

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

Session XXXX

An Improved Genetic Algorithm Using Intelligent Symbolic Regression

 Mohammed Shahbazuddin

Mechanical Engineering Department,
University of Louisiana at Lafayette

 Dr. Terrence. L Chambers

Mechanical Engineering Department,
University of Louisiana at Lafayette

Abstract

In this paper, an optimization technique based on intelligent symbolic regression is presented.
Intelligent symbolic regression methodology seeks to replace implicit functions of the original
design optimization problem with an approximation model less expensive to evaluate. In order
to address the issue of the high-computational cost of the implicit function evaluation, genetic
programming methodology has been investigated to build approximation models of the best
possible quality. The goal of genetic programming is to evolve mathematical expressions with no
assumption about the structure, which is given as part of the solution. Once the symbolic
regression model is available, the Genetic Algorithm, on subsequent runs, searches the
inexpensive regression model for the global optimum, only rarely sampling the high-fidelity
model. The efficiency of the proposed method has been tested on a set of standard optimization
test problems and it was found to reduce the computational overhead by a significant amount
without much loss of accuracy. Test results of optimization problems revealed that real–valued
representation technique outperforms the binary representation technique. Such a representation
is of particular concern for engineering applications, which motivated the present work.

Introduction

Optimization may be thought of in a simplistic fashion as the process of finding the best answer.
The pool of potential solutions may be large, complex and computationally expensive.
Optimization attempts to find the best answer for the information available. Many techniques
exist from simple trial-and-error to more complex calculus-based methods. Other approaches

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

mimic natural phenomena such as the annealing of metals or biological evolution. A particular
algorithm of this type, called the Genetic Algorithm, is the focus of this work. However, the
algorithm is very slow to converge, often requiring many thousands of function calls to
converge to a global optimum. This work proposes a new version of the Genetic Algorithm
(GA) that improves computational efficiency by using Genetic Programming (GP) techniques to
build an inexpensive symbolic regression model before it searches for the global optimum.

2.1 Genetic Algorithms

The Genetic Algorithm was first proposed as a way to model Darwin’s theory of evolution or
“natural selection” in nature. The Genetic Algorithm was developed into a stochastic
optimization procedure by Holland [14] in the 1970s. The tendency of calculus-based methods to
get stuck in local optima and the high computation cost of enumerative procedures increased the
popularity of stochastic search algorithms. In recent years, the GA has found many applications
in engineering design optimization [11]. In the standard algorithm, the objective function to be
maximized is called the “fitness function.” The input variables to the fitness function, or design
variables, are usually coded as fixed-length binary strings and concatenated together into one
long binary string called a “genotype,” which is representative of chromosomal material in a
living creature.

The Genetic Algorithm is modeled on the basis of Darwin's theory of natural selection. It uses a
semi-random, or heuristic, search method to explore the design space. The initial runs of the
Genetic Algorithm are used for exploring the design space and the later runs are used for
exploitation or convergence. The ability to maintain a balance between exploration and
exploitation makes the Genetic Algorithm less susceptible to the problems of local convergence
than many other stochastic algorithms.

The Genetic Algorithm involves:

1. Creation of an initial population of individuals representing the design space.
2. Reproduction of successive generations on the basis of a fitness function.

The population size is the most important factor in the Genetic Algorithm. The population size
affects efficiency as well as the computation time. A small population will lead to poor results
when the number of variables is large, because the population provides an insufficient sample
size for most hyperplanes. A large population is more likely to have representatives from a large
number of hyperplanes. As a result, premature convergence to local minima is avoided. On the
other hand, a large population requires more computation per generation, possibly resulting in a
slow rate of convergence.

