
Paper ID #5766

An Educational Software Lifecycle Model Inspired by Human Physiology

Dr. Feras A. Batarseh, University of Central Florida

Feras Batarseh received the PhD degree in Computer Engineering (Software Engineering track) from
the University of Central Florida (Orlando, FL, USA) in 2011. His research interests include the field
of software engineering, and to date his focus has spanned the areas of software testing, validation and
verification, artificial intelligence, knowledge-based systems and e-learning. He is a member of the ACM,
ASEE and IEEE computer societies.

c©American Society for Engineering Education, 2013

P
age 23.157.1

AN EDUCATIONAL SOFTWARE LIFECYCLE MODEL INSPIRED

BY HUMAN PHYSIOLOGY

Abstract

Artificial Intelligence methods are frequently applied to projects of developing systems

endowed with the intellectual processes in humans, such as the ability to reason, discover

meaning, generalize, or learn from past experiences. However, the question remains, Can

a man-made design/artifact be considered conscious? This paper aims to establish a direct

relationship between the human physiology and Software Engineering, for educational

purposes. Teaching Software Engineering can be challenging in cases when taught to

non-engineering students. The class curriculum needs to be planned and structured to

match the background of the students who are taking the class. Nowadays, students from

majors other than Computer Engineering and Computer Science often are required to

register for software-related classes, usually the introductory ones. Additionally, new

fields are emerging between life sciences and software engineering, such as

bioinformatics and computational chemistry, thus, an increasing need to address such

fields. The model presented in this paper is called the Human Physiology Lifecycle

Model for Learning (HPML). It is targeted towards students in the fields of biological,

medical and life sciences (this includes biology, chemistry, medical studies, nursing,

pharmacy, bioinformatics and public health majors). Students in these fields need to

acquire the basics of engineering and software, medical software tools and a general

understanding of computers.

Human physiology had proven itself to be a successful model to follow
1
, or at least an

inspirational one for science
4
. Especially in software engineering, fields such as genetic

algorithms
3
, computer vision

4
, and computer scent recognition

2
 are all examples on how

to build software systems similar to biological systems; but could this be applied to

education? To answer this question, this paper introduces a software model that follows

the human physiology to structure different parts of a conventional software system; and

to introduce it to students. On the other hand, lifecycle models can help in illustrating the

different phases of software construction to students. HPML uses lifecycle models, for

instance, HPML equates the human immune system to a safety and security software

system (or module within a system); under this system students can learn about topics

such as viruses, malware attacks, errors, defects and relate that to similar functions in the

human body. Another example is the circulatory system; which controls the movement of

blood which is pumped from the heart to all the parts of the body. Similar to that

functionality is the data flow in a software system, and all its related topics (data latency,

data mining, system throughput…etc). It is anticipated that this model establishes a

cornerstone to a comprehensive educational lifecycle model that is fully inspired by

human body systems and their parts.

KEY WORDS

Human Physiology, Lifecycle Model, Software Engineering, Life Sciences, Artificial

Intelligence.

P
age 23.157.2

1. Introduction and Background

This section introduces a background on Software Engineering lifecycle models,

Artificial Intelligence approaches, and related Computer Science educational models.

Students in life-sciences (as well as many other majors) need to be equipped with

knowledge about software in general, and that's due to multiple reasons: 1) at different

points of their careers they will use software tools, 2) they will need to get up to speed

some of the medical equipment they use, 3) model biological and chemical

problems/solutions, and 4) have general computer/software knowledge.

1.1 Lifecycle Models:

Building software is not a random process, rather a well defined and structured

procedure. The same is said about teaching those software development procedures.

Teaching software is a challenging practice that requires planning and structured course

design. One more level of difficulty is specially present when the audience (students)

come from majors other than those related to engineering and computers. This paper

targets students with life sciences background, and the class taught is based on an

educational lifecycle named: Human Physiology Model for Learning (HPML). It is a

software lifecycle model dedicated for teaching and consists of nine modules. However,

before introducing HPML, it is important to present lifecycle models in general.

Lifecycle models can help in building software systems by controlling the software

development process. According to Sommerville
5
, the traditional Software Engineering

lifecycle phases are
5
:

1. Requirements definition: At this stage, the user’s functional, non-functional and

domain requirements are defined.

2. System and software design: The anticipated system is designed. It is usually

represented in graphs, such as data flow diagrams and sequence diagrams.

