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Abstract 
 
In this paper, an optimization technique based on intelligent symbolic regression is presented.  
Intelligent symbolic regression methodology seeks to replace implicit functions of the original 
design optimization problem with an approximation model less expensive to evaluate.  In order 
to address the issue of the high-computational cost of the implicit function evaluation, genetic 
programming methodology has been investigated to build approximation models of the best 
possible quality. The goal of genetic programming is to evolve mathematical expressions with no 
assumption about the structure, which is given as part of the solution. Once the symbolic 
regression model is available, the Genetic Algorithm, on subsequent runs, searches the 
inexpensive regression model for the global optimum, only rarely sampling the high-fidelity 
model.  The efficiency of the proposed method has been tested on a set of standard optimization 
test problems and it was found to reduce the computational overhead by a significant amount 
without much loss of accuracy. Test results of optimization problems revealed that real–valued 
representation technique outperforms the binary representation technique. Such a representation 
is of particular concern for engineering applications, which motivated the present work. 
 

 
Introduction 

 
Optimization may be thought of in a simplistic fashion as the process of finding  the best answer.  
The pool of potential solutions may be large, complex and computationally expensive.  
Optimization attempts to find the best answer for the information available.  Many techniques 
exist from simple trial-and-error to more complex calculus-based methods.  Other approaches 
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mimic natural phenomena such as the annealing of metals or biological evolution.  A particular 
algorithm of this type, called the Genetic Algorithm, is the focus of this work.  However, the 
algorithm is very slow to converge, often requiring many thousands of function calls to  
converge to a global optimum.  This work proposes a new version of the Genetic Algorithm 
(GA) that improves computational efficiency by using Genetic Programming (GP) techniques to 
build an inexpensive symbolic regression model before it searches for the global optimum.   
 
2.1 Genetic Algorithms 
 
The Genetic Algorithm was first proposed  as a way to model Darwin’s theory of evolution or 
“natural selection” in nature.  The Genetic Algorithm was developed into a stochastic 
optimization procedure by Holland [14] in the 1970s. The tendency of calculus-based methods to 
get stuck in local optima and the high computation cost of enumerative procedures increased the 
popularity of stochastic search algorithms.  In recent years, the GA has found many applications 
in engineering design optimization [11].  In the standard algorithm, the objective function to be 
maximized is called the “fitness function.”  The input variables to the fitness function, or design 
variables, are usually coded as fixed-length binary strings and concatenated together into one 
long binary string called a “genotype,” which is representative of chromosomal material in a 
living creature.   
 
The Genetic Algorithm is modeled on the basis of Darwin's theory of natural selection.  It uses a 
semi-random, or heuristic, search method to explore the design space.  The initial runs of the 
Genetic Algorithm are used for exploring the design space and the later runs are used for 
exploitation or convergence.  The ability to maintain a balance between exploration and 
exploitation makes the Genetic Algorithm less susceptible to the problems of local convergence 
than many other stochastic algorithms.  
 
The Genetic Algorithm involves: 

1. Creation of an initial population of individuals representing the design space. 
2. Reproduction of successive generations on the basis of a fitness function.  

The population size is the most important factor in the Genetic Algorithm.  The population size 
affects efficiency as well as the computation time.  A small population will lead to poor results 
when the number of variables is large, because the population provides an insufficient sample 
size for most hyperplanes.  A large population is more likely to have representatives from a large 
number of hyperplanes.  As a result, premature convergence to local minima is avoided.  On the 
other hand, a large population requires more computation per generation, possibly resulting in a 
slow rate of convergence. 
 
The initial population so created is usually encoded in a binary format called a chromosome.  
This chromosome then carries all the essential information about that particular individual.  If a 
parameter (X) can vary between a minimum value MIN and a maximum value MAX, the 
following formula is used to determine a random value for the parameter X for each member of 



the initial population: 
 
Xinitial = MIN + RandomNumber * (MAX – MIN)     (1) 
 
To convert these real number values to binary strings, first the real numbers are converted to 
base 10 integer values, using the formula: 
 

Xint10 =  round ⎟
⎠
⎞

⎜
⎝
⎛

MIN-MAX
MIN)J-(Xreal       (2) 

where, 
 
Xreal  =   real number value; 
 
Xint10  =  base 10 integer; 
 
J  =  2P - 1; 
 
P  =  binary string length (say 8 or 12 bits) 
For example, if Xreal = 3.567, with a string of length 8, a maximum value of 10 and a minimum 
of 0, the base 10 integer value is: 
 

Xint10  =  round ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0)-(10
0)255 - (3.567   =  91     (3) 

 
In binary, this value is 01011011. 
 