The initial population so created is usually encoded in a binary format called a chromosome.
This chromosome then carries all the essential information about that particular individual. If a
parameter (X) can vary between a minimum value MIN and a maximum value MAX, the
following formula is used to determine a random value for the parameter X for each member of

the initial population:

Xinitial = MIN + RandomNumber * (MAX – MIN) (1)

To convert these real number values to binary strings, first the real numbers are converted to
base 10 integer values, using the formula:

Xint10 = round ⎟
⎠
⎞

⎜
⎝
⎛

MIN-MAX
MIN)J-(Xreal (2)

where,

Xreal = real number value;

Xint10 = base 10 integer;

J = 2P - 1;

P = binary string length (say 8 or 12 bits)
For example, if Xreal = 3.567, with a string of length 8, a maximum value of 10 and a minimum
of 0, the base 10 integer value is:

Xint10 = round ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0)-(10
0)255 - (3.567 = 91 (3)

In binary, this value is 01011011.

Combining the encoded strings of all parameters together creates a chromosome. If there were
two parameters, which in binary form were 11001010 and 10011101, the chromosome would be
formed by concatenating the two binary strings together to get 1100101010011101.

The selection of the mating parents is often carried out by “roulette wheel” selection. The
individuals are mapped to adjacent sectors of a circle, such that each individual's sector is equal
in size to its relative fitness much like the slots on a roulette wheel. A random number is
generated and the individual whose sector spans the random number is selected. This is
equivalent to spinning the roulette wheel. The “wheel” is spun twice to select two individuals
who will mate. Because individuals who are more fit have larger slots on the wheel, they are
more likely to be chosen to mate. Mates are chosen in this fashion until the desired number of
mating pairs are selected. The fitness of the function is obtained by substituting the values of
variable X in the function f.

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

After computing all the fitness values for the population, the sum of the fitnesses is computed.
This sum is denoted by “Sum” at the bottom of the Fitness column, as shown in the Table 1
below. The average fitness is obtained by dividing the sum of fitnesses by the number of
parents.
This is denoted by “Average” in the table.
For example: Suppose we wish to maximize:

f = x1
2 + x2

2 such that –2 (x≤ 1,x2) ≤ 5, with the starting information as follows:

Variable Rand No Real
value

Base10 Binary Fitness Fit/Sum CumProb

X1-1 0.503 1.521 64 1000000 2.9924 0.0506 0.0506
X2-1 0.168 -0.824 21 0010101
X1-2 0.846 3.922 107 1101011 16.394 0.2773 0.3279
X2-2 0.142 -1.006 18 0010010
X1-3 0.597 2.179 76 1001100 4.7491 0.0803 0.4083
X2-3 0.281 -0.033 36 0100100
X1-4 0.244 -0.292 31 0011111 19.489 0.3297 0.7379
X2-4 0.915 4.405 116 1110100
X1-5 0.211 -0.523 27 0011011 2.95 0.0499 0.7878
X2-5 0.052 -1.636 7 0000111
X1-6 0.708 2.956 90 1011010 12.544 0.2122 1
X2-6 0.007 -1.951 1 0000001
 Sum 59.119
 Average 9.8532

Table1 Genetic Algorithm for the Function f = x1

2 + x2
2

The ratio of fitness over sum is obtained by dividing every value of fitness, in the fitness column
by the sum. This value denotes the share the present fitness value has in the whole population.
The cumulative probability is calculated by successively adding the fitness over sum ratio values.
The cumulative probability value corresponds to the area that the present variable will have on
the roulette wheel.

The mating pool is determined by drawing out six random numbers such as the following: 0.219,
0.480, 0.902,0.764, 0.540, 0.297. The range of cumulative probability within which these
random numbers lie is determined, and the parent which corresponds to this range is chosen to
mate.

For example: The first random number drawn is 0.219. This value lies between cumulative
probability range 0.0506 and 0.3279 and this corresponds to parent 2. Hence parent 2 is chosen
to mate.

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

Therefore, the parents chosen to mate in this example are 2 ,4, 6, 5, 4, 2. The parents are mated
in the order they were drawn. Thus, 2 mates with 4, 6 with 5, and 4 with 2. Notice that parents 2
and 4 with high fitness values were chosen to mate twice, whereas parents 1 and 3 with lower
fitness values were never chosen to mate.