3. Implementation and coding: This is the stage where the design is transferred to code

and all system parts are implemented. In most cases, this stage consumes more time than

any other stage.

4. Integration and system testing: The system modules are integrated in this step.

Integration usually causes problems such as mismatches and miscommunication between

the modules of the system. Therefore, complete system testing is required to overcome

those difficulties.

5. Operational Maintenance: This phase takes place after the system is deployed and

while the users are using the system. It includes follow-ups and dealing with user issues.

This lifecycle is also called the Waterfall Model.

Other example lifecycle methods include the spiral model, the evolutionary development

model, the reuse–oriented model, the incremental development model and the extreme

programming model
5
.These software life-cycle models presented here are not the only

ones, but they are the best known models and have been widely used
5
. There are many

differences between these models. Using different models may lead to different results or

might require a different set of resources and different budgets. Each of the models

P
age 23.157.3

mentioned above is used for a different set of systems. Therefore, it is tapering to use

only one of these models as basis for teaching software engineering. The waterfall model

is used in many Software Engineering courses as the de-facto, but this is not the case in a

real-world software development process. To enable the students to working with

software in the real world, they need to grasp the concepts in terms that they understand

and can relate to. That is the aim of HPML.

HPML lies between the fields of Software Engineering and Artificial Intelligence (AI).

AI has been regularly used for problem solving, software development and optimization,

but not much for educational purposes. No educational lifecycle model, however, was

defined based on AI and Software Engineering combined. This paper aims to establish

that connection. In the next section, a brief background of AI is introduced.

1.2 Introduction to Artificial Intelligence Approaches:

According to the Webster’s definition, intelligent systems are “systems that perceive their

environment and take actions which maximize its chances of success.”
6
 In order to

display such functionality, the system must be indeed intelligent. Over the past 50 years

there have been many efforts towards achieving Artificial Intelligence in machines. These

efforts have resulted in significant advances in that field. Computer agents are a type of

intelligent system that can interact with humans in a realistic manner. They have been

known to beat the world’s best chess player and locate hostages in a military operation
2
.

A computer agent is an autonomous or semi-autonomous entity that can emulate a

human. It can be either physical such as a robot, or virtual such as an avatar
1
. Artificial

Intelligence raises the question of whether machines can think and learn akin to humans.

The ability to learn should be part of any system that has intelligence. Intelligent systems

must be able to adapt to changes in their environment. AI disciplines that are inspired by

the human physiology include
1
:

1. Genetic Algorithms (GA) is a method that finds a solution or an approximation to the

solution for optimization and search problems. GA use biological techniques such as

mutation, crossover and inheritance
3
.

2. Neural Networks are a learning paradigm inspired by the human nervous system. In

neural networks, information is processed by a set of interconnected nodes called

neurons
1
.

3. Machine Learning happens when the agent learns by exploring its surrounding and

figuring what actions are the most rewarding
1
.

4. Natural Language Processing (NLP) is a discipline that deals with linguistic

interactions between humans and computers. It is an approach dedicated to improving the

human-computer interaction. This approach is usually used for audio recognition
1
.

5. Computer Vision is when the computer captures and analyzes images of the 3D

world. This includes making the computer recognize objects in real-time
4
.

These five approaches above are examples of derivations from human characteristics,

other AI approaches (that are not strictly inspired by human's physiology) include:

Swarm Intelligence: A decentralized approach that forecasts problem prediction; it is

inspired by animals (such as: birds flocking and ants looking for food). This approach

P
age 23.157.4

aims to lead to a global intelligent behavior through local communication between the

objects (i.e. ants/birds)
2

.

Knowledge-based systems (expert systems): are intelligent systems that reflect the

knowledge of a proficient person. Knowledge-based systems are a specific kind of

intelligent system that makes extensive use of knowledge. They use heuristic rather than

algorithmic approaches for decision making
7
.

Reinforcement learning: is part of machine learning, and how a machine ought to take

decisions and actions based on continuous feedback on its previous actions (inspired by

psychology)
5
.

This paper aims to use AI for educational purposes (i.e. establish an educational process

that is inspired by human physiology) The rest of this paper is structured as follows, next

section introduces related work, section 2 presents the human physiology model (HPML)

with all its parts, section 3 presents results from a survey conducted at the University of

Central Florida (UCF) in Orlando, FL and section 4 presents future plans, and

conclusions.