Combining the encoded strings of all parameters together creates a chromosome.  If there were 
two parameters, which in binary form were 11001010 and 10011101, the chromosome would be 
formed by concatenating the two binary strings together to get 1100101010011101. 
 
The selection of the mating parents is  often carried out by “roulette wheel” selection.  The 
individuals are mapped to adjacent sectors of a circle, such that each individual's sector is equal 
in size to its relative fitness much like the slots on a roulette wheel.  A random number is 
generated and the individual whose sector spans the random number is selected. This is 
equivalent to spinning the roulette wheel.  The “wheel” is spun twice to select two individuals 
who will mate.  Because individuals who are more fit have larger slots on the wheel, they are 
more likely to be chosen to mate.  Mates are chosen in this fashion until the desired number of 
mating pairs are selected.  The fitness of the function is obtained by substituting the values of 
variable X  in the function f.  
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After computing all the fitness values for the population, the sum of the fitnesses is computed.  
This sum is denoted by “Sum” at the bottom of the Fitness column, as shown in the Table 1 
below.  The average fitness is obtained by dividing the sum of fitnesses by the number of 
parents.   
This is denoted by “Average” in the table.  
For example: Suppose we wish to maximize: 

f  =  x1
2 + x2

2 such that –2  (x≤ 1,x2) ≤  5, with the starting information as follows: 

Variable Rand No Real 
value 

Base10 Binary Fitness Fit/Sum CumProb 

X1-1 0.503 1.521 64 1000000 2.9924 0.0506 0.0506 
X2-1 0.168 -0.824 21 0010101    
X1-2 0.846 3.922 107 1101011 16.394 0.2773 0.3279 
X2-2 0.142 -1.006 18 0010010    
X1-3 0.597 2.179 76 1001100 4.7491 0.0803 0.4083 
X2-3 0.281 -0.033 36 0100100    
X1-4 0.244 -0.292 31 0011111 19.489 0.3297 0.7379 
X2-4 0.915 4.405 116 1110100    
X1-5 0.211 -0.523 27 0011011 2.95 0.0499 0.7878 
X2-5 0.052 -1.636 7 0000111    
X1-6 0.708 2.956 90 1011010 12.544 0.2122 1 
X2-6 0.007 -1.951 1 0000001    
    Sum 59.119   
    Average 9.8532   
 
Table1 Genetic Algorithm for the Function f  =  x1

2 + x2
2 

 
The ratio of fitness over sum is obtained by dividing every value of fitness, in the fitness column 
by the sum.  This value denotes the share the present fitness value has in the whole population.  
The cumulative probability is calculated by successively adding the fitness over sum ratio values.  
The cumulative probability value corresponds to the area that the present variable will have on 
the roulette wheel.  
 
The mating pool is determined by drawing out six random numbers such as the following: 0.219, 
0.480, 0.902,0.764, 0.540, 0.297.  The range of cumulative probability within which these 
random numbers lie is determined, and the parent which corresponds to this range is chosen to 
mate.  
 
For example: The first random number drawn is 0.219.  This value lies between cumulative 
probability range 0.0506 and 0.3279 and this corresponds to parent 2.  Hence parent 2 is chosen 
to mate. 
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Therefore, the parents chosen to mate in this example are 2 ,4, 6, 5, 4, 2.  The parents are mated 
in the order they were drawn.  Thus, 2 mates with 4, 6 with 5, and 4 with 2.  Notice that parents 2 
and 4 with high fitness values were chosen to mate twice, whereas parents 1 and 3 with lower 
fitness values were never chosen to mate. 
 

In order to search other points in the search space, some variation is introduced into the new  
population by means of genetic recombination operators.  The most important recombinational 
operator is crossover.  The crossover operator exchanges the portions of two parents in the 
population to produce new individuals for the next generation.  For example, if the crossover 
point is picked randomly (say 9), all the bits after the 9th position in Parent 1 are replaced by all 
the bits after the 9th position in Parent 2, and vice versa:  
 

Before Crossover       After Crossover 

Parent 1: 11001011   00010110    Child l:  11001011 10100011 

Parent 2: 01011000   10100011     Child 2: 01011000 00010110 

Crossover serves two complementary search functions.  First, it provides new points for 
further testing within the hyperplanes already represented in the population.  Second, 
crossover introduces representatives of new hyperplanes into the population. 

