
Paper ID #9503

An Interactive Programming Course Model for Mechanical Engineering Stu-
dents

Prof. Shanon Marie Reckinger, Fairfield University

Shanon Reckinger joined the department of Mechanical Engineering at Fairfield University in Fall 2011.
She received her PhD in Mechanical Engineering at the University of Colorado Boulder in August of
2011. Her research interests include ocean modeling, computational fluid dynamics, fluid dynamics, and
numerical methods. At Fairfield she has taught courses in thermodynamics, numerical methods (gradu-
ate), fluid dynamics, gas dynamics (graduate), computational fluid dynamics (graduate), fundamentals of
engineering, mathematical analysis in MATLAB.

Dr. Scott James Reckinger, Brown University

Scott Reckinger is a postdoctoral research assistant in the department of Geological Sciences at Brown
University. Scott received his PhD in Mechanical Engineering in May, 2013 at the University of Col-
orado Boulder (UCB). His research interests include climate modeling, computational fluid dynamics,
and numerical methods. He has taught and guest lectured in fluid dynamics, numerical methods, classical
physics, mathematics for engineers, and computational fluid dynamics at Fairfield University and UCB.

c©American Society for Engineering Education, 2014

P
age 24.170.1

An Interactive Programming Course Model
for Mechanical Engineering Students

Abstract

Programming is a crucial skill for today’s engineering student. The majority of mechanical
engineering programs in the US include an “introduction to programming” course taken during
the first or second year. The primary goal of the course is to providing students with the basic
programming techniques that are required to excel in specific mechanical engineering fields of
study. Additionally, the course aims to develop a variety of skills that transcend all scientific
disciplines, including problem solving, logical reasoning, debugging, and software training. A
course in programming can be challenging for many students choosing to major in mechanical
engineering. The major attracts students with diverse backgrounds and a wide variety of
academic interests. It is uncommon for students to choose to study mechanical engineering
because of their interest in programming or modeling. This often leads to a disconnect between
the students and the instructor, which can create an intimidating classroom environment. The
work presented here is driven by these findings.

A new programming course has been developed to address the problems existing in the original
course model, which include: (a) the course being offered outside of an engineering department,
(b) the extreme variability in the rate at which the students comprehend the material, and (c) the
frustration of new programmers, especially with debugging. Backward course design1 was used
to redesign the course, addressing all of the existing problems. First, the new course focuses on
engineering specific computational applications, is taught by a Mechanical Engineering
professor, and uses a more practical programming language, MATLAB. Thus, the essentials of
programming are introduced within a focused framework that cultivates the development of
analytical tools commonly used in engineering disciplines, such as statistics, data analysis,
numerical differentiation and integration, and Fourier analysis. Second, the Process-Oriented
Guided Inquiry Learning (POGIL) method2 is used so that students are self-guided through part
of the instruction. Lastly, class time is organized in such a way that the instructor spends over
half of the time working directly with individuals and small groups. This gives the students an
opportunity to have explanations individually catered to their level of understanding, as well as
plenty of time for peer and instructor assistance with debugging.

The course initially ran under the new model in Spring, 2013. The course ran for 15 weeks and
had 37 students split into two different sections. There were no teaching assistants. Feedback
from the students indicated that they benefitted greatly from the course design. Improvements
for the second iteration of the new course model, which will occur in Spring, 2014, include
lengthening the course from 2.5 hours per week to 4 hours per week, utilizing more traditional
lecture, incorporating class discussions, adding student created supplementary video content in
the essence of classroom flipping3, and integrating an overarching humanitarian theme to all
assignments in an effort to support the liberal arts goals of the university.

P
age 24.170.2

Introduction/Motivation

This course design was motivated by many problems with the existing programming course, but
focused on addressing three issues:

(a) the course being offered outside of an engineering department,
(b) the extreme variability in the rate at which the students comprehend the material, and
(c) the frustration of new programmers, especially with debugging.

Issue (a) was straight-forward, instead of the course being taught by computer science faculty, a
mechanical engineering faculty developed and taught the course. While straight-forward to
solve, it is an important point to drive home. Computer science departments program for
different applications than mechanical engineers do. The majority of mechanical engineers will
not do a substantial amount of low level programming in their careers. However, it is becoming
very common for mechanical engineers to incorporate high level, simple programming
techniques in their day-to-day work. This could be for data analysis, programming
manufacturing equipment, modeling for mechanical design, control theory and robotics, etc.
There are several advantages to having the course taught within the department.

The first advantage is getting the freshmen into an engineering course as early as possible by
having a mechanical engineering faculty teach the course. Engineering programs require many
prerequisites in mathematics, physics, chemistry, computer science, and more. Thus, students
don’t start taking substantial engineering courses from engineering faculty until their sophomore
year. Although the foundational courses in the physical sciences are definitely crucial aspects of
any engineering program, it is hard to argue that limited interactions with engineering faculty
would be beneficial for the program’s retention. Since a programming course can be offered
during the first year, it is a good opportunity for mechanical engineering programs to teach the
course within the department to give the students another opportunity to explore the engineering
field more directly.

The second advantage is the freedom of choice of the programming language. Computer science
departments are not always familiar with the programming languages most prevalent in the
engineering disciplines. It has become a common problem in engineering programs that students
learn to program their freshmen year in a language chosen by the computer science department,
and then later in the academic program when the students are asked to apply that knowledge to a
new language or new problem, they are unable to show even a basic level of proficiency. For
example, the Electrical Engineering program at University of Texas, El Paso introduced a
programming course taught by EE professors because they found that only 20% of their EE
seniors were proficient in programming4. Initial results show that it was effective. Not only
does an engineering professor teach it, but it also combines programming and mathematics. This
is similar to the course being presented in this paper. Other people have found that MATLAB is
an important language to use when teaching programming because of its simplicity. Even in
courses that teach C-programming, MATLAB is used to target specific concepts.5 Another study
showed that when teaching C programming, that the students have a problem understanding the
concept of arrays, dealing with the syntax of the language, designing the organization of the
program, and understanding the concept of flow control such as looping and branching or

P
age 24.170.3

function calls. To mitigate this, they used MATLAB to focus only on loops and Excel to teach
arrays.6 There are many higher division classes within mechanical engineering and other
engineering disciplines that are using MATLAB to solve problems and understand concepts.7
Therefore, it is becoming more common in mechanical engineering programs to simply teach
MATLAB in the introductory programming class.