In order to search other points in the search space, some variation is introduced into the new
population by means of genetic recombination operators. The most important recombinational
operator is crossover. The crossover operator exchanges the portions of two parents in the
population to produce new individuals for the next generation. For example, if the crossover
point is picked randomly (say 9), all the bits after the 9th position in Parent 1 are replaced by all
the bits after the 9th position in Parent 2, and vice versa:

Before Crossover After Crossover

Parent 1: 11001011 00010110 Child l: 11001011 10100011

Parent 2: 01011000 10100011 Child 2: 01011000 00010110

Crossover serves two complementary search functions. First, it provides new points for
further testing within the hyperplanes already represented in the population. Second,
crossover introduces representatives of new hyperplanes into the population.

After producing the new generation, the encoded parameters are decoded and are substituted into
the fitness function. The decoding is done with the following equation:

Xreal = + MIN ⎟
⎠
⎞

⎜
⎝
⎛

J
MIN)X-(MAX 10 (4)

Example:

Given a chromosome for two parameters (X1, X2) each of string length 10:

00101101111011011100

Partitioned into:
X1 : 0010110111 X2:1011011100

Minimum and maximum values:

5 X≤ 1 ≤ 10 1 ≤X2 ≤ 25

Base 10 integer values:

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

X1,int 10 = 183 X2,int 10 = 732

Continuous real values:
X1,real = 5.894 X2,real = 18.17

The real values obtained after crossover are then used in the fitness equation and new fitness
values are computed. The sum of the fitnesses is obtained by adding all the fitness in a
generation. The average is computed by dividing the sum by the number of children in the
generation. The fitness over sum ratio is calculated by dividing the fitness of each child by the
sum of fitnesses. The cumulative probability is calculated by adding the values in the fitness
over sum ratio.

The other operator which causes variation in the population is “mutation.” Mutation is the
random change of a gene from 0 to 1, or 1 to 0. A random number is generated for every gene,
and if the random number is greater than the mutation probability, then the gene is flipped from
either 0 to 1 or 1 to 0. The mutation operator offers the opportunity for new genetic material to
be introduced into the population.

When creating a new population by crossover and mutation, the best chromosome might be lost.
Hence, “elitism”, the procedure by which the weakest individual of the current population is
replaced by the fittest individual of the previous population, is often employed. This ensures that
the best design ever encountered will survive to the final generation.

2.1.1 Fitness Scaling

The fist step in the roulette wheel selection process is to scale all function values to be positive in
order to assign a positive area on the roulette wheel. The following scaling scheme is used. The
highest function value fh and the lowest function value fl are evaluated . The function values are
converted to positive values by adding the quantity
C=0.1* fh –1.1* fl (5)
to each of the function values. Thus, the new highest value will be
1.1* (fh – fl) (6)
and the lowest value
0.1* (fh – fl) (7)
Each of the new values is then divided by
D = max(1, fh + C) (8)

2.1.2 Genetic Algorithm Steps

The basic Genetic Algorithm includes the following steps:
1. Start with a population of designs. These are often generated randomly. A design is
 coded in binary version to form a "Chromosome."

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

2. Determine the mating pool. This is done using a "Roulette Wheel Selection."
3. Perform "Crossover," by randomly selecting the crossover point. A new population is
 created.
4. Perform "Mutation" and "Elitism." Mutation is the process of introducing a random
 change in the generation once in a while. Elitism makes sure that the worst child in
 the present generation is replaced by the best parent in the previous generation.
5. Decode the population strings and substitute into the fitness function to get the new
 fitness values.
6. Repeat steps 2-5 until the algorithm converges to a solution. The algorithm has converged
 when the difference between the maximum and minimum scaled fitness is compared to a
 user defined convergence factor. If the Genetic Algorithm does not converge
 within a user-defined number of maximum generations, the elite fitness value attained
 to that point is returned.

2.1.3 Real Valued Crossover

A drawback of binary single-point crossover, that it involves loss of precision when converting
back and forth between real and binary numbers, is eliminated by using real valued crossover.
Since this conversion is eliminated in real-valued representation, it typically gives more accurate
results for problems with continuous real-valued variables.
In real-valued crossover, a random number “r” is drawn. The offspring are obtained by the
following equation.