1.3 Related Work

In a modern Software Engineering class, it is no longer sufficient to simply teach

Software Engineering students about code and generic software concepts. The field of

Software Engineering is flexible, and the content of technology taught at school will have

changed almost before students reach their first job. Researchers tried to address this

issue through different methods
8, 9, 10, 11

, such as project-driven courses and problem

based learning. However, not many methods that address this issues are presented in

literature, and not many target a certain category of students (as HPML aims to establish).

Nonetheless, some commonplace approaches include:

Problem Based Learning (PBL)
8
:PBL is a technique for constructing and teaching

courses driven by problems. The defined problems act as a incentive for student actions.

The class is presented as a set of problems, and rather than conventional knowledge,

problems drive the course. That motivates the idea of learning through a "staged

sequence of problems" presented in a unified context along with associated learning

material. The 4 phases of PBL are presented in Table 1, below. It consists of defining the

problem, then learning through steps of solving it and presenting the findings and

hypotheses
8
.

Model-Driven Engineering (MDE)
9
:MDE was created and integrated into a Software

Engineering course at Florida International University (FIU). Using MDE, class projects

are based on ongoing research to develop the Communication Virtual Machine (CVM)

technology. CVM is used to model and realize communication models created using the

Communication Modeling Language (CML- A domain-specific modeling language) and

is the is the main part of the MDE teaching system. CMV consists of models that lead the

learning process, and students can control these models and modify their flow based on

what they learnt in class
9
.

P
age 23.157.5

Table 1: Four Phases of PBL [8]

Software through game design
10

: This model focuses on the "fun factor" of projects and

teaching through gaming. In games, most of software topics could be taught, as well as

other computer science disciplines such as Networks, or Human Computer Interaction
10

.

This is illustrated in Figure 1.

Figure 1: Software Game Design [10]

Practice Oriented Software Engineering
11

: As the name implies, this model is driven only

by software projects practices. In software engineering, knowledge depends on practice

and experience more than any other exercise. Authors claim that practice is the best way

to help students when they graduate and start undergoing real practice of software

engineering. Building the practice project goes through six stages (which are the six

stages of the course), these stages are show in Figure 2 below.

 P
age 23.157.6

Figure 2: Practice Oriented Teaching [11]

As noted earlier, none of the existing models is specific to a certain category of students,

and none provides a framework for students in life sciences. This paper aims to fill that

gap, and provide a method that aids students in a specific category seize Software

Engineering principles, and prepare them to utilize its concepts and principles in the real

world whenever needed. The main contribution of this paper (HPML model) is presented

in the following section. For every system, HPML covers a number of Software

Engineering topics, these topics are listed and discussed next.

2. Human Physiology Lifecycle Model for Learning (HPML 1.0) (9 systems)

This paper introduces the first version of HPML (version 1.0). HPML could be used to

structure classes such as: Introduction to Software Engineering, Principles of Software

Engineering, Software Engineering Life Cycle Models, or Introduction to Computer

Science. Although this model is aimed towards students in life-sciences majors, it could

be also used with Computer Engineering and Computer Science students.

Modularity is a key characteristic in HPML. This section presents the modules inspired

by human body systems and equates them with a software module. HPML consists of

multiple systems (modules), each could serve as a stand-alone system, that is reusable

and transferable to other projects. Integrating all these systems into one comprehensive

system forms the complete body of the software system under study; each one of these

nine systems could be introduced separately in class. The class shall be divided into nine

chapters; tests also shall be structured into these nine modules. As part of HPML 1.0, in

this paper, more emphasis is given to two very important body systems: Nervous and

Digestive. The other seven systems are presented, however, these two systems drive the

examples and analogies in this paper. The brain is presented next within the scope of the

nervous system. Figure 3 illustrates all the human systems covered in HPML, and

presented in this paper.

2.1 The Nervous System

One of the most important functions for the nervous system is decision making
12

, which

is centralized in the brain. In some cases, however, local decisions could be taken at the

spinal cord for faster processing
12

.

P
age 23.157.7

The brain is probably the most compelling part of human body, and the most challenging

one to model
12

. Therefore, in HPML, the brain is introduced as a business-oriented brain,

which manages the other bodily parts and works as the manager of the organization.

