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Overview 

 

Although textbooks
1, 2, 3, 4, 5, 6

 in the area of vibrations employ software tools, such as MATLAB, 

Mathcad, Maple, in their treatment of vibration principles and concepts; however most of their 

coverage of the ever important role of technology in teaching vibrations is limited to isolated 

usage of these tools in some end of the chapter computer problems. Second, their treatment 

appears to focus primarily on the presentation of the programming aspects of the issue without 

much analysis and design of vibration systems.  

 

In vibrations, the simplest model representing a system is a linear, lumped parameter, discrete 

system model, which requires considerable analytical and computational effort for systems with 

more than two degrees of freedom. In such circumstances, the use of software programs, such as 

MATLAB and Mathcad are essential in obtaining numerical results in order to understand and 

predict system’s physical behavior. For example, the natural frequencies and mode shapes of a 

four degree of freedom model of an automobile suspension system are, in general, pairs of 

complex conjugates for which hand calculations and extractions is a formidable task, if not 

impossible. Such studies can be easily done in MATLAB or a Mathcad environment.  Examples 

like this, makes it more and more evident to the teachers of vibrations that the best approach to 

teaching vibration concepts and principles is to carefully integrate computational methods 

available in most software programs with the theory.  

 

Although the treatment of automobile suspension system is a standard application of vibration 

theory, the application of MATLAB and SIMULINK to it is an original frame work. As a 

frequent instructor of vibrations course, one of the authors regularly receives complimentary 

copies of textbooks on the subject of vibrations each and every year from a number of 

publishers. In neither the graduate level textbooks, such as the ones by, Weaver and 

Timoshenko
7
, Meirovitch

8
, Ginsberg

9
, de Silva

10
, Benaroya

11
, or the undergraduate level texts, 

such as the ones by Thomson, Tongue, Inman, Rao, Belachandron, Kelly have we seen or 

noticed a complete treatment of suspension problem. For instance, Thomson covers the free 

vibration model of suspension system with no damping elements involved. Inman considers 

damping in the model but regards only free vibrations and avoids the complex conjugate 

eigenvalues involved. On the other hand, Meirovitch presents a forced vibration formulation of 

the suspension model, however, avoids the solution part all together.  None of these textbooks 

mentioned above, present derivation and formulation for base excitation of the suspension 

system as it is presented in our paper. That is a 2-degree of freedom model. Besides, in deriving 
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the equations of motion for their problems, all textbook authors mentioned above use Newtonian 

mechanics, whereas in our classroom project we introduced our students to analytical approach 

of Lagrange’s equations.  We haven’t seen such treatment done in any textbook, in connection 

with the suspension problem.  As we mentioned before, no solution to actual response of the 

suspension system except for simple cases of free Vibrations is available in any of the above 

textbooks.  In our case of base excitation, one is actually dealing with two inputs (one in the 

front, and one in the rear tires) to the system. As it is shown in the paper, the transfer function 

due to each input has a 3
rd

 degree polynomial in the nominator and a 4
th

 degree polynomial in the 

denominator (Let us not forget that there are 4 of such transfer functions in the paper). It is a 

formidable task to find the response of the system by hand calculation. It is in here  (and in this 

capacity) where we introduced our students to these exciting features and tools in MATLAB and 

SIMULINK to provide insight about the system response, and, at the same time, guide our 

students to better understanding of vibration concepts by trying to engage them in design of a 

better system.  

 

The main objective of the following project, given to our students in vibration class, is to help 

students understand and appreciate principles and concepts of vibrations through an effective 

integration of software programs, MATLAB and SIMULINK, with theory. This further 

highlights the need for integration between mathematical analysis and engineering system 

design. After the assignment of the following project it became increasingly evident to the 

authors of this article that the combination of MATLAB and SIMULINK is a powerful tool 

which adds a new dimension to research in vibrations systems’ control and to the instruction of 

vibrations courses since it has the promise of aiding students to understand much better the 

vibrations principles. Our students showed deep understanding of such principles, as a result. 

 

SIMULINK is an interactive environment for system simulation and embedded system design. 

As a platform for multi-domain modeling and simulation, SIMULINK lets students precisely 

describe and explore a system’s behavior. In addition, SIMULINK, provides a graphical user 

interface that is often much easier to use than traditional command-line programs. Integration of 

SIMULINK into the vibrations instruction will therefore be of great pedagogical value. 