Xchild1 = Xparent1 + r* (Xparent2 - Xparent1) (9)
Xchild2 = Xparent1 +(1- r)* (Xparent2 - Xparent1) (10)

2.2.1 Introduction to Genetic Programming:

John Koza (1992) introduced the idea of Genetic Programming, which uses the Genetic
Algorithm to “evolve” a computer program to accomplish a specific goal. To implement Genetic
Programming, randomly generated computer programs are represented as parse trees, and tested
to see how well they perform the desired goal. The best of the programs are selected to “mate”
with each other and exchange genetic information, which amounts to swapping whole branches
on the parse tree (from beyond a random crossover point) between mating programs. This
evolutionary operator (crossover) and a few others (such as random mutation) produce changes
in the population of programs. The new generation of programs is also tested to see how well
each program satisfies the goal. Some of the changes will turn out to be beneficial while some
will be damaging, but by imitating Darwin’s principle of “survival of the fittest,” the fitness of
the overall population improves from one generation to the next until one of the programs
achieves the desired goal. This is all accomplished without direct human intervention. One of
the sample applications given in Koza (1992) is symbolic regression, which is called Automatic

Function Definition (AFD) in that book. The unique feature of AFD is that it can automatically
find the best symbolic function for conventional regression. However, one limitation of AFD is
that it is not well suited to find the coefficients of the regression model that are needed to fit the
model to the data.

In Genetic programming randomly generated computer programs are represented as parse trees
as shown above. The crossover points p1 and p2 are chosen randomly. The entire branch below
crossover point p1 is replaced by the entire branch under crossover point p2. In this way new
mathematical equations are generated.

In this research, Genetic Programming is used to create multiple symbolic regression models are
created. A grid size is chosen and the original function is sampled along this grid. The symbolic
regression model that has the lowest least square error when compared to the real objective is
selected for optimization.

An example of genetic programming is given below.

+

*

x y

e

x
x

+

y

*

cos

y

Before Crossover

p2 p1

f= cos(y) * (x+y)
f= x*y + ex

Figure - 1 Genetic Programming Crossover

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

+

*

x y

+

x
y

cos

y
x

After Crossover
f= cos(y) * ex

f= x*y + (y+x)

e

*

Figure - 2 Genetic Programming Crossover

Implementation Strategy

For the purpose of this research, the following strategy was used:
1. Using Genetic Programming multiple symbolic regression models are created.
2. Standard optimization techniques are used to adjust the coefficients of each symbolic

regression model to minimize the least squared error between the model and the
actual function.

3. The model that has the lowest error when compared to the real objective is selected
for optimization .

4. The Genetic Algorithm searches for the global optimum using the inexpensive
symbolic regression model, rather than calling the expensive analysis model.

5. Steps 3 will be repeated m times, or until the convergence criterion is satisfied.
6. The elite fitness and variable values will be obtained and the value of the function

calculated. This value will be compared with the real objective function value to
calculate the average percentage error.

3.2 Testing Strategy

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

The following testing strategy is proposed

1. Identify the problems to be solved by the proposed algorithm and order them in a
sequence to be tested.

2. For the first two sample problems, test runs will be taken for the Genetic Algorithm using
binary crossover and real valued crossover. The solution accuracy and the number of
generations taken to converge will be compared. After comparison, the best
representation scheme will be adopted for other sample problems.

3. Test the remaining problems based on this representation technique.
4. For every test problem run, analyze the variation in Grid Size on the average error.
5. Analyse the results using graphs and surface plots.

Discussion of Results

The developed methodology has been applied to two types of problems, the standard
optimization test problems and engineering problems.