The third advantage is freedom to design the course, which employs programming techniques to
applications pertaining to the field of mechanical engineering (or engineering, in general). For
example, computer science departments will often create programming assignments which have
the student create a simple game or puzzle. Or they will write a script that creates a website or a
software tool. While those are great (and even fun) assignments, they are not applicable to most
mechanical engineering students career interests. Therefore, teaching the course within the home
department allows full control of these applications. The students can program assignments
relating to data analysis, statistics, numerical methods, and other mathematical techniques almost
all engineers use on a regular basis. Many of them are relevant to the courses the students are
enrolled in concurrently (such as Calculus and Physics).

Issue (b) is a common complaint among instructors of introductory programming courses, which
is that the students background is too diverse. This leaves the instructor with a challenging
classroom to teach in. Programming is not a standardized course in high schools. Some students
might have already taken a programming course in high school, while other student might not
even know what programming is. There are several published theories on how to teach
programming8 9, however, one interesting study pre-tested the student prior to taking an
introductory programming class.10 The pretest was comprised of general logic and math
questions that were predictive of programming ability. They found that from over 800 student,
their performance on the pretest correlated with their success in the programming course. This is
an interesting concept relating to students’ programming background. Perhaps previous
programming experience is not as influential in the success of learning how to program, as is
basic mathematical and logical skills. This is evidence that teaching students to program is less
about their programming backgrounds and more about the backgrounds in math and logic.
Therefore, effective teaching methods would focus more on those types of concepts. There have
been several creative approaches to teaching programming such as using inductive learning and
robots, which was done at West Virginia University.11 Inductive learning is when students are
given a problem to solve first. They try to solve that problem using what they know, which often
is not enough and work to acquire that knowledge in order to solve the problem. Inductive
learning is a much more natural way of learning and it the normal way most people go about
learning otherwise. In your daily lives, you likely did not learn to use a knife, grate cheese, and
operate the oven before understanding the purpose of those skills. The natural process is that
you get hungry, you decide you want to eat pizza, you decide to make pizza yourself, you look
up a recipe on how to cook pizza, you discover to need to know to chop, grate, and turn on an
oven, so you learn to do those things. It is fairly natural to desire to obtain that knowledge when
you have a purpose for it. Inductive learning fits well with the POGIL method. Instead of
teaching students exactly the syntax and functionality of a particular feature of MATLAB, you
just ask them to show you via a POGIL worksheet. If you want students to know how save an
array of data in the MATLAB workspace, just ask them to do it and they will figure it out.
Others have found that it is important to take a modular approach when teaching programming.12

P
age 24.170.4

That is, breaking a bigger computer program into smaller tasks when teaching freshmen and
sophomores at an introductory level. The course presented here incorporated aspects of both of
these approaches. Instead of robots, other interesting, fun, motivating assignments were
designed. Lecture was often spent carefully breaking down logic into more manageable pieces.

Issue (c) is possibly one of the most challenging aspects of teaching introductory level
programming. Even in a user-friendly program like MATLAB, student are often overwhelmed
and frustrated with error messages and debugging their code. Even when every effort is taken to
explain how, lecture on, quiz on, and assess students ability finding and fixing a bug, the only
tried and true effective method is for students be forced to do it repeatedly. They need to write
code, run code, see that it does not work, read the error message, and figure out what is wrong.

Of course, they need a lot of help when they first start doing this. This was the motivation in the
overarching design of the course. The challenge is how to maximize the amount of time students
have access to help with debugging. For this course, the POGIL method was used so that
students could spend more time in class working with MATLAB “hands on” and less time
following a lecture, watching a demo, or trying to follow along with a demo. That way, the
instructor spent 30-45 minutes twice a week with each section working with students one-on-one
or in small groups. While the instructor was answering a question or check progress on an
assignment for one student or a small group of students, the rest of the class was working
through a POGIL worksheet, on a programming assignments, or preparing their toolboxes for the
exam. Incorporating a lab-like setting into the class time also allowed for students to work
together to solve the problems and debug each other’s codes.

Course Design

Backward course design13 was used to build the course from a blank slate. Starting with the end
goal in mind, three course goals were chosen. These three goals are the backbone of the course.
They answer the question, “what would you like your students to take away from the class?”

Next, seven measurable course outcomes were laid out and all linked back to at least one of the
course goals. These course goals and outcomes can be found in Figure 1. Each of the course
outcomes was then also linked to the Accreditation Board for Engineering and Technology
(ABET)14 student outcomes and Bloom’s taxonomy’s cognitive level15. Since this is an
introductory course taught to engineering freshmen, the highest cognition level expected is
“application”.

Course Goals

I. Develop a foundational understanding of computer programming and how it is applied in the field of
engineering.

II. Develop an understanding of mathematics, numerical methods, and statistics especially relevant to the field of
engineering.

III. Encourage methodical, orderly, and disciplined study of engineering.

Course Outcomes

1. Demonstrate introductory level computer programming skills including differentiating between data types, array

P
age 24.170.5

creation and manipulation, the use of control flow, defining functions, and read and writing data.. [I] (a, e, g)
{application}

2. Show proficiency in MATLAB including the understanding of the workspace and GUI, using m-files, graphics
and plotting, and vector storage. [I] (k) {knowledge}

3. Demonstrate mastery of mathematical, numerical, and statistical engineering topics such as matrix algebra, data
analysis and statistics, data interpolation, curve fitting, Fourier analysis, integration, differentiation, and
optimization. [II] (a, e, g) {application}

4. Organize a concise MATLAB binder summarizing all topics relevant to the course outcomes. [III] (g, i)
{knowledge}

5. Employ the ability to learn independently or to know when to ask for help, to most efficiently and successfully
acquire knowledge. [III] (d, g) {application}

6. Comprehend the ethics of programming. [I] (f) {comprehension}
7. Identify how programming and mathematical content applies to the field of engineering. [I,II] (h)

{knowledge}

[] course outcome link to course goal
() lower case letters (a-k) link to ABET student outcomes
{ } Bloom’s taxonomy’s cognitive level of learning (knowledge, comprehension, application, analysis, synthesis,
evaluation)
Figure 1 – An excerpt from the syllabus showing the course goals and outcomes mapped to each

other, ABET student outcomes, and Bloom’s taxonomy cognitive level.