  

To meet these objectives and to satisfy the ABET requirement for enhancing the design contents 

of engineering curriculum, the following project was assigned to students in vibrations class. 

Students used both MATLAB and SIMULINK in this project to both analyze and design 

automobile suspension system. 

 

Neglecting the mass of tires and the rolling motion of the vehicle, and combining the stiffness 

and damping effects of tires and suspension system into an equivalent damping and stiffness 

system, a preliminary model based on the bounce and pitch motions of the vehicle is considered. 

Students were then asked to use Lagrange’s equations to derive the governing differential 

equations of motion, for the bounce and pitch motions of the vehicle. MATLAB was then used to 

arrive at the natural frequencies and mode shapes of the system. SIMULINK was employed to 

verify the results obtained in MATLAB by plotting the Power Spectral Density of the response 

due to initial conditions proportional to one of the eigenvectors of the system. Students further 

utilized SIMULINK to investigate the response to an arbitrary initial condition, and they realized 

which of the two motions of bounce and pitch was the dominant one in the ensuing motion. 
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Frequency Response Functions, FRF, for both motions was obtained using MATLAB. 

MATLAB and SIMULINK were then utilized to arrive at system response to the rough terrain. 

To lower the intensity of the annoying pitch motion of the vehicle SIMULINK, as a design tool 

this time, was used to find a proper damping for suspension system to achieve this goal. 

 

Students’ feedback with respect to the project was very positive. They all enjoyed working with 

SIMULINK especially due to the relative ease in building the system model in comparison with 

the corresponding MATLAB model. In short, students indicated that SIMULINK helped them a 

lot in achieving a deeper, holistic understanding of the course material and its objectives by 

promoting a virtual laboratory for vibration concepts. 

 

Problem Statement 

 

 

 

 
 

 

Figure 1 
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An automobile on a rough terrain, such as the one shown in the Figure 1, exhibits  bounce, pitch, 

and roll on top of its rigid body motion. In this analysis, we assume that the rolling motion 

compared to the two other types of oscillatory motions is negligible. Neglecting the rolling 

motion and mass of tires, and combining the stiffness and damping effects of tire and suspension 

system into an equivalent damping and stiffness system, a preliminary model for automobile’s 

suspension system is presented in the Figure 2. Initial values for the respective inertias, damping 

coefficients, and spring rates are as follows: 

 

m = 2000 kg   J = 2500 kg.m
2
     k1 = k2 = 30000 N/m c1 = c2 = 3000  N.s/m 

 

        l1 = 1 m      and   l2 = 1.5 m 

 

Where m is the auto body’s mass, J is its moment of inertia about the center of mass, index 1 

refers to front suspension system whereas index 2 refers to rear suspension system, and l1 and l2 

are the distances between the center of mass and front and rear suspensions respectively. 

 

The car is assumed to be traveling at 50 km/hr and the road is approximated as sinusoidal in 

cross section with amplitude of 10 mm and the wavelength そ = 5 m. 

 

a) Using Lagrange’s equations derive the governing differential equations of motions, 

describing the bounce and pitch motions. 

b) Using MATLAB, obtain the natural frequencies of the system and the corresponding 

mode shapes. 

c) Verify the results in part b by building a SIMULINK model of the system. Simulate 

each mode and show that the system oscillates at the respective natural frequencies. 

d) Assuming free vibration of the system under the initial conditions x (0) = 14 mm and 

し (0) = 0.05 radian (with the initial velocities assumed zero), which mode contributes 

the most to the ensuing motion of the system? Substantiate your answer using 

SIMULINK.  

e) With the help of MATLAB obtain the Transfer Function for both the bounce and 

pitch motions.  

f) Using SIMULINK, obtain the system response to the road excitation as is described 

above. 

g) It is well established that the pitch motion is the most annoying motion for the car 

passengers. Design your suspension system to lower the bounce motion from its 

current value. Justify your answer by simulating the results in SIMULINK. Does your 

designed suspension lower the bounce magnitude also? 

