
Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

 2648

An Integration of PC Hardware & Software in Teaching

Engineering Technology Courses

Steve Hsiung,

Richard Jones

Engineering Technology Department

Old Dominion University

Norfolk, VA 23529

Abstract

As technology advances, the price of a PC drops dramatically. This trend has resulted in
PCs that are complex, powerful, and very affordable. Today’s PC is a popular and essential tool
in teaching software programming course(s) in C, C++, Visual Basic, or Java, running
commercial software supporting courses in circuit simulation/design or circuit board layout, and
acting as a workstation to gain access to the Internet or LAN networks. In most Engineering
Technology curricula there is a limited amount of linkage between those PC applications. The
actual effort to merge the hard-gained knowledge of hardware & software concepts together
through a useful project implementation is also rare. This article is aimed at using the PC in ET
upper-level courses as a focal point to help to reinforce knowledge between different fields of
interest, such as communication, automation control, microprocessor, software programming,
and system integration.

I. Introduction

 If the standard Engineering Technology (ET) curricula, especially in the Electrical and
Electronic areas were examined, the first complication usually noted is how wide a span of fields
the typical curriculum covers. There are: analog hardware circuit theories & designs, digital
hardware circuit theories & designs, microprocessor/microcontroller designs, applications &
programming, high-level software programming, communication related issues in designs &
networking, and senior project designs. Along with the breadth of the programs they usually
have little overlap between these various fields of interest.
 When the graduate ET students get in the real work place, they are usually confronted
with tasks which are usually a combination of some, and often many, of the curriculum fields
they have learned in school. This article proposes to implement a course(s) aimed at integrating
different fields of interest into a useful project oriented course(s). This addition to the curricula
will assist students in their future project implementations and/or employment skills. P

age 9.190.1

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

 This integration has three major elements: (a) software programming, (b) hardware
circuit, (c) and communication. It requires the students to have comprehensive experiences in all
of the related fields before they can take this course(s). This unique feature would generally
place this course(s) in ET curricula at the senior level.
 Software programming skills are essential to the success of ET job competency. Data
manipulation and control, and chip level communication, are usually covered in the
microprocessor/microcontroller related course(s) in assembly language format. This form is not
portable and the design and development are limited to specific manufactured products.

Non-ET departments usually teach higher-level programming classes such as in C, C++,
VB, or Java. Normally, they focus on programming language styles, data base structure, or
Internet orientation. There is typically very little linkage between those two software-
programming approaches.

The programming section of this course(s) will focus on portability. This means that a
high-level language format in a PC environment will be used to handle the issues of controlling
bits and bytes in or out of the hardware circuit.

In order to integrate the experiments into a standard PC environment, it is necessary to
place a hardware interface between the PC and the desired hardware circuit(s). A major part of
this interface will be high-level language drivers, which are needed to gain access to the ports of
the PC. There are various hardware circuit designs available to fulfill the needs of many
different applications.

It is impossible to have a single hardware system cover all the control needs of the real
world. To better assist as many needs as possible, communication is necessary for integration
between specific hardware designs. Communication schemes can be either in serial or parallel
format depending on the specifications. If it is a serial format then it can be either wired or
wireless. In any form of communication, integrity and security are issues that need to be
addressed. A well-defined protocol is especially important for the safety and reliability of wired
or wireless communications.

II. Software Programming

 Accessing a PC’s I/O (Input/Output) ports in computer interfacing once was
straightforward and simple using QBASIC or a C compiler stdio INP and OUT commands in the
old DOS environment3. As PC technology hardware and software advanced, the simplicity of
the PC’s I/O port control was carried over into C++ compilers in the new format of _INP and
_OUT routines8,9. Unfortunately, ever since Windows NT/2000/XP came on the scene and
implemented the CPU protected mode, it has become very difficult for computer interfacing
enthusiasts to gain direct control over the I/O ports of a PC.
 One method of getting around the CPU protection mode within a PC when attempting to
perform I/O through the parallel printer port, is to write an I/O routine (a kernel mode driver) that
works in the Windows NT/2000/XP environment. This is a formidable task best left to those in
the PC software industry driver business. The other choice is to find a kernel mode driver that is
readily available for the public to use, and adapt it to the specific needs of the project. Fred
Bulback has written a kernel mode driver called IO.DLL that is available for free from his web
site: www.geekhideout.com4. After downloading the IO.DLL file, simply copy it into the
C:\WINNT\system32 folder. The IO.DLL program has thirteen functions that can be called from
VB6 (see Table 14). The VB and C++ code needed to access IO.DLL and examples of how to