Once the course outcomes were determined, the course assessment methods were designed in
order to assess whether or not students were achieving those outcomes. This will be discussed in
detail in the following section, but the assessment methods were class participation (10%),
MATLAB binder (40%), midterm exam (20%), final exam (30%). Additionally, the
instructional strategies were designed in order to facilitate student learning with respect to the
pre-determined course outcomes. These strategies included POGIL worksheets, which are
student guided learning, short and concise traditional board lecture, MATLAB demos, daily
clicker quizzes, programming assignments, a mid-semester survey (with a report of results and
discussion), and in-class debugging (peer and instructor). Both the assessment methods and
instructional strategies will be discussed in detail in the following section.

Pedagogical Approach

The course was designed to utilize several newer pedagogical approaches that have become more
popular in engineering education. These include:

• daily course polling/quizzing through the TurningPoint Clicker System,
• student guided instruction through the use of instructor created worksheets based off of the

POGIL method,
• active learning through limited lecture and limited instructor demoing.

However, the course also incorporated tried and true traditional engineering education
pedagogical approaches, including:

• concise board lectures highlighting difficult concepts, organizing content, or clarifying more

complex ideas,
• well thought out, short, to the point MATLAB demos introducing new features that the students

will be exploring that week,

P
age 24.170.6

• traditional, written tests with no access to computers or other technology,
• required student created crib sheets to use on exams, one per topic.

These pedagogical approaches, both new and old, will be explained in detail in the following
paragraphs. This will be presented through a detailed explanation of the instructional strategies
and assessment methods.

Instructional Strategies:

The overview of the course schedule can be found in Table 1. The course was broken down into
13 topics. Depending on the complexity of the topic, one or two class sessions were used to
deliver that topic. Each topic corresponded with a chapter in the book and had its own
assignments, which will be discussed later.

Session Topics Covered Reading Assignments Due
1 T1: Intro to Computers Mentor
2 T2: MATLAB Basics Ch. 1-4 WS1, TB1
3 T3: Numeric Data Types, Character Strings Ch. 7, 9 WS2, TB2
4 T4: Arrays, Array Operations, Multidimensional Arrays Ch. 5, 6, 8 WS3, TB3
5 T5: Relational and Logical Operations, Control Flow (Loops) Ch. 10, 11 WS4, TB4
6 T5: Relational and Logical Operations, Control Flow (Loops)
7 T6: Functions Ch. 12 WS5, TB5, PA2
 No Class. President’s Day.

8 T6: Functions PA3, PA4
9 T7: File and Directory Management Ch. 13 WS6, TB6

10 T8: Graphics and Plotting Ch. 25-30 WS7, TB7, PA5
11 T8: Graphics and Plotting PA6

Midterm Midterm Exam, Topics: T1-T8
12 T8: Graphics and Plotting & Return/Review Exams

 No Class-Spring Break
13 T9: Data Analysis and Statistics Ch. 17 WS8, TB8
14 T9: Data Analysis and Statistics PA8
15 T10: Curve Fitting Ch. 19 WS9, TB9
16 T10: Curve Fitting PA9

 No Class. Easter Break.
 No Class. Work Day.

17 T11: Data Interpolation Ch. 18 WS10, TB10
18 T11: Data Interpolation PA10
19 T12: Integration and Differentiation Ch. 23 WS11, TB11
20 T12: Integration and Differentiation PA11
21 T13: Fourier Analysis Ch. 21 WS12, TB12
22 T13: Fourier Analysis PA12
23 Work Day WS13, TB13
24 Review for Final Exam (optional) PA13

Final Final Exam time: 3-6 pm, DSB 104A (Dining Hall)
NOTE: Both sections will take the exam at this time.

Table 1 – Overview of the course schedule.

Each session followed the same overall schedule, which is shown in Table 2. The class starts
promptly (within a minute) of the posted start time in the syllabus. While this seems like a nit
picky detail, it is a vital component of developing good rapport with the students and also

P
age 24.170.7

contributing to the success of course goal III, which is “encourage methodical, orderly, and
disciplined study of engineering”. To motivate the importance of being in class on time and
ready to learn, a clicker quiz is administered immediately. Multiple choice or true/false
questions are asked based off of the topics covered in the previous class. This clicker poll serves
many purposes: attendance, review, an additional chance to recall material, and instant feedback
for the instructor on how well the class is grasping concepts. Figure 2 shows an example of two
different types of clicker questions, one based on theory and one based on programming. Two to
five questions were given per day, with a total of 66 throughout the semester. Students
participation in the questions were incorporated into their participation grade. Although their
performance on the questions were not incorporated into the grade, awards were given out at the
end of semester relating to clicker scores and participation. The high percent correct was 77%,
the lowest was 31%, and the average was 54%. These results are reasonable considering the
material was all only one session old.

Figure 2 - Two examples of clicker questions used during daily clicker quizzes.

Activity Time

Clicker Poll/Quiz 3-5 min.
Announcements 2-5 min.
Board Lecture 10-15 min.
MATLAB Demo 5-15 min.
Student Work Time 30-45 min

Total 75 min.

Table 2 – Daily schedule for the class.

Following the clicker quiz and announcements, a concise board lecture took place based on the
topic of the day. The lecture was used to present difficult concepts, to organize material, or to
clarify specific strategies needed for the assignments they were working on. Everything that was
presented was needed for one or more of the assignments they were working on. Topics during
the first half of the semester were covering how to use the software and basic programming
techniques. An example of board would be to explain the difference between a do loop and a
while loop. Or, the board lecture might be writing a pseudo-code and going through the step by
step logic of how a computer could solve one of their programming assignments.

P
age 24.170.8

Either following or interlaced into the board lecture, a MATLAB demo would be presented to
show how to apply that concept to the software. At the beginning of the semester, this would be
showing how to define variables, arrays, and MATLAB syntax in the Workspace. Some
students followed along on their own computers while others just took notes. Later in the
semester, these demos would program smaller pieces or modules of the programming
assignments that they are working on. For example, if they needed to program a second
derivative using a central differencing scheme, the MATLAB demo might show them how to do
a first derivative using a backward differencing scheme. Or the demo might show them how to
write a function and then call that function from another function, which they will need for their
assignment.

Finally, the last 30-45 minutes of class is dedicated to student work time. This is when students
can pick up graded assignments, check the instructor’s solution manual (not available online),
ask questions on content (from peers and instructor), get help debugging (from peers and
instructor), and get assignments “signed off” by the instructor. This very busy time almost
always bled into the next session. During this time, the instructor was able to meet with students
one and one and by the end of the semester, was very familiar with the programming skills of
each and every student from that experience alone.

Assessment Methods

As mentioned before, assessment methods were class participation (10%), MATLAB binder
(40%), midterm exam (20%), final exam (30%).