 

Formulation 

 

The governing system of differential equations which describe the bounce and pitch motions of 

the system shown in Figure 2 is found using Lagrange’s Equations.  The generalized 

coordinate and* +tx * +ts  are used to describe the bounce and pitch motion of the auto body.  The 

kinetic energy is described in Equation 1as: 
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The potential energy is described in Equation 2 as: 
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Rayleigh’s dissipation function describing viscous dissipation in the dampers is: 
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The Lagrangian  evaluated from (1) and (2), and together with (3) substituted in (4) 

and (5) one obtains equations of motion. 
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The application of Equations 4 and 5 yields: 
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The equations of motion can also be shown in matrix form as: 
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Solution 

 

Part b 

 

Our first attempt is to find the damped natural frequencies and the mode shapes of the damped 

system. To this end we set the right side of equation (6) to zero. Assuming a harmonic response, 
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the characteristic equation for the system is found by setting the determinant of the characteristic 

matrix to zero. 
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We can now use MATLAB to do the algebra and find the characteristic roots. The following 

MATLAB session was performed to get the complex conjugate pair of roots. We take advantage 

of MATLAB functions
12

 “conv”, and roots to obtain the characteristic roots. 

 

MATLAB Code to Obtain Damped Natural Frequencies and the Mode Shapes 

 

>> m = 2000;   J = 2500;     k1 = 30000; k2=30000; c1= 3000; c2=3000;   

>> l1=1; l2=1.5; 

>> a = [m  c1+c2  k1+k2]; 

>> b = [J  c2*l2^2+c1*l1^2   k2*l2^2+k1*l1^2]; 

>> C = conv(a,b) 

 

C = 

 

  1.0e+009 * 

 

    0.0050    0.0345    0.4035    1.1700    5.8500 

 

>>d = [c2*l2-c1*l1  k2*l2-k1*l1]; 

>> e = conv(d,d) 

 

e = 

 

     2250000    45000000   225000000 

 

>> f= 1.0e+009*[0.005 0.0345 0.4035 1.1700 5.8500] - [0. 0. 2250000 45000000 225000000] 

 

f = 

 

  1.0e+009 * 

 

    0.0050    0.0345    0.4013    1.1250    5.6250 

 

>> r = roots(f) 

 

r = 

 

  -2.1289 + 6.1681i 

  -2.1289 - 6.1681i                                                          (8) 

  -1.3211 + 4.9676i 
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  -1.3211 - 4.9676i 

 

The result above indicates that the first and second damped natural frequencies are: 
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The negative sign in front of the real part of the complex roots indicates the decaying nature of 

the oscillation 
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Equations (9) and (10) render; 

 

1ny 5.1399 rad/s     (11)                  and                    2ny 6.5251 rad/s      (12) 

1¦ =0.2570                  (13)                                           32632 .¦                   (14) 

 

The mode shapes can be found by: 
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So the first mode shape is: 
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And the second mode shape is: 
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The mode shapes indicate that there is no phasing in the modes as expected in the proportional 

damping case. 

 

Let us see if we can get the natural frequencies and the mode shapes of the system by setting the 

damping matrix and the right side of equation (6) equal to zero. We employ MATLAB function 
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‘eig‘to extract natural frequencies and mode shape by running the script file AseeEigen.m. This 

file is: 

 
% Calculating Eigenvalues and Eigenvectors 

  
m = 2000;     J = 2500 ;     k1 = 30000; k2=30000; 
l1=1; l2=1.5; 

  
%Establishing Mass Matrix and Stiffness Matrix 

  
m=[m 0; 0 J]; 
k= [k1+k2 k2*l2-k1*l1; k2*l2-k1*l1 k2*l2^2+k1*l1^2]; 

  
% Calling Function "eig" to Obtain Natural Frequencies and Mode Shapes 
[u,lamda]=eig(k, m); 
fprintf('\n') 
disp('Natural Frequencies are:') 
% Print Natural Frequencies 

  
w = sqrt(lamda) 
fprintf('\n') 
 

% Print the Mode Shape 
disp('Mode shapes are:') 
fprintf('\n') 
disp('u=') 
fprintf('\n') 
disp(u) 

 

Running AseeEigen in MATLAB provides undamped natural frequencies and its corresponding 

mode shapes. 
 

>> AseeEigen 

 

Natural Frequencies are: 

 

w = 

 

    5.1403         0 

         0    6.5252 

 

 

Mode shapes are: 

 

u= 

 

   -0.0197    0.0105 

    0.0094    0.0176 
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This indicates natural frequencies of  1ny  5.1403 rad/s and  2ny  6.5252 rad/s, which are 

almost exactly the same frequency values obtained by equations (11) and (12). 

From the MATLAB file above, the first mode is: 

 

1

09572
00940

10970
.

.

.

 

 

While the second mode is: 

1

59650
01760

01050
.

.

.