After producing the new generation, the encoded parameters are decoded and are substituted into 
the fitness function.  The decoding is done with the following equation: 

Xreal =  + MIN ⎟
⎠
⎞

⎜
⎝
⎛

J
MIN)X-(MAX 10      (4) 

Example: 
 
Given a chromosome for two parameters (X1, X2) each of string length 10: 
 
00101101111011011100 
 
Partitioned into: 
X1 : 0010110111  X2:1011011100 
 
Minimum and maximum values: 

5  X≤ 1  ≤   10   1  ≤X2  ≤   25 
  
Base 10 integer values: 
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X1,int 10 = 183   X2,int 10 = 732 
 
Continuous real values: 
X1,real = 5.894   X2,real = 18.17 
 
The real values obtained after crossover are then used in the fitness equation and new fitness 
values are computed.  The sum of the fitnesses is obtained by adding all the fitness in a 
generation.  The average is computed by dividing the sum by the number of children in the 
generation.  The fitness over sum ratio is calculated by dividing the fitness of each child by the 
sum of fitnesses.  The cumulative probability is calculated by adding the values in the fitness 
over sum ratio. 
 
The other operator which causes variation in the population is “mutation.”  Mutation is the 
random change of a gene from 0 to 1, or 1 to 0.  A random number is generated for every gene, 
and if the random number is greater than the mutation probability, then the gene is flipped from 
either 0 to 1 or 1 to 0.  The mutation operator offers the opportunity for new genetic material to 
be introduced into the population.   
 
When creating a new population by crossover and mutation, the best chromosome might be lost.  
Hence, “elitism”,  the procedure by which the weakest individual of the current population is 
replaced by the fittest individual of the previous population, is often employed.  This ensures that 
the best design ever encountered will survive to the final generation. 
 
2.1.1 Fitness Scaling 
 
The fist step in the roulette wheel selection process is to scale all function values to be positive in 
order to assign a positive area on the roulette wheel. The following scaling scheme is used. The 
highest function value fh and the lowest function value fl are evaluated . The function values are 
converted to positive values by adding the quantity  
C=0.1* fh –1.1* fl         (5) 
to each of the function values. Thus, the new highest value will be  
1.1* ( fh –  fl  )         (6) 
and the lowest value  
0.1* ( fh –  fl  )         (7) 
Each of the new values is then divided by  
D = max(1, fh + C)       (8) 
 
2.1.2 Genetic Algorithm Steps 
 
The basic Genetic Algorithm includes the following steps: 
1. Start with a population of designs.  These are often generated randomly.  A design is 
      coded in binary version to form a "Chromosome." 
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2. Determine the mating pool.  This is done using a "Roulette Wheel Selection." 
3. Perform "Crossover," by randomly selecting the crossover point.  A new population is 
      created. 
4. Perform "Mutation" and "Elitism." Mutation is the process of introducing a random     
      change in the generation once in a while. Elitism makes sure that the worst child in    
      the present generation is replaced by the best parent in the previous generation. 
5. Decode the population strings and substitute into the fitness function to get the new   
      fitness values. 
6. Repeat steps 2-5 until the algorithm converges to a solution. The algorithm has converged   
      when the difference between the maximum and minimum scaled fitness is compared to a  
      user defined convergence factor.  If the Genetic Algorithm does not converge  
      within a user-defined number of maximum generations, the elite fitness value attained  
      to that point is returned.  
 
2.1.3 Real Valued Crossover 
 
A drawback of binary single-point crossover, that it involves loss of precision when converting 
back and forth between real and binary numbers, is eliminated by using real valued crossover.  
Since this conversion is eliminated in real-valued representation, it typically gives more accurate 
results for problems with continuous real-valued variables. 
In real-valued crossover, a random number “r” is drawn.  The offspring are obtained by the 
following equation.  
 
Xchild1 = Xparent1 + r* ( Xparent2 - Xparent1)    (9) 
Xchild2 = Xparent1 +(1- r)* ( Xparent2 - Xparent1)    (10) 
 
 
2.2.1 Introduction to Genetic Programming: 
 
John Koza (1992) introduced the idea of Genetic Programming, which uses the Genetic 
Algorithm to “evolve” a computer program to accomplish a specific goal.  To implement Genetic 
Programming,  randomly generated computer programs are represented as parse trees, and tested 
to see how well they perform the desired goal.  The best of the programs are selected to “mate” 
with each other and exchange genetic information, which amounts to swapping whole branches 
on the parse tree (from beyond a random crossover point) between mating programs.  This 
evolutionary operator (crossover) and a few others (such as random mutation) produce changes 
in the population of programs.  The new generation of programs is also tested to see how well 
each program satisfies the goal.  Some of the changes will turn out to be beneficial while some 
will be damaging, but by imitating Darwin’s principle of “survival of the fittest,” the fitness of 
the overall population improves from one generation to the next until one of the programs 
achieves the desired goal.  This is all accomplished without direct human intervention.  One of 
the sample applications given in Koza (1992) is symbolic regression, which is called Automatic 



Function Definition (AFD) in that book.  The unique feature of AFD is that it can automatically 
find the best symbolic function for conventional regression.  However, one limitation of AFD is 
that it is not well suited to find the coefficients of the regression model that are needed to fit the 
model to the data.  
 