Class participation was evaluated based off of attendance, clicker question participation (not
score), and observations of work ethic during class. If students were browsing the web, off task,
repeatedly forgetting materials or laptop, etc. their attendance grade was affected. Out of all 37
students, the attendance rate was 99%, only 11 absences total.

The MATLAB binder was the most heavily weighted assessment method. For each of the 13
course topics, the students were required to complete a Toolbox, a Worksheet, and a
Programming Assignment. The toolbox was a single sheet of notes (a crib sheet) that they
completed after finishing the worksheet and programming assignment. This was graded and to
be used on the exams. An example of a student’s toolbox is shown in Figure 3.

P
age 24.170.9

Figure 3 – An example of a student’s toolbox from Topic 12.

The worksheet was designed by the instructor so that the students would self guide themselves
through the material to supplement the other instructional strategies. Figure 4 shows an example
of a few questions on a worksheet for Topic 4, on arrays. An important point to note is that the
material in the worksheets was not necessarily covered during the board lectures or MATLAB
demos. Therefore, the students needed to use their resources during the class to find the answers.
Although for basic programming and MATLAB training this is not exactly inductive learning, it
is in a similar spirit. The students want to figure it out because it allows them to complete the
worksheet. The worksheets are turned in a graded as part of the MATLAB binder grade.

1. What is an array?
2. Creating a simple array: In the MATLAB Command Window, create an array

using the variable name angles and fill it with 10 angle values (use: 0°, 30°, 60°,
90°, 120°, 150°, 180°, 210°, 240°, 270°). Copy down the command to do this here.
(NOTE: It is not necessary in any of these exercises to copy down the output or what
is printed when the command is executed. Simply copy down the command.)

3. Operating on a simple array: Perform two operations on this array. First, convert
all the angle values from degrees to radians. Second, find the cosine of all the angles
using the original created array called angles. Copy down each command here
(each should be a single line and each command should operate on the entire array at
once).

4. Array Addressing or Indexing: Show how to access a single array element of an
array (do this by accessing and displaying in the command window the value of 120°
from the array angles). Copy down the command here.

Figure 4 - A snapshot of a worksheet on arrays to provide an example of a POGIL guided
exercise.

P
age 24.170.10

Students apply their programming and logic skills to a programming assignment for each of the
topics. Programming assignments are more complex problems that must be solved by writing an
m-file and running the code. Figure 5 and 6 show an example of a programming assignment and
the solution. The assignments are designed to utilize control flow, arrays, function calls, and all
of the other programming techniques covered in the first half of the semester. The last half of
the semester was dedicated to applying these techniques to mathematical and statistical tools that
engineers use on a regular basis. This included data analysis, statistics, curve fitting,
interpolation, numerical differentiation, numerical integration, and Fourier analysis. Unlike the
tool boxes and worksheets, programming assignments were not turned in for grading. Instead,
during work time in class, students must get their programming assignments “signed off” by the
instructor. The instructor would have the student run the program, ask a few questions, and give
them a binary score on the completion of the assignment. This was more efficient than
submitting programs and running each individually for evaluation. This process also allowed the
instructor to do an unofficial oral exam to evaluate the students learning. The one-on-one
interaction during sign offs provided extremely value predictive data on students learning and
their potential success on other course assessment.

PA12–	 Integrate	 and	 Differentiate	 Data	 from	 a	 stage	 of	 the	 Tour	 de	 France	
Function	 purpose:	 	 Write	 a	 function	 that	 integrates	 and	 differentiates	 data	 from	 the	 2012	
Tour	 de	 France	 rider	 Chris	 Anker	 Sorensen	 (Stage	 16).	 	 	 	 	
	

1. Create	 a	 new	 .m	 file	 function.	 	 Give	 it	 a	 function	 name	 and	 a	 file	 name:	 	 pa12.	 	 It	 will	
have	 no	 inputs	 and	 no	 outputs.	 	 	

2. Load	 in	 all	 the	 data	 from	 tourdeFrance.mat.	 	 Type	 whos	 underneath	 the	 load	
command	 to	 see	 what	 data	 was	 loaded	 in.	 	 Units	 are	 as	 follows:	 	 time	 [hr],	 speed	
[km/hr],	 and	 elevation	 [m].	
NOTE:	 	 This	 is	 the	 speed	 and	 elevation	 of	 racer	 Sorensen	 from	 Stage	 16	 of	 the	 2012	
Tour	 de	 France.	 	 The	 stage	 was	 a	 total	 6	 hours!	

3. In	 the	 first	 of	 two	 subplots,	 using	 a	 plotyy,	 plot	 time	 vs.	 speed	 on	 the	 left	 axis	 and	
time	 vs.	 elevation	 on	 the	 right	 axis.	 	 Label	 the	 each	 axis	 and	 title	 the	 plot	 (include	
units).	 	 	

4. Approximate	 the	 total	 length	 of	 Stage	 16	 in	 km	 (i.e.	 the	 total	 distance	 traveled)	 using	
the	 trapezoidal	 rule	 (i.e.	 integrate	 the	 speed	 of	 the	 race	 over	 the	 6	 hours).	 	 Write	
your	 own	 trapezoidal	 rule,	 do	 not	 use	 MATLAB	 intrinsic	 functions.	 	 	 This	 can	 be	
done	 in	 a	 single	 line	 of	 code	 or	 by	 using	 a	 for	 loop.	 	 Display	 total	 distance	 traveled	
(include	 units)	 and	 check	 that	 your	 answer	 is	 right	 (you	 can	 check	 here:	
http://www.letour.com/le-‐tour/2012/us/overall-‐route.html)	

5. Approximate	 the	 derivative	 of	 elevation	 over	 time	 using	 a	 forward	 difference	
approximation.	 	 Write	 your	 own	 difference	 approximation,	 do	 not	 use	 MATLAB	
intrinsic	 functions.	 	 This	 is	 the	 vertical	 speed	 of	 the	 racer.	 	 	

6. In	 the	 second	 of	 two	 subplots,	 plot	 time	 vs.	 the	 vertical	 speed	 of	 the	 racer	 calculated	
above.	 	 Label	 each	 axis	 and	 title	 the	 plot	 (include	 units).	 	 Verify	 that	 your	 derivative	
calculation	 makes	 sense.	 	 	

Figure 5 – An example of a programming assignment description.

P
age 24.170.11

Figure 6 – An example of a solution to a programming assignment (PA12).