 

 

These are almost exactly the same as mode shapes found in (13) and (14), for the damped case. 

 

Part c 

 

SIMULINK is used in this part to verify the results obtained above in part b. Following is the 

model built for this purpose. 

 

 
 

Figure 3 
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We provide the first element of the mode vector 1, -2.0963 as the initial condition for integrator 

1 and the second element of the mode vector 1, 1, as the initial condition for the integrator 3 in 

the Figure 3. Upon running the simulation, the power spectral density blocks in the Figure 3 will 

provide the frequency content of the response for both bounce and pitch motions. Scopes in the 

diagram also will provide the damped system responses for both bounce and pitch motions, with 

scope1 in the diagram rendering the pitch motion and scope block in Figure 3 yielding the 

bounce motion. Let us examine the results of such a simulation. Figure 4 in the next page shows 

the output from the power spectral density for the bounce motion of the auto body. Notice the 

time history of the response which clearly depicts the initial condition, 

 

 
 

          Figure 4 
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As it is seen from Figure 4 the power spectral density indicates that the response of the bounce 

motion is taking place at a damped frequency of 5 rad/s. This agrees very well with our previous 

calculation for the damped natural frequencies in part a, which rendered a first damped natural 

frequency of 4.9676 rad/s (See equation (9)).  For the sake of space, and brevity we will not 

show the result of the power spectral scope for the bounce motion for the first mode. However 

the results from such scope reconfirms that the bounce motion is also has a frequency of 5 rad/s. 

Instead we will provide the scope results for the bounce motion for the second mode of vibration. 

To this end we will set the initial conditions in the appropriate integrator blocks according to the 

second modal vector obtained in part b. That is: 
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First let us look at the scope results which will provide the time domain responses for both 

bounce and pitch motions. These are: 

 

 
 

Time history for the bounce free response 

 

Figure 5 

 

As it is clearly seen from Figure 5 the decaying oscillatory motion of the response is evident 

from the scope results. By zooming on the response students can obtain the damped natural 

frequency of the response and by employing the concept of the “Logarithmic Decrement” they 

can arrive at the damping ratio of this mode. We will not provide the detail of such a procedure, 

but such measurements and calculations will reconfirm the earlier results obtained in part b 

above and renders the same damped natural frequency and damping ratio for the second mode. 

That is: 

s/rad.
nd
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2

222 ¦yy  

                                                  32632 .¦  
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The results from the pitch scope and its power spectral density are: 

 

 
 

 
 

Time history and power spectral density of the pitch motion for the second mode 

 

Figure 6 
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Obviously these reconfirm our previous observation. 

 

Part d 

 

In Figure 3, the initial conditions 0.014 m and 0.05 rad will results in the following: 

 

 
 

Power spectral density scope result for Pitch motion for arbitrary initial condition 

 

Figure 7 

 

Due to space limitation and for the sake of brevity we will not show here the Power Spectral 

Scope results for the bounce motion. However, the results from the display of that scope 

indicates, as Figure 7 does, that the second mode plays the dominant role for these particular 

initial conditions. That is the amplitude of the contribution of the first mode is much less than the 

second mode’s amplitude for the system free response. 
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Part e  

 

Upon taking the Laplace transform from equation (6) and assuming zero initial conditions, we 

will arrive at the s domain equations for the steady response of the system as follows: 
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Using Cramer’s method and applying the principle of superposition, we can obtain the transfer 

functions for both bounce and pitch motions for each input Y1 and Y2. Due to space limitation 

we only provide the results for input Y1 as follows: 
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As we mentioned we will not provide the results for input Y2 here, however, the MATLAB code 

provided below, and the SIMULINK simulation in part f, will clearly provide those transfer 

functions associated with this input. The MATLAB code for arriving at these transfer functions 

and it is results for running the MATLAB script TrasferFnc.m is: 

 