P
age 9.190.2

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

use the IO.DLL kernel mode driver are given in the Appendix. VB6 is a popular programming
language that is widely used in industry and academic applications. Its GUI (Graphic User
Interface) format performs many of the same functions as other languages such as C++, but VB6
makes the building and packaging of icons much easier10,17. However, VB6 does not support the
straightforward I/O commands that C++ or QBASIC do3,8,18. Nevertheless, when it comes to
Windows NT/2000/XP, most of those I/O commands don’t function anyway.

Table1. Visual Basic Functions from IO.DLL
Name of Function Description of Function

PortOut Outputs a byte to a port

PortWordOut Outputs 16 bits to a port

PortDWordOut Outputs 32 bits to a port

PortIn Reads a byte from a port

PortWordIn Reads in 16 bits from a port

PortDWordIn Reads in 32 bits from a port

SetPortBit sets a particular bit at a port

ClrPortBit clears a particular bit at a port

NotPortBit inverts a particular bit at a port

GetPortBit Returns the state of a particular bit from a port

RightPortShift shifts a port to the right, the LSB is returned and the value passed becomes the MSB

LeftPortShift shifts a port to the left, the MSB is returned and the value passed becomes the LSB

IsDriverInstalled Returns a non-zero value if IO.DLL is installed and functioning

III. Hardware Circuit

 There are several ways to have a PC control and communicate with the outside world. An
interface board that plugs in directly to PC ISA or PCI slot is one possible solution. This
interface requires complex circuit design and it takes up the limited available space inside of a
PC. Another disadvantage is that inserting/removing the board is quite often an issue to general
users. This interface board would not be a possibility for the notebook user. The other alternative
approach is to use a PC’s available ports (parallel and serial) that are contently accessible outside
of the PC’s and notebook computer box1,2.
 Either one of the above mentioned methods requires buffering circuit protection designs.
The only drawback of using external ports on a PC is the fixed addresses that are assigned by the
PC system. The definition of the PC parallel port bits are summarized in Tables 2, 3, and 41.

A simple direct connection between the PC parallel pins to the outside world with
transistors and an FET to drive high-power outputs as well as a buffering FET to aid the read
external signal inputs is presented in Figure 1.

Table 2. PC Parallel Port Data Register: at Address (Base Address) = $378, or

 0X378, or 888
Pin #: DB25 Bit Signal Name Inverted? Pin: Centronics Direction

2 0 Data Bit 0 No 2 In/Out

3 1 Data Bit 1 No 3 In/Out

4 2 Data Bit 2 No 4 In/Out

5 3 Data Bit 3 No 5 In/Out

6 4 Data Bit 4 No 6 In/Out

7 5 Data Bit 5 No 7 In/Out

8 6 Data Bit 6 No 8 In/Out

9 7 Data Bit 7 No 9 In/Out

P
age 9.190.3

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Table 3. PC Parallel Port Status Register: at Address (Base Address + 1) = $379,

 or 0X379, or 889
Pin #: DB25 Bit Signal Name Inverted? Pin: Centronics Direction

15 3 nError No 32 In

13 4 Select No 13 In

12 5 PaperEnd No 12 In

10 6 nAck No 10 In

11 7 Busy Yes 11 In

Table 4. PC Parallel Port Control Registers: at Address (Base Address + 2) =

 $37A, or 0X37A, or 890
Pin #: DB25 Bit Signal Name Inverted? Pin: Centronics Direction

1 0 nStrobe Yes 1 Out

14 1 nAutoLF Yes 14 Out

16 2 nInit No 31 Out

17 3 nSelectIn Yes 36 Out

DOUT_0 to DOUT_7 are the output control signals from a PC parallel port and OUT0 to

OUT7 are the buffered output control signals to the external circuit that are each capable of
handling a 14A DC current. Only DOUT_0 to OUT0 are shown in the schematic; the rest are
duplications. DIN_0 to DIN_4 are the input control signals and IN0 to IN4 are the buffered
signals from the external circuit. IN0 to DIN_0 are shown in the schematic; IN1 to DIN_1, IN2
to DIN_2, and IN3 to DIN_3 are duplications. IN4 to DIN_4 are presented differently due to the
inversed logic on the PC parallel port.