Problem
Type

Average
Function
Calls to
Optimize
Real
Function

Average
Function
Calls to
Create
Regression
Model

Grid Size

Percentage
Saving in
Computational
Effort

Average
Error

DeJong’s First
Function 1321 100 10 1221% 2.5%

DeJong’s
Fourth
Function

1841 81 9 2172% 1%

Rosenbrock’s
Function 2401 81 9 2864% 2%

2 Bar Truss
Problem 1521 400 20 280.25% 5%

Spring
Problem 4041 169 13 2291% 8%

Table 2 - Results of Test Problems

From the above table, it can be seen that a significant reduction in computational effort has been
achieved using the proposed methodology. In the above table, only the time taken to compute the
regression model is taken into account and the time taken to optimize the regression model is
neglected. This is done because the time taken to optimize is fairly small as compared to time

taken to create the regression model.
Also, from the above table it can be concluded that fairly correct approximations are achieved
using the proposed methodology. The error is less in case of standard optimization problems like
DeJong’s function and Rosenbrock’s function. The error is higher in engineering problems
because the constraints in these problems are converted to penalty functions which have an
approximate weighting factor. When the penalty functions are less the average error is less, and
vice- versa. The truss problem has four penalty functions and the average error is 5%, while the
spring problem has nine penalty functions and the average error is 8%. Also, in the case of the
spring problem the average error was 8% using the real objective optimization, requiring 4041
function calls. The proposed method required an average of 2480 function calls to achieve the
same range of accuracy.

Variation in Error by Change in Grid Size

1.92

2

2.08

0 2 4 6 8 10

Grid Size

A
ve

ra
ge

 P
er

ce
nt

ag
e

Er
ro

r

Real Valued Crossover

Binary Crossover

Figure 3 - Average Error Using Binary and Real Representation for Rosenbrock’s Function

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

Variation in Error by Change in Grid Size

0
2
4
6
8

10
12
14
16

0 5 10

Grid Size

A
ve

ra
ge

 P
er

ce
nt

ag
e

Er
ro

r

Binary Crossover
Real Valued Crossover

Figure 4 - Average Error Using Binary and Real Representation for DeJong’s Fourth Function

The graphs in Figure 3 and Figure 4 show the advantage of using real-valued crossover over
binary crossover. In binary single-point crossover, one of the design variables remains the same
after crossover. Hence, it searches along straight lines. However, in real point crossover because
of the random number, both the design variables are altered also, the real valued representation
does not suffer from the loss of precision associated with converting back and forth between
binary and real numbers. As a result real-valued crossover has far lower percentage error than
binary crossover. In case of Rosenbrock’s function, the average percentage error using binary
representation is more that 2% while the average error using the real representation is less than
2%. For Dejong’s Fourth function, the average percentage error using the binary representation
is approximately 8% while the average error using the real representation is less than 1%. Hence,
real- valued crossover is used in this research for solving the next three optimization problems.

Generally, a large number of points in the plan of experiments are desirable in order to
provide more information to the Genetic Programming algorithm.
Grid size tests were performed ranging from a grid size of two to ten. Standard optimization
problems and engineering problems were included in this test. The results in Figures 5-7 show
that the higher the grid size, the better the approximation.

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

Variation in Error by Change in Grid Size

0

5

10

15

20

0 5 10 15

Grid Size

A
ve

ra
ge

 P
er

ce
nt

ag
e

Er
ro

r

Real Representation

Figure 5 - Average Error Using Real Representation for DeJong’s First Function

Variation in Error by Change in Grid Size

0

5

10

15

20

25

0 5 10 15 20 25
Grid Size

A
ve

ra
ge

 P
er

ce
nt

ag
e

Er
ro

r

Real Representation

Figure 6 - Average Error Using Real Representation for 2 Bar Truss

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

Variation in Error by Change in Grid Size

0
2
4
6
8

10
12
14
16

0 5 10 15
Grid Size

A
ve

ra
ge

 P
er

ce
nt

ag
e

Er
ro

r

Real Representation

Figure 7 - Average Error Using Real Representation for Spring Problem

A history of runs is presented in the surface plots in Figure 8- Figure15. It can be clearly seen
that the surface of the function becomes smoother as the size of the grid is increased. Achieving
a good balance between the accuracy and computational overhead was one of the main
objectives of this research work. A grid size of two does not give enough information to form a
regression model. As a result, the average error is high; 22% in the case of the truss problem.
Also, increasing the grid size beyond a certain extent does not further reduce the average error.
A grid size of 10 gives good results with an average error of less than 1% in the case of DeJong’s
function. From the results, it can be fairly concluded that, in order to reduce the computational
overhead without loss of accuracy, we can start with a grid size of four. If sufficient accuracy
has not been achieved, the grid size can be incremented in steps of two, up to a maximum grid
size of 10.