MATLAM m File for Obtaining Transfer Functions 

 
% Input Data*********************************************** 
m = 2000;     J = 2500;     k1 = 30000; k2=30000;   c1= 3000; c2=3000;   
 l1=1; l2=1.5; 
% Establishing the Polynomials*****************************  
 a = [m  c1+c2  k1+k2]; 
 b = [J  c2*l2^2+c1*l1^2   k2*l2^2+k1*l1^2]; 
 C = conv(a,b); 
d = [c2*l2-c1*l1  k2*l2-k1*l1]; 
e = conv(d,d); 
e = [0  0   e]; 
% Finding Characteristic Polynomial's Coefficient************ 
f= C-e 
g= [c1  k1]; 
h=conv(b,C); 
i=[c1*l1  k1*l1]; 
p=[c2*l2-c1*l1  k2*l2-k1*l1]; 
q=conv(b,g)+[0 conv(i,p)]; 
% Transfer Function for Bounce Motion Due to Y1 Input******** 
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sys= tf(q,f) 
o= conv(-a,i)  ;
x= conv(g,p); 
y=o-[0 x]; 
% Transfer Function for Pitch Motion Due to Y1 Input******** 
sys1= tf(y,f) 
gg=[c2 k2]; 
ii=[c2*l2 k2*l2]; 
qq=conv(b,gg)- [0 conv(ii,p)]; 
% Transfer Function for Bounce Motion Due to Y2 Input********** 
sys2=tf(qq,f) 
oo=conv(a,ii); 
yy=oo-[0 conv(gg,p)]; 
% Transfer Function for Pitch Motion Due to Y2 Input********** 
sys21=tf(yy,f) 

 

Running the above .m file gives: 

 

>> TransferFnc 

 

Transfer function: 
)(

)(

1 sY

sX
 

 

       7.5e006 s^3 + 1.088e008 s^2 + 6.75e008 s + 3.375e009 

------------------------------------------------------------------------------------- 

5e006 s^4 + 3.45e007 s^3 + 4.013e008 s^2 + 1.125e009 s + 5.625e009 

  

 Transfer function: 
)(

)(

1 sY

sS
 

 

         -6e006 s^3 - 8.25e007 s^2 - 4.5e008 s - 2.25e009 

------------------------------------------------------------------------------------------ 

5e006 s^4 + 3.45e007 s^3 + 4.013e008 s^2 + 1.125e009 s + 5.625e009 

  

 Transfer function: 
)(

)(

2 sY

sX
 

 

        7.5e006 s^3 + 9.75e007 s^2 + 4.5e008 s + 2.25e009 

------------------------------------------------------------------------------------- 

5e006 s^4 + 3.45e007 s^3 + 4.013e008 s^2 + 1.125e009 s + 5.625e009 

  

 Transfer function: 
)(

)(

2 sY

sS
 

 

         9e006 s^3 + 1.125e008 s^2 + 4.5e008 s + 2.25e009 

------------------------------------------------------------------------------------- 

5e006 s^4 + 3.45e007 s^3 + 4.013e008 s^2 + 1.125e009 s + 5.625e009 
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This is obviously what is asked in part e. 

 

Part f 

 

We will now simulate the motion of the car on the road.  We have assumed that the road is 

approximated as sinusoidal in cross section with amplitude of 10 mm and the wavelength そ = 5 

m. The car is traveling at 50 km/hr. these conditions provide the inputs Y1 and Y2 for the 

simulation. The period and cycle frequency for the harmonic inputs and the phase delay due to 

input Y2 are as follows: 
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Then: 
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Which upon substitution of,y , h  and amplitude of the motion in the above equations yields: 
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These are the inputs to the SIMULINK model in part f, which is depicted in Figure 8. Notice that 

these harmonic functions are shown in Figure 8 as sine wave and sine wave1 blocks in Figure 8. 

The Transfer Functions which were derived in the above MATLAB code is also seen for each 

input and system response. 

 

The block property for the sine wave blocks will enable us to furnish the frequency, amplitude 

and phase for the excitations. Notice that the summation blocks implement the principle of the 

superposition and the scopes will provide us with the time response of both the bounce and pitch 

motions of the response. Figures 9 and 10 provide us with the time response for the bounce and 

the pitch motions. Notice that the scopes indicate the early transient contribution to the response 

with the steady amplitude for the bounce motion being about 4mm and the pitch amplitude of 

1.6x10
-3

 rad. obviously the current values for the suspension system effectively reduces the 

vibrations transmitted to the automobile body. As it was stated before the amplitude of the road 

wave is 10 mm, which only 4 mm is transmitted to the body of the automobile and even less than 

that to the passengers due to isolation system for passenger seat. In the next and final part of this 

project students create a model to further reduce the transmitted vibrations as it is described in 

part g of this document. 

 

P
age 11.213.17



 
 

Figure 8 

 

 
 

Bounce response of the system 

 

Figure 9 
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Pitch response of the system 

 

Figure 10 

 

Part g 

 

In this part we will utilize the power of SIMULINK to teach students about the design methods 

in practical vibration problems. Obviously optimization problems can be handled through 

MATLAB optimization package; however we will show here that SIMULINK model presented 

is an excellent tool to optimize the response of the system. 