Figure 1. Straight Interface to the PC Parallel Port

 There is a way to extend the limited available I/O mentioned above and still provide the
user with a reasonable amount of controls that are suitable to most of the applications. The
circuit design in Figure 2 uses a tri-state buffer, decoder, and a multiplexer as an interface
between the PC parallel pins and the hardware to maximize the choice of I/O control up to 32
outputs and/or 37 inputs. The 74153 has dual 2-to-4 multiplexers that are used to select one of

P
age 9.190.4

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

the four latches (CLK_0, CLK_1, CLK_2, or CLK_3) and/or tri-state buffers (Enable_0,
Enable_1, Enable_2,or Enable_3) which are the U1 (74374) and U2 (74244) chips that need to
be duplicated as shown in Figure 2.

Figure 2. Extended Interface to the PC Parallel Port

 The circuit design between the PC serial ports is aimed at converting a standard RS-232
signal into a general TTL compatible bit stream for chip level signal communications2. This
circuit in Figure 3 uses a versatile Max232 and its circuit is presented as follows. The transmit
(TxD) and receive (RxD) lines are TTL compatible signals suitable for communications in the
target hardware circuits.

Figure 3. The PC Serial Port Interface

P
age 9.190.5

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

IV. Communication

 Two PCs can communicate with each other through their serial or parallel port even when
using different programming languages. The serial port communication can be easily achieved
with the built-in communication module in VB6 with a small amount of additional coding9,17.
The parallel port implementation can be achieved with bit banging in the C or C++ programming
languages. The sample code is used to read/write a byte to/from the X25640 serial EEPROM
shown in Appendix:
 One possible exercise is the communication between a PC and a peripheral integrated
circuit such as a serial EEPROM for a data logging application. The hardware and software
implementation of this exercise is presented in Figure 4.

Figure 4. PC Parallel Port to Serial EEPROM Interface

 There are defined instructions (Hex code) for this serial EEPROM to operate properly.
Each read and write of up to 32 bytes should follow these instruction sequences to gain access to
the information stored in the EEPROM. These instructions are presented in Table 516.

Table 5. EEPROM Command Byte
Instruction

Name

Instruction

Code

Operations

WREN $06 or 0X06 Enable Write Operation

WRDI $04 or 0X04 Disable Write Operation

RDSR $05 or 0X05 Read Status Register

WRSR $01 or 0X01 Write Status Register

READ $03 or 0X03 Read Data from Memory Array at Selected Address

WRITE $02 or 0X02 Write Data to Memory Array at Selected Address (1 to 32 Bytes)

 Adding an RF communication module into the exercises gives the students wireless
communication experiences. There are many RF modules available in the market. Tables 6, 7, &
8 present the commonly used modules7,11,12,13,15.
 The designer must make security a prime concern when implementing wireless control in
a system. A well thought-out communication protocol is essential to the security solution.

P
age 9.190.6

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Table 6. Available Transmitter Products

Part # Freq. Vcc Icc
Baud

Rate
Audio Range Price Maker

RCT-433-AS
433.92
MHz

2-12 Vdc 5ma@3V ASK/OOK 4800 No
100-300
ft.