Finally, 50% of the student’s grade was based off of their performance on the two exams: a
midterm and a final. The exams were closed book and close electronic devices. However, they
were able to use their MATLAB binder during the exams. Exam questions mainly comprised of
testing the mathematical theory or testing their programming ability. For example, they had to
hand write MATLAB code using proper MATLAB syntax. An example of this is shown in
Figure 7.

1. (20 pts) Given the following data:

time (hrs) 0 1 2 3 4
cost ($) 0 100 150 175 200

Write code that does the following:

i. Write the function declaration line. Give it the function name: calctot. The

function will have one input (const) and one output (tot).
ii. Stores the data above in two arrays: t and c
iii. Initialize an array (give it variable name: tot) that is the same size as t and fill it

with zeros (do not use any numbers for this line).
iv. Computes the total cost using the following formula (where N is the size of t or c

and p is the input const that is read in by the function) and store in tot:
Total= (𝑝𝑡! + 𝑐!!

!!!)
Figure 7 – An example exam question, which assesses students programming proficiency.

0 1 2 3 4 5 6
0

20

40

60

80
Speed and Elevation of Tour de France Racer (2012, Stage 16) − Chris Anker Sorensen

Time (hrs)

Sp
ee

d
(k

m
/h

r)

0 1 2 3 4 5 6
0

500

1000

1500

2000

El
ev

at
io

n
(m

)

0 1 2 3 4 5 6
−8000

−6000

−4000

−2000

0

2000

4000
Vertical Speeds

Time (hrs)

Ve
rti

ca
l s

pe
ed

s
(m

/h
r)

P
age 24.170.12

Survey Results and Feedback

There were two forms of evaluation used to study the effectiveness of this new course design.
The first was mid-semester survey administered by the instructor. The second was the course
evaluations administered by the Individual Development and Educational Assessment (IDEA)
Center16 at the end of the semester.

Mid-semester Survey

The mid-semester survey was a series of 8 questions and was administered via a non-anonymous
clicker question in class questionnaire. The questions and answer options are listed in Table 3.

On a scale of 1-9, how much are you enjoying this class (1-not
at all, 9-the most) 1 2 3 4 5 6 7 8 9

What is your opinion about lecture time? Want more Like current
amount Want less

What is your opinion on work time during class? Want more Like current
amount Want less

What materials did you find most useful on the exam?

W
S

TB

PA

A
ll

N
one

W
S &

 TB

TB
 &

 PA

W
S &

 PA

Did you find that the material on the exam matched the
material we focused on in class (lecture and all assignments)? Yes No

How did you feel you performed on the exam? A B C D F

How much of the worksheets do you do unassisted?
Always

work
alone.

Always
work
with

others

Mostly
work
alone

Mostly
work
with

others

It
depends

How much of the programming assignments do you do
unassisted?

Always
work
alone.

Always
work
with

others

Mostly
work
alone

Mostly
work
with

others

It
depends

Table 3 – Mid-semester survey conducted by instructor via in class (not anonymous) clicker
questions.

One of the motivations of conducting the survey was to see student’s perception of the
pedagogical approach. A common complaint from students who are taking a course which uses
the POGIL approach is something along the lines, “The instructor doesn’t teach the material, we
are basically teaching ourselves.” Therefore, the students were surveyed about how they felt
about the way class time was spent. Figure 8 shows to pie charts summarizing the results. It was
found that 56% of the students wanted more lecture time, 44% thought there was the right
amount, and none of the students wanted less lecture time. Therefore, starting at mid-semester,
more lecture time was added. Since most classes are still operating under the traditional lecture
based class structure, many students are not yet comfortable with little or no lecture. When
asked about work time during class, 68% thought there was the right amount and rest were split
between wanting more or less.

P
age 24.170.13

Figure 8 – Feedback from students on the amount of time on lecture vs. amount of in class work

time.

For fun, students were asked how much they were enjoying the class. It was a fairly subjective
question and results are likely not extremely accurate since the survey was not done
anonymously (even if it was, the students would might not trust that it was actually anonymous).
Therefore, students were generally positive about the class, as shown in Figure 9.

Figure 9 – Feedback from students on how much they like the course.

The survey was done in the class session immediately following the midterm exam and was
conducted prior to handing back the graded exam. Students were surveyed to see how they felt
they did on the exam, giving themselves an average grade of an A, B, C, D, or F. There
predicted scores were conservative and followed a traditional Gaussian distribution. Their actual
grades were inflated quite a bit due to the curve applied, with most students falling in the B
range. Figure 10 shows details of these distributions.

56%

44%

Did you like the amount of
lecture time?

MORE LECTURE

RIGHT AMOUNT

LESS LECTURE

18%

68%

18%

Did you like the amount of
work time in class?

MORE WORK TIME

RIGHT AMOUNT

LESS WORK TIME

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 N
U

M
B

E
R

 O
F

ST
U

D
E

N
T

S

RATING 1-9

How much students enjoy the class?
1(do not like) - 9(do like)

P
age 24.170.14

Figure 10 – A comparison of how students predicted they did on the midterm exam versus how

they actually did.

Finally, some correlations were done to study the effectiveness of different pedagogic strategies.
Students were surveyed to see how much they work alone and how much they work with others,
see Table 3 for exact questions and answer options. Their answers were correlated with their
performance on the midterm exam (Figure 11) in hopes of providing them with proper feedback
on how to best improve their learning in the class. Results showed that students who reported
“working mostly with other” on worksheets had the highest average score on the midterm exam.
Students who answered “it depends”, had the lowest average score. This indicates that working
in groups on the worksheets but also doing some of the work individually proved to be the most
effective way to learn the material. On the other hand, there did not appear to be any correlation
with working with others on the programming assignments and performance on the midterm
exam.

Figure 11 – A graph showing the correlation between students working with their peers on the

worksheets or programming assignments and their grade on the midterm exam.

An additional correlation was investigated between working with others and actual scores on the
worksheets. Figure 12 shows that there is not much of a correlation. This is shows that even
though students are getting the correct answers on worksheets regardless of whether they work
along or with others, this is not indicative of whether or not they are truly learning the material
(which is what the exam can demonstrate).