In Genetic programming randomly generated computer programs are represented as parse trees 
as shown above. The crossover points p1 and p2 are chosen randomly. The entire branch below 
crossover point p1 is replaced by the entire branch under crossover point p2. In this way new 
mathematical equations are generated. 
 
In this research, Genetic Programming is used to create multiple symbolic regression models are 
created. A grid size is chosen and the original function is sampled along this grid. The symbolic 
regression model that has the lowest least square error when compared to the real objective is 
selected for optimization.   
 
An example of genetic programming is given below.  
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Figure - 1 Genetic Programming Crossover 
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Figure - 2 Genetic Programming Crossover 

Implementation Strategy 
 

For the purpose of this research, the following strategy was used: 
1. Using Genetic Programming multiple symbolic regression models are created.    
2. Standard optimization techniques are used to adjust the coefficients of each symbolic 

regression model to minimize the least squared error between the model and the 
actual function. 

3. The model that has the lowest error when compared to the real objective is selected 
for optimization .   

4. The Genetic Algorithm searches for the global optimum using the inexpensive 
symbolic regression model, rather than calling the expensive analysis model.   

5. Steps 3 will be repeated m times, or until the convergence criterion is satisfied.  
6. The elite fitness and variable values will be obtained and the value of the function 

calculated. This value will be compared with the real objective function value to 
calculate the average percentage error. 
 

3.2 Testing Strategy 
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The following testing strategy is proposed 

1. Identify the problems to be solved by the proposed algorithm and order them in a 
sequence to be tested. 

2. For the first two sample problems, test runs will be taken for the Genetic Algorithm using 
binary crossover and real valued crossover.  The solution accuracy and the number of 
generations taken to converge will be compared.  After comparison, the best 
representation scheme will be adopted for other sample problems. 

3. Test the remaining problems based on this representation technique. 
4. For every test problem run, analyze the variation in Grid Size on the average error. 
5. Analyse the results using graphs and surface plots. 

 
Discussion of Results 

The developed methodology has been applied to two types of problems, the standard 
optimization test problems and engineering problems.  
 

Problem 
Type 

Average 
Function 
Calls to 
Optimize 
Real 
Function 

Average 
Function 
Calls to 
Create 
Regression 
Model 

Grid Size 

Percentage 
Saving in 
Computational 
Effort 

Average 
Error 

DeJong’s First 
Function 1321 100 10 1221% 2.5% 

DeJong’s 
Fourth 
Function 

1841 81 9 2172% 1% 

Rosenbrock’s 
Function 2401 81 9 2864% 2% 

2 Bar Truss 
Problem 1521 400 20 280.25% 5% 

Spring 
Problem 4041 169 13 2291% 8% 

 
Table 2 - Results of Test Problems 

 
From the above table, it can be seen that a significant reduction in computational effort has been 
achieved using the proposed methodology. In the above table, only the time taken to compute the 
regression model is taken into account and the time taken to optimize the regression model is 
neglected. This is done because the time taken to optimize is fairly small as compared to time 



taken to create the regression model. 
Also, from the above table it can be concluded that fairly correct approximations are achieved 
using the proposed methodology. The error is less in case of standard optimization problems like 
DeJong’s function and Rosenbrock’s function. The error is higher in engineering problems 
because the constraints in these problems are converted to penalty functions which have an 
approximate weighting factor. When the penalty functions are less the average error is less, and 
vice- versa.  The truss problem has four penalty functions and the average error is 5%, while the 
spring problem has nine penalty functions and the average error is 8%. Also, in the case of the 
spring problem the average error was 8% using the real objective optimization, requiring 4041 
function calls. The proposed method required an average of 2480 function calls to achieve the 
same range of accuracy.  
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Figure 3 - Average Error Using Binary and Real Representation for Rosenbrock’s Function  
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Variation in Error by Change in Grid Size
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Figure 4 - Average Error Using Binary and Real Representation for DeJong’s Fourth Function 

 
The graphs in Figure 3 and Figure 4 show the advantage of using real-valued crossover over 
binary crossover.  In binary single-point crossover, one of the design variables remains the same 
after crossover. Hence, it searches along straight lines.  However, in real point crossover because 
of the random number, both the design variables are altered also, the real valued representation 
does not suffer from the loss of precision associated with converting back and forth between 
binary and real numbers.  As a result real-valued crossover has far lower percentage error than 
binary crossover.  In case of Rosenbrock’s function, the average percentage error using binary 
representation is more that 2% while the average error using the real representation is less than 
2%. For Dejong’s Fourth function, the average percentage error using the binary representation 
is approximately 8% while the average error using the real representation is less than 1%. Hence, 
real- valued crossover is used in this research for solving the next three optimization problems.  
 