While teaching the brain part in class, concepts such as Object Oriented (OO) design,

principles of project management, communication between programmers and quality

engineers, and data flow are introduced to the students. More about the brain is presented

in the following section.

Figure 3: Human Physiology [12]

2.1.1 The Brain

The brain manages the body like an organization. HPML equates a software component

(e.g., a Java OO class) with a corporate department or organization that provides internal

services and/or products to other organizations within the company. The company then is

equated to a complete software system.

Objects, or class instances, are identified with people and resources that work in those

organizations represented by the classes. Methods correspond to job-related activities

performed by employees that define the functional capabilities of the organization to

which they belong. Message passing is equated to inter- and intra-organization

communication conducted by employees interacting to accomplish organizational and

corporate objectives.

Clearly efficiency and resource utilization are major concerns in both cases

(organizations and software systems). This model aids managers to better understand the

software system and help in the decision making process of what entities in the

organization are consuming more/ less resources and in determining what are the most

efficient entities by means of cost and time. Definition of the brain is based on the Object

Oriented (OO) paradigm. HPML represents a common base between the two hierarchies

(OO and business) in Table 2, and relate that to human body parts. The instructor in the

class is recommended to present the brain functionality first and then discuss its

equivalent in Software Engineering.

P
age 23.157.8

Table 2: Model Equivalences for the Brain Functions

Business entity Software system Human body

Corporation OO system (usually a package) The complete body

Organization Subsystem (usually a class) Body system (i.e.

nervous system)

Management Control method(constructor) or

class(the main class)

 The Brain

Employees Class instances Body parts (such as the

hands and feet)

Work tasks(process) Class methods Human actions

Employees

communication

Messages, data flow Messages flowing from

the brain to different

body parts

Forms, memos,

documents and files

Local data, methods parameters Memory, knowledge,

and past experiences

The measures of quality and effectiveness of the two types of systems is similar, or in

better words related. The analogy of the system classes and the employees is a bit

distorted, because people in organizations can do multiple tasks (of course the method

can do multiple tasks, but a good design leads to a modular system and well defined tasks

for each method in a class). However, in the context of human physiology, humans

become sick (same as body parts), and the level of productivity changes from one day to

another. In the case of software methods (assuming a valid system), it is either work fully

or not work at all. As Table 2 indicates, both methods and employees need maintenance

(encouragements, raises, promotions in the employees’ case).

These similarities, differences and arguments establish good basis for education in class,

and keeps the student involved. Students will continuously be looking for analogies and

similarities and compare them with their field of study. Clearly the HPML analogy

cannot be 100% precise; also those issues are not the core concern of HPML. HPML's

main concern is education and the advancement of the student involvement in class.

An essential part of the Object Oriented paradigm is a class method. Methods are the

main units of work, they could be classified whether they perform a service (update or

delete) or produce a product (get the summation of two values and store them in a

variable). Similar to the employees in an organization they either produce a product like a

document or a plan, or they provide a service such as backing up the organization’s data

or make phone calls with customers. Figure 4 shows HPML's representation of the model

structure of the OO software system, and Figure 5 shows a representation of a model

structure from the business world.

Methods (presented by employees) have effect on their local data (departmental

processes and decisions), or on the global data (organizational processes and decisions)

of the class. Data is usually sent to methods with attributes (similar to messages in the

business world). The secondary service provider is a software object that the primary

service method might call to help perform its job (such as a personal assistance or a

secretary in the business world). The relation between the amount of tasks performed by

P
age 23.157.9

the employee and his/her importance in the organization is directly proportional, same is

the amount of calculations of statements executed by the method and its importance in

the class.

Figure 4: HPML Model for Object Oriented System

Figure 5: Model from an Organizational Perspective

All these analogies aim to establish an understanding related to human physiology. Using

HPML, by covering the nervous system in class, multiple software engineering topics are

discussed and covered, these are:

1. Object Oriented Programming

2. Data Flow and Data Management

3. Data Mining

4. Project Management

5. Communication

6. Human factors in Software

7. Software Maintenance

Next section introduces the Digestive System, and focuses on the human tongue muscle

as the entrance to that system. Parts of the Digestive System are equated to Software

Engineering topics and presented to students.