$4.90 Radiotronix

TXE-315-KH 315 MHz 2.7-5.2 Vdc 3 ma 4800 No $9.98 LINX

TXM-315-LC 315 MHz 2.7-5.2 Vdc 3 ma 4800 No $6.90 LINX

TXLC-434
433.92
MHz

 CPCA 5000 No 300 ft. $14.95
Reynolds
Electronics

TM1V 418 MHz 5 Vdc
On-Off and
Pulse

4800 No 300 ft. $16.40 GLOLAB

TLP-434
433.92
MHz

2-12 Vdc 5 ma ASK 3000 No
Reynolds,
LAIPAC
Technology

TRF4900PW
850-950
MHz

2.2-3.6 Vdc 58 ma FM/FSK
20 MHz
Clock

 $4.75
Texas
Instruments

TH7107EFF
315/433
MHz

 FSK/FM/ASK $11.29 Melexis

Table 7. Available Receiver Products

Part # Freq. Vcc Icc Modulation
Baud

Rate
Audio Distance Price Maker

RCR-433-RP
433.92
MHz

5 Vdc 4.5 ma ASK/00K 4800 Yes
100-300
ft.

$5.50 Radiotronix

RCR-433-HP
433.92
MHz

5 Vdc 4.5 ma ASK/OOK 4800 No 300-800 ft. $13.80 Radiotronix

RXM-315-LC 315 MHz
2.7-4.2
Vdc

6 ma 5000 No $13.79 LINX

RXD-315-KH 315 MHz
2.7-4.2
Vdc

7 ma 4800 No $15.93 LINX

RXLC-434
433.92
MHz

2.7-5.2
Vdc

 CPCA 5000 No 300 ft. $22.95
Reynolds
Electronics

RM1V 418 MHz 5 Vdc
On-Off and
Pulse

4800 No 300 ft. $23.75 GLOLAB

RLP-4334
433.92
MHz

4.5-5.5
Vdc

 ASK 3000 No
Reynolds, Laipac
Technologies

TH71101ENE
315/433
MHz

5 Vdc FSK/FM/ASK $15.58 Melexis

Table 8. Available Transceiver Products

Part # Freq. Vcc Icc Modulation
Baud

Rate
Audio Applications Price Maker

EWM-900-FDTC-
BS

902-928
MHz

3 Vdc
35ma Rx
25ma Tx

FM/FSK 19.2K Yes
Full-Duplex
Data & Audio
500-1000 ft.

$69.00 Radiotronix

EWM-900-FDTC-
HS

902-928
MHz

3 Vdc
35ma Rx
25ma Tx

FM/FSK 19.2K Yes
Full-Duplex
Data & Audio
500-1000 ft.

$69.00 Radiotronix

 Communication protocols are just a matter of the implementation of different rules in
sending and receiving series of bits/bytes. Normally, there is a Start byte, Acknowledge (ACK)
byte, Address byte, Command byte, Control Data byte, and Stop byte14. Which bytes are
available depends on the definition of all the different types of bytes. One byte of data can have
254 different variations excluding all 0’s (0X00 or $00) and all 1’s (0XFF or $FF). So, the

P
age 9.190.7

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

programmer can define one byte each for Start, Stop, and ACK. This leaves 251 bytes for
Address and Command bytes. If only two bytes are used for the commands Read and Write,
there will be 249 bytes available for unique addresses. This means that a total of 249 devices
may be addressed.

For example:
 Start byte = 0X01 or $01
 Stop Byte = 0X02 or $02
 ACK Byte = 0X03 or $03
 Command Byte Read = 0X04 or $04
 Command Byte Write = 0X05 or $05
 Address Byte = Range from 0X06 or $06 to 0XFE or $FE

Control Data Byte = Range from 0X00 or $00 to 0XFF or $FF

 It is possible to integrate the Read/Write option into a single bit in the address byte.
Normally, this Read/Write bit is the last bit in the address byte where bit 7 = “0” means Write
and bit 7 = “1” means Read. Using this strategy will limit available address bits to 7 bits and the
total available addresses become 27, or 128 different devices. But this definition will provide 256
different command bytes for any specific application in mind.