3

12

15

10 9

0

2

4

6

8

10

12

14

16

18

20

A B C D F

N
um

be
r

of
 S

tu
de

nt
s

Predicted Midterm Exam Grades

7

19

8

1 2

0

2

4

6

8

10

12

14

16

18

20

A B C D F

N
um

be
r

of
 S

tu
de

nt

Actual Midterm Exam Grades

2.56 2.60

1.40

3.17

1.90
11

19

5

9
7

0

2

4

6

8

10

12

14

16

18

20

0

0.5

1

1.5

2

2.5

3

3.5

Always Alone Mostly Alone Depends Mostly with
Others

Always with
Others

N
um

be
r o

f S
tu

de
nt

s

G
ra

de
 o

n
M

id
te

rm
 E

xa
m

Working with Others on WSs

2.36 2.55 2.94 2.59 2.42

4

13

7

14
13

0"

2"

4"

6"

8"

10"

12"

14"

16"

0

0.5

1

1.5

2

2.5

3

3.5

Always Alone Mostly Alone Depends Mostly with
Others

Always with
Others

N
um

be
r o

f S
tu

de
nt

s

G
ra

de
 o

n
M

id
te

rm
 E

xa
m

Working with Others on PAs

P
age 24.170.15

Figure 12 – A graph correlating the average grade on POGIL worksheets with how much

students reported they worked with their peers on the worksheets.

The students were also asked if they felt that the test material was sufficiently covered in the
different instructional strategies and assessment methods. Figure 13 shows that 76% of students
felt that the test matched. Also, as expected, the average score on the exam (using a 4.0 scale)
was much higher for those who answered “yes” vs. those who answered “no”.

Figure 13 – Pie chart summarizing student responses to how the test material corresponding to
what was focused on in class. Average score (using a 4 point scale) is shown for each group of

students.

Lastly, the students were surveyed to see if they felt the three assessment methods (tool boxes,
worksheets, and programming assignments) were useful on the exam. As seen in Figure 14,
overall students used all three of the methods. The toolboxes were used to least, which is
probably because they are the most open-ended of the three.

1"

1.5"

2"

2.5"

3"

3.5"

4"

1" 2" 3" 4" 5"

Av
g.

 G
ra

de
 o

n
W

Ss
 (

1-
4

sc
al

e)

Working Alone (1) --> Working with Others (5)

76%

24%

Did you think the test material
matched the material covered in

class?

YES, AVG=2.78

NO, AVG=2.16

P
age 24.170.16

Figure 14 – A bar graph summarizing the results of what assessment method students found to be

most useful on the midterm exam.

IDEA Student Evaluation Results

As part of the IDEA student evaluation process, the instructor chooses 3-5 learning objectives
and indicates them to be either “important” or “essential” (i.e. more important). For this course,
the instructor chose two “essential” learning objectives:

21. Gaining factual knowledge (terminology, classifications, methods, trends)
22. Learning fundamental principles, generalizations, or theories.

And then chose two “important” learning objectives:

23. Learning to apply course material (to improve thinking, problem solving, and decisions)
29. Learning how to find and use resources for answering questions and solving problems.

The students were surveyed to rate their progress on these objectives using a 1-5 scale. The scale
was 1-no, 2-slight, 3-moderate, 4-substantial, 5-exceptional progress. The course was comprised
of a total 37 students split into two sections a morning section (Sec. 1, 19 students), and an
afternoon section (Sec. 2, 18 students). There was a 90% response rate. The dynamics of each
section were quite different, which is very evident in the survey results. As shown in Table 4,
the 85% of the students reported that they made substantial or exceptional progress on the two
essential learning objectives and no students reported no or slight progress. As for the second
tier, important learning objectives, 62% and 67% of students reported they made substantial or
exceptional progress on those, as well. These results provide evidence that students are reporting
that they learned stuff! It is important to note that all four of the learning objectives received a
higher rating on student’s progress when compared to the average of all classes in the IDEA
database (4.0, 3.9, 4.0, 3.7), all Mechanical Engineering classes in the IDEA database (4.1, 4.1,
4.0, 3.7), and all the classes at the home institution in the IDEA database (4.2, 4.2, 4.2, 3.9).

24

17

24

0

5

10

15

20

25

30

WS TB PA

N
U

M
B

ER
 O

F
ST

U
D

EN
TS

What did you find most useful on the test? (1/3rd
said all three, 1/3rd said WS&PA)

P
age 24.170.17

Learning Objective Importance rating Average Rating (5
pt. scale)

% of Students
Rating 1 or 2

% of Students
Rating 4 or 5

 Sec.
1

Sec.
2 All Sec.

1
Sec.

2 All Sec.
1

Sec.
2 All

21. factual knowledge Essential 4.5 4.3 4.4 0% 0% 0% 94% 75% 85%
22. fundamental
principles Essential 4.5 4.3 4.4 0% 0% 0% 94% 75% 85%

23. applying course
material Important 4.5 4.0 4.2 0% 6% 3% 88% 75% 62%

29. finding resources
to solve problems Important 4.1 4.1 4.1 6% 6% 6% 76% 56% 67%

Table 4 – A summary of the IDEA survey results for the essential and important learning
objectives.

Going back to the three issues that were addressed for this course design,

(a) the course being offered outside of an engineering department,
(b) the extreme variability in the rate at which the students comprehend the material, and
(c) the frustration of new programmers, especially with debugging.

The IDEA survey results can be analyzed to determine if the students reported success in
addressing these three issues. IDEA categorizes the answers to the survey questions into 5
different effective teaching methods and styles that can increase student learning. These include:
stimulating student interest, fostering student collaboration, establishing rapport, encouraging
student involvement, and structuring classroom experiences. These five teaching methods and
styles can be tied directly to the three issues addressed in this course design.

Issue (a) was addressed in order to get first year engineering students interacting with
engineering faculty earlier, to allow engineering students to learn to program in a practical
programming language, and to allow engineering students to apply their programming skills to
engineering problems. This issue ties most directly with the answers in the survey relating to
stimulating student interest and structuring classroom experience. As summarized in Table 5, it
was reported the following methods were effective and considered as strengths to retain:
stimulated students intellectually beyond that required by most classes, demonstrated the
importance of subject matter, made it clear how topics fit within the course, explained course
material clearly and concisely, scheduled class work in ways which encouraged students to stay
up-to-date, and provided timely and frequent feedback. Two teaching methods or styles were
also effective and it was suggested to either retain the current use of the methods or consider
increasing. These two were inspired students to set and achieve goals and gave tests that covered
the most important points of the course. Finally, the teaching method that was found least
effective and that should be increased is introduced stimulating ideas on the subject.