P
age 23.157.10

2.2 The Digestive System:

The digestive system is the provider of energy in the human body
12

. In HPML, this part

of the software system handles objects from users and other systems
12

. Other systems

might interact to provide support, feed the system with required entities. In this paper, the

tongue is the point of focus; it is the entry point and one of the most important parts of

the digestive system. This human organ is mainly responsible for food intake and

linguistic communications with the outside world. Other humans (being other systems in

this educational model) are communicated with using certain protocols/languages and are

distributed along different locations. Software systems need to be internationalized (i.e.

speak multiple languages), therefore, the tongue in HPML represents the

internationalization module in the software system.

2.2.1 The Tongue

In this section, an example is proposed, that could be used in class when presenting the

tongue muscle
12

. Software Internationalization is presented as an example; it illustrates

what could be presented/covered as part of one human body part. Students will be able to

draw similarities between a multi-linguistic person and localization of software. The

challenges of internationalizing a software is similar to that of a human learning a new

language. These similarities include: learning the structure of the language, learning

language's format, cultural differences, regional and date settings, a different currency,

different orientations, protocols and differences with the mother tongue.

Tongue/Internationalization Educational Material:

Internationalization (i18n) is the process of adjusting software systems to enable support
for multiple languages. In today’s world, software vendors need to enter the global

market to be able to expand and reach millions of users. So far, non-English language

users have accepted software as it is (English/ASCII). However, this shortcoming is not

acceptable anymore. Building multilingual software requires extra time and effort. Over

the last years, internationalization has progressed into a must-do for many businesses.

Any company/software vendor that wants to make their products global should invest

manpower, time and money to reach global users. The process of modifying the software

to include support for multiple languages, date formats, regional settings and cultural

issues is referred to as software internationalization (i18n). Internationalization is based

on localization (l10n), which is the adaptation and translation of a software system to

different languages and a number of regional, date and currency settings. The word

localization is derived from the technical term: locale
13, 14

. L10n is short for localization

(10 letters between the letters L and N) and i18n is short for internationalization (18

letters between the letters I and N). Locale files are the basis on which localization is

performed. It is important to note that the process of globalization is not a trivial process

where strings are translated and hardcoded into the system, rather, the process is done by

obtaining different files based on the settings of the machine, the desires of the user and

applying the right locales
15,16

. Example projects and organizations that are specialized in

software internationalization are: Li18nux (Linux internationalization initiative. It

focuses on a core set of Linux APIs)
13, 14

, The CITRUS Project (Comprehensive

P
age 23.157.11

Internationalization Framework towards Respectable UNIX systems. A project to

implement locales for UNIX operating systems)
18

, Mojikyo (a set of Asian double-byte

languages)
 19

, and TRON (an internationalized architecture handled by T-Engine for

embedded software systems)
20

. In the tongue module, different languages have different

orientations and fall into different groups. Dealing with these groups is accomplished by

using different code-pages and Unicode fonts. Languages fall into two main families,

single-byte (such as: French, German, and Polish) and double-byte (such as: Japanese,

Asian, Korean). Another Categorization of languages is based on their orientation. Most

languages are Left-to-Right (LTR) (such as: English, Spanish) but some are Right-to-Left

(RTL) (such as: Arabic and Hebrew)
13

. Furthermore, character encoding should be

enabled for internationalization to perform correctly; it applies to the text, database and

any other part of the system. The default encoding for a given system is determined by

the runtime locale set on the machine’s operating system. The most commonplace

character encoding format is UTF (USC transformation format) USC is the Universal

Character Set. UTF is designed to be compatible with ASCII. UTF has three types, UTF-

8, UTF-16 and UTF-32. UTF is the international standard for ISO/IEC 10646
15,16

.

Lastly, multiple currencies (ex: Dollar: $, Euro: €, Yen: ¥) and date (MM/DD/YYY or

DD/MM/YYYY) formats require support in the system
13,14

.

Presenting the material in this example in class, shall be sufficient to cover the topic of

internationalization in an introductory Software Engineering course. Using HPML, by

covering the digestive system in class, multiple software engineering topics are discussed

and covered, these are:

1. Software Communication Protocols

2. Software and Data Internationalization

3. Distributed Systems

4. ASCII, code pages, HTML and XML

5. Natural Language Processing

Next section presents the remaining seven systems of HPML.

2.3 Other HPML Human System

This section introduces seven modules of HPML covering a wide range of Software

Engineering topics. These systems are:

1. Musculoskeletal System: Sub-system that’s responsible for definitions and main

skeleton of the system such as the classes definitions mainly the header files needed and

libraries (this method already used in programming C++). By covering the

Musculoskeletal System in class, the following topics are covered: System Design,

System Planning and Software Libraries
12

.