For example:
 Start byte = 0X01 or $01
 Stop Byte = 0X02 or $02
 ACK Byte = 0X03 or $03
 Address Byte = Range from 0X80/0X80 (Read) to 0XFF/$FF (Read) or Range

from $00/$00 (Write) to 0X7F/$7F (Write) = A Total of 128 Different Addresses
for Read and 128 Different Addresses for Write
Command Byte = 0X00 or $00 – 0XFF or $FF = A Total of 256 Different Commands
Control Data Byte = 0X00 or $00 – 0XFF or $FF

Protocol Rules

14
:

1. Only a transmitter can send the Start and Stop bytes.
2. The receiver has to send/respond an ACK byte when a transmitter calls its address.
3. The addressed receiver has to send an ACK byte after every byte following the

address byte.
4. There should be a defined time-out period (about 25 ms): Any byte sent by a

transmitter shall expect an ACK byte from a receiver. There is a timeout period for
the receiver to respond to an ACK byte. If the ACK byte from a receiver is not
received, the transmitter shall terminate the communication by sending a Stop byte.

5. Any period after time-out period shall be considered to be a transition error. A new or
repeated communication can start or initiate from a transmitter again.

The cost and security of the system will become very attractive when the above-

mentioned protocols are implemented. As long as the designer makes sure that the rules are
followed for software driven embedded control systems, there shouldn’t be any problems. P

age 9.190.8

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

 We can elaborate on the protocol further by using CRC-8 to improve the integrity of the
wireless communication. CRC-8 is called 8-bit Cyclic Redundancy Check that uses a generator
polynomial (G(X) = X8 + X2 + X1 + 1) to calculate each byte stream as a FCS (Frame Check
Sequence)5. The way it works is that each transmitter will send an additional byte as a CRC-8
byte and the receiver will have to calculate its own CRC-8 byte after receiving the entire packet
of information. The receiver needs to verify the received CRC-8 byte and calculated CRC-8 byte
match; both bytes have to be identical to be considered as a valid transmission. If they are not,
then the communication is treated as a failure5,14. The way the receiver signals this CRC-8 byte
mismatch is by not sending an ACK command which causes a time-out condition to occur.
Another communication has to be reestablished and everything has to start over again. This
protocol implementation has the advantage of providing cleaner communications and eliminates
most errors, but it also brings a heavy load on software coding and CPU execution time.

V. Conclusion

 Teaching ET students should not be limited to providing them with the fundamental
building blocks for their future career construction. In this ever changing technology era, we as
educators, not only have to trigger students’ interest in learning but also have to bring real-life
applications into classes. Educating ET students with integrated concepts toward real world
needs is the best way for students to gain employment skills.
 The purpose to this article is to use a PC to perform hardware and software exercises.
There could be various integrations between a standard PC environment and other fields of
interest with the assistance of high level and low level assembly programming languages. These
types of integrations could be incorporated into course(s) to lead students to their project designs
and real world applications as well as to build interest in hardware programming methods. This
integration provides the student with interesting concepts and a better understanding of the links
between hardware and software along with their potential applications in the workplaces.

VI. Bibliographic
 1. Axelson, J., “Parallel Port Complete”, Lakeview Research, 2000.
 2. Axelson, J., “Serial Port Complete”, Lakeview Research, 2000.
 3. Baumann, S. K. and Mandell, S. L., “QBasic”, West Publishing Company, 1992.
 4. Bulback, F., “ IO.DLL” www.geekhideout.com, 2003.
 5. CRC-8 Implementation White Paper, USAR System Inc., www.semtech.com, 1999.
 6. Ekedahl, M. and Newman, W., “Visual Basic.NET: An Object-Oriented Approach”, Course Technology
 Thompson Learning, 2003.
 7. EWM-900-FDTC Radiotronix Data Sheet, 1141 SE Grand Suite 118, Oklahoma City, OK 73129,
 www.radiotronix.com, 2000.
 8. Horton, I., “Beginning Visual C++ 6”, Wrox Press, 1998.
 9. Microsoft Visual Studio 6.0, www.microsoft.com/vstdio, 2003.
 10. Perry, G. and Hettihewa, S., “Teach Yourself Visual Basic 6.0 in 24 Hours”, Sams Publishing, 1998.
 11. RCR-433-RP Radiotronix Data Sheet, 1141 SE Grand Suite 118, Oklahoma City, OK 73129,
 www.radiotronix.com, 2001.
 12. RCT-433-AS Radiotronix Data Sheet, 1141 SE Grand Suite 118, Oklahoma City, OK 73129,
 www.radiotronix.com, 2001.
 13. RXM-315-LC-S, Linx Technologies Data Sheet, 575 SE Ashley Place, Grants Pass, OR 97526,
 www.linxtechnologies.com, 2001.
 14. System Management Bus (SMBus) Specification, Revision 2.0, Smart Battery System Specifications,