Generally, a large number of points in the plan of experiments are desirable in order to 
provide more information to the Genetic Programming algorithm.  
Grid size tests were performed ranging from a grid size of two to ten.  Standard optimization 
problems and engineering problems were included in this test.  The results in Figures 5-7 show 
that the higher the grid size, the better the approximation. 
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Figure 5 - Average Error Using Real Representation for DeJong’s First Function 
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Figure 6 - Average Error Using Real Representation for 2 Bar Truss 
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Variation in Error by Change in Grid Size
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Figure 7 - Average Error Using Real Representation for Spring Problem 

 
A history of runs is presented in the surface plots in Figure 8- Figure15.  It can be clearly seen 
that the surface of the function becomes smoother as the size of the grid is increased.  Achieving 
a good balance between the accuracy and computational overhead was one of  the main 
objectives of this research work.  A grid size of two does not give enough information to form a 
regression model. As a result, the average error is high; 22% in the case of the truss problem. 
Also, increasing the grid size beyond a certain extent does not further reduce the average error.  
A grid size of 10 gives good results with an average error of less than 1% in the case of DeJong’s 
function.  From the results, it can be fairly concluded that, in order to reduce the computational 
overhead without loss of accuracy, we can start with a grid size of four.  If  sufficient accuracy 
has not been achieved, the grid size can be incremented in steps of two, up to a maximum grid 
size of 10. 
 
Surface Plot Showing the Effect of Variation in Grid Size for DeJong’s Fourth Function 
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Figure 8 - Real Objective Optimization Using DeJong’s Fourth Function              Figure 9 - DeJong’s Fourth Function Grid Size = 4 
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            Figure 10 - DeJong’s Fourth Function Grid Size = 16           Figure 11 - DeJong’s Fourth Function Grid Size = 100 

 
Surface Plot Showing the Effect of Variation in Grid Size for 2 Bar Truss 
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        Figure 12 - Real Objective Optimization of 2 Bar Truss                          Figure 13 - Optimization of 2 Bar Truss for Grid Size = 25 
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          Figure 14 - Optimization of 2 Bar Truss for Grid Size = 64     Figure 15 - Optimization of 2 Bar Truss for Grid Size = 100 

  
 

5.1 Summary and Conclusions 
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In this thesis, an optimization technique based on symbolic regression has been presented.  
Intelligent symbolic regression methodology seeks to replace computationally expensive 
functions of the original design optimization problem with an approximation model less 
expensive to evaluate.  In order to address the issues of the high-computational cost of the 
original function evaluation, genetic programming methodology has been investigated to build 
approximation models of the best possible quality. The goal of genetic programming is to evolve 
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mathematical expressions with no assumption about the structure, which is given as part of the 
solution. Once the symbolic regression model is available, the Genetic Algorithm, on subsequent 
runs, searches the inexpensive regression model for the global optimum.  The efficiency of the 
proposed method has been tested on a set of standard optimization test problems and it was 
found to reduce the computational overhead by a significant amount without much loss of 
accuracy. Test results of optimization problems revealed that the real representation technique 
outperforms the binary representation technique. Such a representation is of particular concern 
for engineering applications, which motivated the present work. 
 
5.2.1 Recommendations for Future Work 

1. Test the symbolic regression methodology on problems with larger number of design 
variables. 

2. Incrementally build up the grid to minimize function calls. 
3.  Programmatically determine the optimum grid size beyond which the average error 

does not fall. 
4.  Apply the techniques to engineering problems of extreme complexity where more 

traditional techniques are not applicable because of the prohibitive computational 
cost. 

5. Improve the computational efficiency of the genetic algorithm, particularly, the 
evaluation of tuning parameters like the size of the population, maximum generations, 
crossover and mutation probabilities and the convergence factor. 

6. Use other Artificial Intelligence techniques like Neural Networks for optimizing the 
regression model and comparing it with the Genetic Algorithm. 
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