Issue (b) was addressed in order for each student to learn at a pace appropriate for their personal
learning style and background. This issue ties most directly with the answers in the survey
relating to fostering student collaboration and encouraging student involvement. These
categories of teaching methods are much more challenging and therefore, the results showed less
strengths in these areas. As show in Table 5, the strength to retain is gave projects, tests or
assignments that required original or creative thinking. This is likely an crucial component to

P
age 24.170.18

variable student pacing. Two other teaching methods that were found effective were encouraged
students to use multiple resources and involved students in “hands on” projects, which were both
suggested to retain current use or consider increasing. In order to complete assignments students
needed to self guide themselves through material, search the web, reference their textbook, ask
their peers, and ask their instructor. And almost all the work done in the class was “hands on”.
Two teaching methods that will be increased include asked students to help each other
understand concepts and related course material to real life situations. Additional evidence of
issue (b) getting addressed can be found in Figure 15 and 16. Figure 15 shows a final
distribution of course grades. The majority of students showed proficiency in the course
outcomes. Figure 16 shows how the homework scores correlated with the final exam score.
This shows that students who were able to complete homework assignments correctly performed
better on the exams than students who did not complete homework or who did not complete
homework correctly.

Issue (c) was addressed in order to help train students to problem solve and learn to debug in less
frustrating environment. The teaching method that ties best to this issue is establishing rapport.
As shown in in Table 5, the strengths to retain are found ways to help students answer their own
questions, displayed personal interest in students and their learning, and encouraged student-
faculty interaction outside of class. Explained the reasons for criticisms of students’ academic
performance was also considered an effective teaching method and it was suggested to retain
current use of the method or consider increasing. Some of the methods in encouraging student
involvement also played a role in addressing issue (c). Additionally, when asked to rate
“students were comfortable asking questions in this instructor’s class”, 82% of students rated it 4
(more true than false) or 5 (definitely true) and no students rated it 1 (definitely false) or 2 (more
false than true).

Other valuable feedback from the IDEA surveys was that students found that the technology
used in the classrooms to be effective. When asked to rate “the instructor utilized current
technology in the classroom in a way that made the course material more interesting”, 88% of
students rated it a 4 (more true than false) or 5 (definitely true) and no students rated it 1
(definitely false) or 2 (more false than true). The average rating was 4.5. This is an important
aspect of a programming course. Lots of classroom technology was used including a clicker
system, MATLAB software, document camera projector, student’s personal laptops, and
instructor laptop. If working with technology does not go smoothly in a class, it often does more
harm than good.

P
age 24.170.19

Teaching Methods or Styles Relevant
Objectives

Average
(5 pt. scale)

% of
Students
Rating
 4 or 5

Suggested Action

Issue (a)
Stimulating student interest

13. Introduced stimulating ideas about the subject 21, 22, 23, 29 3.8/3.8/3.8 76/56/70 Consider
Increasing

15. Inspired students to set and achieve goals which
really challenged them. 21, 22, 23, 29 4.1/4.0/3.9 82/69/72

Retain current use
of consider
increasing

8. Stimulated students to intellectual effort beyond that
required by most classes 21, 22, 23, 29 4.4/3.8/4.2 82/63/77 Strength to retain

4. Demonstrated the importance and significance of the
subject matter 21, 22, 23 4.3/3.7/4.0 88/60/73 Strength to retain

Structuring classroom experience

12. Gave tests, projects, etc. that covered the most
important points of the course 21, 22 4.4/3.8/4.2 82/56/76

Retain current use
of consider
increasing

6. Made it clear how each topic fit into the course 21, 22, 23 4.4/3.5/4.1 100/56/78 Strength to retain
10. Explained course material clearly and concisely. 21, 22, 23 4.1/4.0/3.8 88/69/72 Strength to retain
3. Scheduled course work (class activities, tests,
projects) in ways which encouraged students to stay up-
to-date in their work

 4.5/4.1/4.3 100/75/88 Strength to retain

17. Provided timely and frequent feedback on tests,
reports, projects, etc. to help students improve. 4.3/3.9/4.1 88/69/79 Strength to retain

Issue (b)
Fostering student collaboration
18. Asked students to help each other understand ideas
or concepts 29 4.2/3.6/3.9 76/50/64 Consider increasing

Encouraging student involvement

11. Related course material to real life situations 23 3.8/3.5/3.7 65/56/61 Consider increasing

9. Encouraged students to use multiple resources (e.g.
data banks, library holdings, outside experts) to improve
understanding

29 3.89/3.4/3.8 71/56/70
Retain current use
of consider
increasing

14. Involved students in “hands on” projects such as
research, case studies, or “real life” activities 29 3.8/3.9/3.6 65/69/61

Retain current use
of consider
increasing

19. Gave projects, tests, or assignments that required
original or creative thinking 29 4.4/3.8/4.1 88/63/76 Strength to retain

Issue (c)
Establishing rapport

7. Explained the reasons for criticisms of students’
academic performance 23, 29 3.7/4.1/3.6 71/69/70

Retain current use
of consider
increasing

2. Found ways to help students answer their own
questions 21, 22, 23, 29 4.2/4.1/4.1 88/69/79 Strength to retain

1. Displayed a personal interest in students and their
learning 23 4.5/3.6/4.3 94/69/82 Strength to retain

20. Encouraged student-faculty interaction outside of
class (office visits, phone calls, emails, etc.) 29 4.6/3.9/4.3 94/75/85 Strength to retain

Table 5 – Summarizes IDEA survey results with respect to how three issues were addressed
based on recommended teaching styles and methods determined effective by the IDEA center.

P
age 24.170.20

Figure 15 – Final grade distribution for the class.

Figure 16 – Homework scores correlated to the final exam scores. The correlation coefficient
squared is 0.44, which shows the two are moderately positively correlated.

Discussion and Conclusion

In summary, results show that the course design was effective. A few additional challenges are
of particular interest to this design. First, the IDEA survey results show that students reported
that they were not “asked to help each other understand ideas or concepts”, which falls under the
“fostering student collaboration” teach method (see Table 5). It was one of the poorest scoring
qualities of the course, particularly by Section 2. This is likely due to the inherent unfortunate
existence of programming and academic dishonesty. It is one of the most challenging
components of teaching a course in programming. Letting students work together is important,
but consistently and constantly requiring them to do their own work is extremely important for

0

1

2

3

4

5

6

7

8

9

10

F D C- C C+ B- B B+ A- A

R² = 0.44365

1.00

2.00

3.00

4.00

1.00 1.50 2.00 2.50 3.00 3.50 4.00

Sc
or

e
on

 F
in

al
 E

xa
m

Score on Homework

Final Exam vs. Homework

P
age 24.170.21

effective learning. Unfortunately, this balance is difficult and students often don’t understand
what is “ok” and what is “not ok”. The low scores in fostering student collaboration is most
definitely due to this. In addition, this could also explain finding no correlation between working
with others on programming assignments and scores on the midterm exam from Figure 11.
Students are probably not comfortable reporting “how often they worked with others” on
programming assignments because they are unsure what is allowed or feel they probably violated
the academic honesty code in the syllabus. Due to the one-on-one nature of programming
assignment assessment, a lot transparency regarding this issue was exposed and therefore, more
easily avoided or mitigated.