P
age 9.190.9

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

 www.sbs-forum.org , Email: battery@sbsforum.org, 2001.
 15. TXM-315-LC Linx Technologies Data Sheet, 575 SE Ashley Pl., Grants Pass, OR 97526,
 www.linxtechnologies.com, 2001.
 16. Xicor Product Specification, www.xicor.com/pdf_files/x25640.pdf, 2004.
 17. Zak, D., “Visual Basic 6.0 Enhanced Edition”, Course Technology Thomson Learning, 2001.
 18. Zak, D., “Visual Basic.NET”, Course Technology Thomson Learning, 2002.

VII. Biography

STEVE C. HSIUNG

Steve Hsiung is an associate professor of electrical engineering technology at Old Dominion University. Prior to his
current position, Dr. Hsiung had worked for Maxim Integrated Products, Inc., Seagate Technology, Inc., and Lam
Research Corp., all in Silicon Valley, CA. Dr. Hsiung also taught at Utah State University and California University
of Pennsylvania. He earned his BS degree from National Kauhsiung Normal University in 1980, MS degrees from
University of North Dakota in 1986 and Kansas State University in 1988, and PhD degree from Iowa State
University in 1992.

RICHARD L. JONES

Richard Jones has been teaching at ODU since 1994. He is a retired United States Navy Submarine Service Lt.
Commander with sub-specialties in Ballistic Missile, Torpedo, Sonar, and Radio systems. Richard has previously
taught Mechanical Engineering Design at the United States Military Academy, West Point, N.Y., and Electrical
Engineering at the United States Naval Academy, Annapolis, Md. He holds an ASEET from Cameron University, a
BSEET from Oklahoma State University, and a Master of Engineering in Electronics Engineering from the Naval
Postgraduate School at Monterey, California. Richard is currently focusing his research on methods of teaching
accredited upper-level electronics labs via the internet.

VIII. Appendix
1. Visual Basic Code Needed to Access IO.DLL
Public Declare Sub IO_Out Lib "IO.DLL" Alias "PortOut" (ByVal Port As Integer, ByVal Data As Byte)
Public Declare Sub IO_WD_Out Lib "IO.DLL" Alias "PortWordOut" (ByVal Port As Integer, ByVal Data As Integer)
Public Declare Sub IO_DWD_Out Lib "IO.DLL" Alias "PortDWordOut" (ByVal Port As Integer, ByVal Data As Long)
Public Declare Function IO_In Lib "IO.DLL" Alias "PortIn" (ByVal Port As Integer) As Byte
Public Declare Function IO_WD_In Lib "IO.DLL" Alias "PortWordIn" (ByVal Port As Integer) As Integer
Public Declare Function IO_DWD_In Lib "IO.DLL" Alias "PortDWordIn" (ByVal Port As Integer) As Long
Public Declare Sub IO_Bit_Set Lib "IO.DLL" Alias "SetPortBit" (ByVal Port As Integer, ByVal Bit As Byte)
Public Declare Sub IO_Bit_Clr Lib "IO.DLL" Alias "ClrPortBit" (ByVal Port As Integer, ByVal Bit As Byte)
Public Declare Sub IO_Bit_Not Lib "IO.DLL" Alias "NotPortBit" (ByVal Port As Integer, ByVal Bit As Byte)
Public Declare Function IO_Bit_Read Lib "IO.DLL" Alias "GetPortBit" (ByVal Port As Integer, ByVal Bit As Byte) As Boolean
Public Declare Function IO_Bit_RShift Lib "IO.DLL" Alias "RightPortShift" (ByVal Port As Integer, ByVal Val As Boolean)
As Boolean
Public Declare Function IO_Bit_LShift Lib "IO.DLL" Alias "LeftPortShift" (ByVal Port As Integer, ByVal Val As Boolean) As
Boolean
Public Declare Function I_Driver Lib "IO.DLL" Alias "IsDriverInstalled" () As Boolean