2. Circulatory System: In the human body the circulatory system is responsible for the

movement of blood which is pumped from the heart, same as the data flow in the system.

This subsystem (body part) is responsible for data flow between objects and classes. This

subsystem is also the initiator of the system (equal to a Pacemaker in the human body-

which is the part responsible for the first heart beat of the human being). By covering the

P
age 23.157.12

Circulatory System in class, the following topics are covered: Data Analysis, UML and

other Systems and Data Flow Diagrams
12

.

3. Urinary System: The Urinary system in the human physiology is responsible for

removing the waste elements from the body, and so the same in the software systems. A

similar example is the garbage collector in java, and destructors in object oriented

programming languages. This sub-system is responsible for the destruction of un- wanted

objects such as dangling pointers. By covering the Urinary System in class, the following

topics covered: Software refactoring, Defect Detection, Software Testing, Validation and

Verification
12

.

4. Immune System: Similar to a safety and security sub-system. By covering the

Immune System in class, the following topics are covered: Software Security, Computer

Networks Security, Software Safety measures
12

.

Table 3: HPML Modules

HPML Module Software Engineering (Computer Science) Topics

The Nervous System Object Oriented Programming, Data Flow, Data

Management, Data Mining, Project Management,

Communication, Human Factors in Software, and

Software Maintenance

The Digestive System Software Communication Protocols, Software

Internationalization, Data Internationalization,

Distributed Systems, ASCII, Code Pages, HTML &

XML, and Natural Language Processing

The Musculoskeletal System System Design, System Planning, and Software Libraries

The Circulatory System Data Analysis, UML, and Data Flow Diagrams

The Urinary System Software Refactoring, Validation and Verification,

Defect Detection, and Software Testing

The Immune System Software Security, Computer Networks, Security, and

Software Safety measures

The Endocrine System Data Communication, Web Protocols, and Network

Communication

The Reproductive System Inheritance, Sub-systems Design, and Software

Integration

The Integumentary System Computer Sensors, Computer Graphics, Computer

Vision, and GUI Design

5. Endocrine System: The endocrine hormones serve as signals from one body system to

another. In our proposed model this subsystem is responsible for data flow between

objects, and messaging between system parts. By covering the Endocrine System in class,

the following topics are covered: Data Communication, Web Protocols, and Network

Communication
12

.

6. Reproductive System: Sub system responsible for creating instances of objects,

inheritance functionalities and relations between children, super classes and siblings

similar to the human reproduction system (example: constructors creating instances of

P
age 23.157.13

objects). By covering the Reproductive System in class, the following topics are covered:

Inheritance, Sub-systems design, Software Integration
12

.

7. Integumentary System: In the human body, this system serves as a major sensory

interface with the outside world just like the software’s interface sub-system (OpenGL in

C++ and Swing in Java are examples of interface classes). By covering the

Integumentary System in class, the following topics are covered: Computer Sensors,

Computer Graphics, Computer Vision, GUI design
12

. Table 3 presents all the HPML

modules and their parts.

The next section presents the experimental survey, and the last section (4) presents

conclusions and future plans for this research.

3. Experimental Survey

To collect feedback regarding the HPML approach, an informal experiment was

conducted using surveys with 95 undergraduate students at the University of Central

Florida. The students were asked if they prefer such an approach, and if they think that

this is a better approach to learning Software Engineering. The results were grouped into

4 categories (shown in Figure 6) based on the students answers.

Category A: Students who think that the approach is good, but prefer to be conservative

in their answer until they know more about HPML, and observe an actual course taught

using its structure.

Category B: Students who valued the idea very much and hope to register for a class

structured using HPML.

Category C: Students who disregarded the approach and thought its totally ineffective.

Category D: Students who think it's slightly effective but still prefer to learn using the

classical approach.

The results of the survey are presented in Figure 6.

Figure 6: HPML Survey Results at UCF

Most students (54) provided very positive feedback, and only few of them (8) had very

negative opinions. The rest of the students (Categories A and D) had neutral responses.