Surface Plot Showing the Effect of Variation in Grid Size for DeJong’s Fourth Function

f =∑ ix
n

1
i
4+ Gauss(0,1)

-1

-0
.6

-0
.2

0.
2

0.
6 1

-1

0.2
0
2
4
6
8

10
12

14

f

x1

x2

12-14

10-12

8-10

6-8

4-6

2-4

0-2 -2

-1
.2

-0
.4

0.
4

1.
2 2

-2

0.4-600
-400
-200

0
200
400
600
800

f

x1

x2

600-800

400-600

200-400

0-200

-200-0

-400--200

-600--400

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

Figure 8 - Real Objective Optimization Using DeJong’s Fourth Function Figure 9 - DeJong’s Fourth Function Grid Size = 4

-2

-1
.2

-0
.4

0.
4

1.
2 2

-2

0
2

0

10

20

30

40

50

f

x1

x2

40-50

30-40

20-30

10-20

0-10

-2

-1
.2

-0
.4

0.
4

1.
2 2

-2

0
2

0

10

20

30

40

50

f

x1

x2

40-50

30-40

20-30

10-20

0-10

 Figure 10 - DeJong’s Fourth Function Grid Size = 16 Figure 11 - DeJong’s Fourth Function Grid Size = 100

Surface Plot Showing the Effect of Variation in Grid Size for 2 Bar Truss

1

1.
4

1.
8

2.
2

2.
6 3

10

220

20

40

60

80

100

Weight

Diameter

Height

80-100

60-80

40-60

20-40

0-20 1

1.
6

2.
2

2.
8 10

220

20

40

60

80

Weight

Diameter

Height

60-80

40-60

20-40

0-20

 Figure 12 - Real Objective Optimization of 2 Bar Truss Figure 13 - Optimization of 2 Bar Truss for Grid Size = 25

1

1.
6

2.
2

2.
8 10

24
0

20

40

60

80

100

Weight

Diameter

Height

80-100

60-80

40-60

20-40

0-20 1

1.
6

2.
2

2.
8 10

24
0

20

40

60

80

100

Weight

Diameter

Height

80-100

60-80

40-60

20-40

0-20

 Figure 14 - Optimization of 2 Bar Truss for Grid Size = 64 Figure 15 - Optimization of 2 Bar Truss for Grid Size = 100

5.1 Summary and Conclusions

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

In this thesis, an optimization technique based on symbolic regression has been presented.
Intelligent symbolic regression methodology seeks to replace computationally expensive
functions of the original design optimization problem with an approximation model less
expensive to evaluate. In order to address the issues of the high-computational cost of the
original function evaluation, genetic programming methodology has been investigated to build
approximation models of the best possible quality. The goal of genetic programming is to evolve

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

mathematical expressions with no assumption about the structure, which is given as part of the
solution. Once the symbolic regression model is available, the Genetic Algorithm, on subsequent
runs, searches the inexpensive regression model for the global optimum. The efficiency of the
proposed method has been tested on a set of standard optimization test problems and it was
found to reduce the computational overhead by a significant amount without much loss of
accuracy. Test results of optimization problems revealed that the real representation technique
outperforms the binary representation technique. Such a representation is of particular concern
for engineering applications, which motivated the present work.

5.2.1 Recommendations for Future Work

1. Test the symbolic regression methodology on problems with larger number of design
variables.

2. Incrementally build up the grid to minimize function calls.
3. Programmatically determine the optimum grid size beyond which the average error

does not fall.
4. Apply the techniques to engineering problems of extreme complexity where more

traditional techniques are not applicable because of the prohibitive computational
cost.

5. Improve the computational efficiency of the genetic algorithm, particularly, the
evaluation of tuning parameters like the size of the population, maximum generations,
crossover and mutation probabilities and the convergence factor.