2. Examples in VB6 of how to use the IO.DLL to access the PC parallel port

17,18

Dim PortAddress As Integer
Private Sub Combo1_Change()
PortAddress = Combo1.Text
End Sub
Private Sub Form_Load()

P
age 9.190.10

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

'PortAddress = 888
Text1.Text = PortAddress
End Sub
Private Sub Command1_Click()
 Do While PortAddress = 888
 IO_Out PortAddress, Text2.Text
 DoEvents
 For x = 0 To 10
 For y = 0 To 500000
 Next y
 Next x
 IO_Out PortAddress, 0
 For y = 0 To 1000000
 Next y
 Loop
End Sub
Private Sub Command2_Click()
Text3.Text = IO_In(PortAddress)
End Sub
Private Sub Command3_Click()
Text3.Text = 0
Text2.Text = 0
IO_Out PortAddress, 0
End
End Sub
Private Sub Command4_Click()
IO_Out PortAddress, 0
IO_Bit_Set PortAddress, Text4.Text
End Sub
Private Sub Command5_Click()
Text5.Text = IO_Bit_Read(PortAddress, Text6.Text)
End Sub
Private Sub Command6_Click()
IO_Out PortAddress, 0
Text2.Text = 0
Text3.Text = 0
Text4.Text = 0
Text5.Text = 0
Text6.Text = 0
End Sub
Private Sub Command7_Click()
IO_Bit_RShift PortAddress, True
End Sub
Private Sub Command8_Click()
IO_Bit_LShift PortAddress, True
End Sub
Private Sub Command9_Click()
IO_Bit_RShift PortAddress, False
End Sub
Private Sub Command10_Click()
IO_Bit_LShift PortAddress, False
End Sub
Private Sub Text1_Change()
Text1.Text = PortAddress
End Sub
Private Sub Text3_Change()
Text3.Text = Text3.Text
End Sub

3. C++ Code Needed to Access IO.DLL
#include <windows.h>
typedef void (WINAPI *PORTOUT) (short int Port, char Data);

P
age 9.190.11

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

typedef void (WINAPI *PORTWORDOUT)(short int Port, short int Data);
typedef void (WINAPI *PORTDWORDOUT)(short int Port, int Data);
typedef char (WINAPI *PORTIN) (short int Port);
typedef short int (WINAPI *PORTWORDIN)(short int Port);
typedef int (WINAPI *PORTDWORDIN)(short int Port);
typedef void (WINAPI *SETPORTBIT)(short int Port, char Bit);
typedef void (WINAPI *CLRPORTBIT)(short int Port, char Bit);
typedef void (WINAPI *NOTPORTBIT)(short int Port, char Bit);
typedef short int (WINAPI *GETPORTBIT)(short int Port, char Bit);
typedef short int (WINAPI *RIGHTPORTSHIFT)(short int Port, short int Val);
typedef short int (WINAPI *LEFTPORTSHIFT)(short int Port, short int Val);
typedef short int (WINAPI *ISDRIVERINSTALLED)();
extern PORTOUT PortOut;
extern PORTWORDOUT PortWordOut;
extern PORTDWORDOUT PortDWordOut;
extern PORTIN PortIn;
extern PORTWORDIN PortWordIn;
extern PORTDWORDIN PortDWordIn;
extern SETPORTBIT SetPortBit;
extern CLRPORTBIT ClrPortBit;
extern NOTPORTBIT NotPortBit;
extern GETPORTBIT GetPortBit;
extern RIGHTPORTSHIFT RightPortShift;
extern LEFTPORTSHIFT LeftPortShift;
extern ISDRIVERINSTALLED IsDriverInstalled;
extern int LoadIODLL();