P
age 23.157.14

4. Conclusion and Future Plans

This paper presents a software life cycle model for software development (HPML). The

digestive and nervous systems were presented in an extensive manner in this paper, other

systems were also presented as part of HPML (ex: Circulatory, Immune and

Reproductive). The main goal of this model is to teach Software Engineering for students

in life sciences using structures and terms that they can relate to. Other students might

benefit from this model too, particularly students who have focus between sciences and

software, an example would be majors such as bioinformatics, where the student actually

acquires knowledge from multiple fields. HPML was surveyed with 95 students at the

University of Central Florida with successful results (54 students gave very positive

feedback).

In this paper, nine systems were presented, an educational material example was

discussed (software internationalization) and two major body parts were introduced in

detail. All the systems (shown in Figure 3) were covered and all the modules were

equated with Computer Science topics, presented in Table 3.

Future plans include using this model for teaching at the university, surveying it with

more students at different educational institutions and improving it based on their

feedback. Other plans include developing HPML 2.0 and providing a deeper insight into

all the systems. HPML 2.0 will include defining the rest of the human physiology such as

the Respiratory and Lymphatic systems.

Bibliography:

[1] Luger, G. F. “Artificial Intelligence: structures and strategies for complex problem solving” Fourth

Edition, Published by Addison Wesley, 2002

[2] Book: Munakata, T., "Fundamentals of the New Artificial Intelligence: Neural, Evolutionary, Fuzzy

and More (Texts in Computer Science)", Second Edition, February 4, ISBN-10: 184628838X, 2008

[3] Book: Haupt, R., and Haupt, S. "Practical Genetic Algorithms", Second Edition, Wiley-InterScience, A

John Wiley & Sons, INC., Publication, 2004

[4] Book: Shah, M., "Fundementals of Computer Vision", Published at the University of Central Florida,

Orlando, FL, 1992

[5] Sommerville, I. “Software Engineering” 8th edition, Chapter 4, published by Addison Wesley, 2007

[6] The Merriam Webster Dictionary, Merriam Webster Incorporated 2009, http://www.merriam-

 webster.com/.

[7] Gonzalez, A.J. and Dankel, D. " The Engineering of Knowledge-Based Systems, Theory and Practice"

 Published by Prentice Hall 1993

[8] Barrows, H.S. "The Tutorial Process, Problem-Based Learning", Southern Illinois University School of

 Medicine, Springfield, IL., 1992

[9] Clarke, P. J., Wu, Y., Allen, A. A. "Experiences of Teaching Model Driven Engineering in a Software

 Design Course", International Conference of Model Driven Engineering Languages and Systems

 Educators Symposium, IEEE, 2009

[10] Claypool, K., and Claypool, M. "Teaching Software Engineering Through Game Design", ITiCSE

 2729, Monte De Caparica, Portugal, 2005

[11] Coyne, R. F. et. al, "Teaching More Comprehensive Model-Based Software Engineering: Experience

 With Objectory’s Use Case Approach". 8th Conference on Software Engineering Education

P
age 23.157.15

 (CSEE'95), New Orleans, LO, Lecture Notes in Computer Science, Linda Ibraham (Ed), Springer

 Verlag. April 1995

[12] Huang, W., "Anatomy and Physiology Series Introduction to Human Physiology Rapid Learning

Center", Rapid Learning Inc. http://www.RapidLearningCenter.com

[13] Esselink, B. "A Practical Guide to Localization." John Benjamins Publishing Company,

 Amsterdam/Philadelphia. ANSI Z3948-1984 pp. 1-24, 2000

[14] Kresten, G. E., Kresten, A. A., and Rakowski, W. M., "Proceeding of the Journal of Global

 Information Management", Idea Group Publishing, pp.86-101, 2002

[15] Luong, T.V., Lok, J.S., Taylor, D.J. and Driscoll, K. "Internationalization: Developing Software

 For Global Markets." John Wiley & Sons, Inc. New York, USA, ISBN: 0-471-07661-9, 1995

[16] Aykin, D. "Usability and Internationalization of Information Technology." Lawrence Erlbaum

 Associates, Inc. New Jersey, USA, ISBN: 0-8058-4478-3, 2005

[17] The Linux Internationalization Initiative-li18nux (http://www.li18nux.org/)

[18] The Citrus Project (http://citrus.bsdclub.org/)

[19] The Mojikyo Project (http://www.mojikyo.org/)

[20] The TRON project (http://www.tron.org/index-e.html)

P
age 23.157.16