6. Use other Artificial Intelligence techniques like Neural Networks for optimizing the
regression model and comparing it with the Genetic Algorithm.

References

[1] Boning, D., Mozumder, P. K., 1994, “DOE/Opt: A System for Design
 of Experiments, Response Surface Modeling, and Optimization Using Process
 and Device Simulation,” IEEE Transactions on Semiconductor and Manufacturing,
 4(2), pp. 233 - 243.

[2] Wang, G., Zaloom, V., Chambers, T. L., 2001, “Application of Genetic Programming
 and Artificial Neural Networks to Improve Engineering Optimization,” Proceedings
 of the International Conference on Computers and Industrial Engineering (28th
 ICC&IE), and the International Conference on Industry, Engineering and
 Management Systems (IEMS), Cocoa Beach, Florida, March 5-7, 2001, pp 36 - 40.

Proceedings of the 2004 ASEE Gulf-Southwest Annual Conference

Texas Tech University
Copyright © 2004, American Society for Engineering Education

[3] Resit, R. A. Lepsch and McMillin, M.L, 1998, “Response Surface Model
 Building and Multidisciplinary Optimization Using D-Optimal Designs.”
 AIAA, 98-4759.
 (http://techreports.larc.nasa.gov/ltrs/PDF/1998/aiaa/NASA-aiaa-98-4759.pdf)

[4] Paul, F., Zheng, W., Chun, H., Moore, M., Hsuing P. and Thomas. D, “Optimal
 Pump Operation of Water Distribution Systems using Genetic Algorithms.”
 (http://www.rbfconsulting.com/papers/genetic_algo.pdf)

[5] Alvarez, L. F. 2000, Approximation Model Building for Design Optimization Using
 the Response Surface Methodology and Genetic Programming. Submitted for the
 Degree of Doctor of Philosophy, Department of Civil and Environmental
 Engineering University of Bradford, UK.

[6] Parkinson, A., Sorenson, C., Pourhassan, N., 1993, “A General Approach for Robust
 Optimal Design,” Journal of Mechanical Design, 115, pp. 74 – 80.

[7] Lewis, L., Parkinson, A., 1994, “Robust Optimal Design Using a Second-Order
 Tolerance Model,” Research in Engineering Design, 6, pp. 25 – 37.

[8] Box, G.E.P., Draper, N.R., 1987, Empirical Model Building and Response Surfaces,
 John Wiley, New York.

[9] Koza, John, 1992, Genetic Programming, MIT Press, Cambridge, MA.

[10] Dhingra, A.H. and Lee, B.H., 1994, “A Genetic Algorithm Approach to Single and
 Multiobjective Structural Optimization with Discrete-Continuous Variables,”
 International Journal for Numerical Methods in Engineering, 37, pp. 4059- 4080.

MOHAMMED SHAHBAZUDDIN
Mohammed Shahbazuddin is scheduled to receive his Master of Science in Mechanical Engineering in the Spring
2004 from the University of Louisiana at Lafayette. His research interests include Artificial Intelligence,
Programming, and Engineering Optimization. He received his Bachelor of Science in Mechanical Engineering from
Nagpur University, India in 1999 and Master of Science in Computer Science from the University of Louisiana at
Lafayette in 2002. He is a student member of the ASME, ASEE, ISTE and MESA.

TERRENCE CHAMBERS
 Dr. Terrence Chambers currently serves as an Assistant Professor of Mechanical Engineering at the University of
Louisiana at Lafayette. His research interests include engineering design and optimization, artificial intelligence,
genetic algorithms and genetic programming, engineering software development, and numeric and symbolic
solutions to engineering problems. Dr. Chambers is a registered Professional Engineer in Texas and Louisiana.

http://techreports.larc.nasa.gov/ltrs/PDF/1998/aiaa/NASA-aiaa-98-4759.pdf
http://www.rbfconsulting.com/papers/genetic_algo.pdf

	Session XXXX
	An Improved Genetic Algorithm Using Intelligent Symbolic Reg
	Introduction