#include "io.h"
PORTOUT PortOut;
PORTWORDOUT PortWordOut;
PORTDWORDOUT PortDWordOut;
PORTIN PortIn;
PORTWORDIN PortWordIn;
PORTDWORDIN PortDWordIn;
SETPORTBIT SetPortBit;
CLRPORTBIT ClrPortBit;
NOTPORTBIT NotPortBit;
GETPORTBIT GetPortBit;
RIGHTPORTSHIFT RightPortShift;
LEFTPORTSHIFT LeftPortShift;
ISDRIVERINSTALLED IsDriverInstalled;
HMODULE hio;
void UnloadIODLL() {
 FreeLibrary(hio);}
int LoadIODLL() {
 hio = LoadLibrary("io");
 if (hio == NULL) return 1;
 PortOut = (PORTOUT)GetProcAddress(hio, "PortOut");
 PortWordOut = (PORTWORDOUT)GetProcAddress(hio, "PortWordOut");
 PortDWordOut = (PORTDWORDOUT)GetProcAddress(hio, "PortDWordOut");
 PortIn = (PORTIN)GetProcAddress(hio, "PortIn");
 PortWordIn = (PORTWORDIN)GetProcAddress(hio, "PortWordIn");
 PortDWordIn = (PORTDWORDIN)GetProcAddress(hio, "PortDWordIn");
 SetPortBit = (SETPORTBIT)GetProcAddress(hio, "SetPortBit");
 ClrPortBit = (CLRPORTBIT)GetProcAddress(hio, "ClrPortBit");
 NotPortBit = (NOTPORTBIT)GetProcAddress(hio, "NotPortBit");
 GetPortBit = (GETPORTBIT)GetProcAddress(hio, "GetPortBit");
 RightPortShift = (RIGHTPORTSHIFT)GetProcAddress(hio, "RightPortShift");
 LeftPortShift = (LEFTPORTSHIFT)GetProcAddress(hio, "LeftPortShift");
 IsDriverInstalled = (ISDRIVERINSTALLED)GetProcAddress(hio, "IsDriverInstalled");
 atexit(UnloadIODLL);
 return 0;}

P
age 9.190.12

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

4. Examples in C or C++ of how to read/write a bit
6

/***/
/* P_0 Pin Output Bit 0 ON (Hi) and OFF (Lo) Control */
/***/
void OUTBIT0_HI() /* Control of P_0 pin Hi */
 {
 mask = mask | 0x01; /* forces P_0 pin Hi */
 PortOut(data_port,mask);
 }
void OUTBIT0_LO() /* Control of P_0 pin Lo */
 {
 mask = mask & 0xFE; /* forces P_0 pin Lo */
 PortOut(data_port,mask);
 }

/***/
/* I_3 Pin Input Bit 3 Read Control */
/***/
unsigned char INBIT3()
 {
 unsigned char BIT3_value;
 CLK_HI(); /* provide clock */
 BIT3_value = PortIn(status_port) & 0x08; /* get value on pin I-3 and isolate */
 BIT3_value = BIT3_value >> 3; /* shift to LSB */
 DELAY(); /* time delay */
 CLK_LO();
 DELAY();
 return(BIT3_value);
 }

5. Sample Codes in C or C++ of how to read/write a byte
16

/***/
/* Routine transmits a data byte to the SPI memory. */
/* The data byte is passed to this routine directly when called. */
/***/
void SEND_BYTE(unsigned char byte)
 {
 char count;
 for (count = 0; count <= 7; count++)
 { /* loop to pass each bit */
 SCLK_LO();
 if ((byte & 0x80) == 0) /* is the bit LOW? */
 SI_LO();
 else
 SI_HI();
 byte = byte << 1; /* rotate to get next bit */
 DELAY(); /*unsigned char mask;
 SCLK_HI(); /* provide clock */
 DELAY();
 SCLK_LO();
 DELAY();
 }
 }

/***/
/* Routine receives a data byte from the SPI memory and */
/* passes it back to the calling routine as an unsigned char. */
/***/
unsigned char GET_BYTE()
 {
 int count;

P
age 9.190.13

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

 unsigned char byte, temp;
 byte = 0; /* reset byte holder */
 for (count = 0; count <= 7; count++)
 { /* loop to get each bit */
 byte = byte << 1; /* rotate for next bit */
 temp = INBIT3(); /* read SO pin */
 if (temp == 1)
 byte = byte | 0x01; /* reconstruct current bit */
 else
 byte = byte | 0x00;
 }
 return(byte);
 }

P
age 9.190.14