The class is being taught for a second time in the Spring of 2014. There are many changes and
additions to the course design that will be made based off of the results presented here. These
changes are summarized as follows.

Longer class sessions. The course has been changed to a lab/lecture format, which is more
indicative of the way it operates. The “work time” is similar to what is done is lab classes
(computer or wet labs). Therefore, instead of meeting 2.5 hours per week, the course will meet 4
hours per week in two 2-hr sessions. Both the mid-semester survey and the IDEA student survey
narrative comments indicated that many students wished they had more time in class for lecture
and for work time. The second half the course, as it is usually, was more time consuming and
could have benefitted greatly for the lengthening. This will also allow a lot more flexibility with
more lengthy lectures when necessary or requested.

Notes used on exam. Many students commented in their IDEA student survey narrative
comments that they did not find the toolboxes useful or did not understand the purpose of them.
To address this, students will be allowed to only use tool boxes on exams. Therefore, they will
need to organize and categorize all the content from each topic onto a topic crib sheet. This
should clear up the purpose of the toolboxes and make them much more useful tools (for
studying and test taking).

Humanitarian spin. In order to support the liberal arts goal of the university, the course will be
themed around humanitarian engineering topics. Since the technical topics of the course (data
analysis, statistics, curve fitting, interpolation, differentiation, integration, etc.) are not specific to
a particular discipline within engineering, a overarching them of humanitarianism will tie
everything together. Some of the programming assignments from Spring 2013 already fit this
theme, such as analyzing climate data and reflecting on global warming. However, the Spring
2014 class will incorporate a humanitarian with all or most of the programming assignments.
Some ideas include: looking at the UN’s millennium goals, trash tracking, data on
manufacturing produce and GMOs, focusing on the Water, Sanitation, and Hygiene UN cluster,
data on food deserts, analyzing the Lorenz curve for different countries, data on factories in other
countries, mining accidents, etc. The goal is for these to work well with the technical topics, be
themed around humanitarianism, and also be strongly connected with the engineering discipline
(i.e. an issue that might affect engineering in some way or that an engineer would be well suited
to work on).

P
age 24.170.22

Class discussion and reflection. With the added class time, there will be more time to
incorporate discussion on programming assignment results. For example, once they finish the
assignment on analyzing climate data, there can be a discussion on the topic of global warming.
This will also more time for reflection.

Pseudo-classroom flipping with video content. With the added class time and large number of
students, an assessment method will be added. Students will be assigned to work in teams to
produce educational, short videos highlighting what was learned in a particular topic. The videos
will be open-ended to allow for maximum creativity. The students will post their videos on
YouTube so that their peers can watch their videos outside of class and have an additional means
to learn the material. This is in the sprit of classroom flipping, but with a twist.

References
	
1 Siegel, C., Putting the Pieces Together: Linking Learning Outcomes, Assessment and Curriculum”, Center for
2 Farrell, J. J., R. S. Moog, J. N. Spencer, "A Guided Inquiry Chemistry Course." J. Chem. Educ., 1999, 76, 570-574
3 Bergmann, J., A. Sams, “Flip Your Classroom: Reach Every Student in Every Class Every Day”, International
Society for Technology in Education, 2012
4 Gonzalez, Virgilio, Eric Freudenthal. (2010). Work in Progress: Adoption of CCS0 Computational Methods and
Circuit Analysis Techniques into an Introductory Programming Course for Electrical Engineers. American Society
of Engineering Education Annual Conference and Exposition, Louisville, Kentucky.
5 Karunaratne, Maddumage, “Learn MATLAB piggybacked onto C-programming”, ASEE Conference Proceedings,
2013.
6 Budny, D., Lund, L., Vipperman, J., & Patzer, J. L. I. I. I. (2002). Four steps to teaching C programming. In
Frontiers in Education, 2002. FIE 2002. 32nd Annual (Vol. 2, pp. F1G-18). IEEE.
7 Neuenhofer, Ansgar. (2009). Teaching and Learning Structural Engineering Analysis with MATLAB. American
Society of Engineering Education Annual Conference and Exposition, Louisville, Kentucky.
8 Soloway, Elliot. "Should we teach students to program?." Communications of the ACM 36, no. 10 (1993): 21-24.
9 Fincher, Sally. "What are we doing when we teach programming?." In Frontiers in Education Conference, 1999.
FIE'99. 29th Annual, vol. 1, pp. 12A4-1. IEEE, 1999.
10 Ringenberg, Jeff, Marcial Lapp, Apoorva Bansal, Parth Shah. (2011) The Programming Performance Prophecies:
Predicting Student Achievement in a First-Year Introductory Programming Course. American Society of
Engineering Education Annual Conference and Exposition, Vancouver, B.C. Canada.
11 Hamrick, Todd R., Robin A. M. Hensel. (2013). Putting the Fun in Programming Fundamentals – Robots Make
Programs Tangible. Proceedings of the American Society of Engineering Education Annual Conference, Atlanta,
Georgia.
12 Sun, Wangping, Xian Sun. (2011). Teaching Computer Programming Skills to Engineering and Technology
Students with a Modular Programming Strategy. American Society of Engineering Education Annual Conference
and Exposition, Vancouver, B.C. Canada.
13 Wiggins, G. P., & MCTIGHE, J. A. (2005). Understanding by design. ASCD.
14 Accreditation Board for Engineering and Technology. (2014). Criteria for Accrediting Engineering Programs,
2012-2013. Retrieved from http://www.abet.org/DisplayTemplates/DocsHandbook.aspx?id=3143.
15 Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of educational
objectives: Handbook I: Cognitive domain. New York: David McKay, 19, 56.
16 Individual Development and Educational Assessment (IDEA) Center. (2014). Interpretative Guide: IDEA
Diagnostic Form Report. Retrieved from http://www.theideacenter.org/DiagnosticGuide
	 P

age 24.170.23

