science of the genesis of social 

evaluation in the mind-like behavior of artifacts. Acta Biotheor. 11, 147–156 (1956). 

32. Chen, C. H., Weng, Y. H. & Sun, C. T. Toward The Human-Robot Co-Existence Society: On Safety 

Intelligence For Next Generation Robots. Soc. Robot. (2009). at <http://works.bepress.com/lucemia/20> 

33. Clark, A. Reasons, Robots and the Extended Mind. Mind Lang. 16, 121–145 (2001). 

34. Robins, B., Dautenhahn, K., Boekhorst, R. T. & Billard, A. Robotic assistants in therapy and education of 

children with autism: can a small humanoid robot help encourage social interaction skills? Univers. Access Inf. 

Soc. 4, 105–120 (2005). 

35. RoboPlay: High Tech K-12 Fun. (2012). at 

<http://www.youtube.com/watch?v=oAMaTWoHzXc&feature=youtube_gdata_player> 

36. UC Davis Center for Integrated Computing and STEM Education » Co-Robots. at <http://c-

stem.ucdavis.edu/research/research-projects/co-robots/> 

37. Romero, C. & Ventura, S. Educational data mining: a review of the state of the art. Syst. Man Cybern. Part C 

Appl. Rev. IEEE Trans. On 40, 601–618 (2010). 

38. Romero, C. & Ventura, S. Educational data mining: A survey from 1995 to 2005. Expert Syst. Appl. 33, 135–

146 (2007). 

P
age 26.178.12



39. Mostow, J. et al. An educational data mining tool to browse tutor-student interactions: Time will tell. in 

Proceedings of the Workshop on Educational Data Mining, National Conference on Artificial Intelligence 15–

22 (AAAI Press, Pittsburgh, PA, 2005). 

40. Merceron, A. & Yacef, K. Tada-ed for educational data mining. Interact. Multimed. Electron. J. Comput.-

Enhanc. Learn. 7, 267–287 (2005). 

41. Tucker, C. S., Dickens, B. & Divinsky, A. Knowledge Discovery of Student Sentiments in MOOCs and Their 

Impact on Course Performance. in ASME 2014 International Design Engineering Technical Conferences and 

Computers and Information in Engineering Conference V003T04A028–V003T04A028 (American Society of 

Mechanical Engineers, 2014). 

42. Mining Student-Generated Textual Data In MOOCS and Quantifying Their Effects on Student Performance 

and Learning Outcomes: American Society for Engineering Education. at 

<http://www.asee.org/public/conferences/32/papers/10058/view> 

43. Xtion PRO LIVE - Multimedia - ASUS. at <http://www.asus.com/Multimedia/Xtion_PRO_LIVE/> 

44. Developers purchase online get your sensor - Primesense. PrimeSense at 

<http://www.primesense.com/developers/get-your-sensor/> 

45. OpenCV | OpenCV. at <http://opencv.org/> 

46. Pechenizkiy, M., Calders, T., Vasilyeva, E. & Bra, P. Mining the Student Assessment Data:Lessons Drawn 

from a Small Scale Case Study. in 187–191 (2008). 

47. Ritter, S. et al. Reducing the Knowledge Tracing Space. in 151–160 (2009). 

48. Jain, A. K., Murty, M. N. & Flynn, P. J. Data clustering: a review. ACM Comput Surv 31, 264–323 (1999). 

49. Agrawal, R. & Srikant, R. Fast Algorithms for Mining Association Rules in Large Databases. in VLDB’94, 

Proceedings of 20th International Conference on Very Large Data Bases, September 12-15, 1994, Santiago de 

Chile, Chile 487–499 (Morgan Kaufmann, 1994). 

50. Piatetsky-Shapiro, G. Discovery, analysis and presentation of strong rules. 229–248 

51. Hipp, J., Güntzer, U. & Nakhaeizadeh, G. Algorithms for association rule mining &mdash; a general survey 

and comparison. SIGKDD Explor Newsl 2, 58–64 (2000). 

52. Merceron, A. & Yacef, K. Interestingness measures for association rules in educational data. in Proc. Int. Conf. 

Educ. Data Mining. Montreal, QC, Canada 57 – 66 (2008). 

53. García, E., Romero, C., Ventura, S. & Castro, C. D. An architecture for making recommendations to 

courseware authors using association rule mining and collaborative filtering. User Model. User-Adapt. Interact. 

19, 99–132 (2009). 

54. Griffiths, T. L. & Steyvers, M. Finding scientific topics. Proc. Natl. Acad. Sci. U. S. A. 101, 5228–5235 (2004). 

55. Buntine, W. & Buntine, W. Learning classification trees. Stat. Comput. 2, 63–73 (1992). 

56. Ramoni, M. & Sebastiani, P. Robust Bayes classifiers. Artif Intell 125, 209–226 (2001). 

57. Heckerman, D. Bayesian Networks for Data Mining. Data Min Knowl Discov 1, 79–119 (1997). 

58. Langley, P., Iba, W. & Thompson, K. An analysis of Bayesian classifiers. in In Proceedings Of The Tenth 

National Conference On Artificial Intelligence 223–228 (MIT Press, 1992). 

59. Vapnik, V. The Nature of Statistical Learning Theory. (Springer, 1999). 

60. Cristianini, N. & Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based 

Learning Methods. (Cambridge University Press, 2000). 

61. Han, J. & Kamber, M. Data Mining, Southeast Asia Edition: Concepts and Techniques. (Morgan kaufmann, 

2006). 

62. Hall, M. et al. The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11, 10–18 (2009). 

 

P
age 26.178.13