 

Figure 11, is the model which was built to arrive at damping coefficient values that further 

reduces the amplitude of the pitch response of the system. The blue colored blocks in Figure 11 

will depict a slider gain, which will change the values of the damping coefficient of the system. 

By running the model for several values of damping coefficients we will obtain a trend for the 

system response. By tabulating the pick response for different values of damping coefficient one 

can zero in at the optimum value of the damping coefficients. 

 

 In this paper we will first verify the system response for the initial value of the damping 

coefficient, as was done in part f in the above, and then show the effect of couple of damping 

coefficient values in the output response. As it is evident from the output histories in Figures 12 

and 13, the results for part f is exactly repeated in the simulation of the model shown in Figure 

11. 

 

After model verification, the next task is to lower the unwanted pitch motion, due to the road 

excitation, which is discussed later. 
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Figure 11 

 

 
 

Figure 12 
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Figure 13 

 

Now let us try different values for damping coefficients by changing the “c” values in the slider 

gain. We will choose a c = 6000 N.s/m in the model, depicted below, in Figure 14. 

 

 
 

Figure 14 
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The responses for bounce and pitch motions are shown in Figures 15 and 16 respectively. 

 

 
 

Figure 15 

 

 
 

Figure 16 

 

By further zooming at the peaks of the steady response we obtain that: 

 

Bounce Amplitude = 7 mm 

                                                        Pitch Amplitude = 2.5x10
-3

 rad 

 

This is higher than previous values obtained when the damping coefficients were 3000 N.s/m. 

We now set the damping coefficients to 1000 N.s/m. and obtain the responses of the system as 

shown for bounce and pitch motions in Figures 17 and 18 respectively. 
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Figure 17 

 

 
 

Figure 18 

 

Further zooming on the peaks of the steady response in Figures 17 and 18 reveals that: 

 

Bounce Amplitude = 2.6 mm 

                                                       Pitch Amplitude = 1x10
-3

 rad 

 

The results indicate that by lowering the damping coefficients from initial value of the 

suspension system, we will reduce the transmitted oscillations. 
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Assessment 

 

Pedagogically students learn any subject matter in engineering, the best, by actually applying its’ 

principles and concepts via hands-on experiments or in an application-oriented projects. This 

project, which took students 3 weeks to complete, gave them ample opportunity to use what they 

leaned in the classroom to analyze and design an industrial model of an automobile suspension 

system. The project was considered as 20% of students’ final grade and gave an application 

oriented dimension to mathematical nature of the topics discussed in the course. It made students 

go through many topics covered in the lecture, such as the significance of complex eigenvalues 

and eigenvectors and the role they play in stability of the system, comparison of free undamped 

response and damped response, logarithmic decrement, transfer functions significance, 

superposition concept in linear systems, s-domain and time-domain solution techniques, 

Lagrange’s equations, block diagram and feedback concepts. They also learned new 

technological tools to carry out these techniques in a somewhat realistic setting by working with 

MATLAB and SIMULINK. In particular, students wrote their own codes in MATLAB and built 

their own model using SIMULINK. 

 

Upon completion of the project, students’ feedback indicated that the project was very 

instrumental in understanding the concepts of the course by requiring them to employ their 

acquired knowledge in the process of analysis and design of the suspension system. They 

overwhelmingly preferred SIMULINK over MATLAB, due to its graphical and visual 

capabilities and relative ease in building and modifying the appropriate models. 

 

In light of the simulation models built in this project and experience gained, the authors believe 

that there are certain advantages in using SIMULINK in a vibrations and differential equations 

courses. The discussion to follow is in agreement with the students’ consensus that SIMULINK 

models are very useful in verification of many course topics, both directly and indirectly. 

 

The main benefit in using SIMULINK in vibration courses is that it provides its users with what 

might be called as a virtual vibration laboratory! That is students can simulate a system and study 

the nature of the system’s response, due to different inputs and initial conditions, by checking the 

output of  the “scope blocks” in their model. Students can see the effect of changing system 

parameters on the system’s response, by easily tweaking these parameters in their graphical 

model and observing the outcome on the model’s scopes. For example, students used the scope 

output of part c of the project (Figure 4) to arrive at damped natural frequency of the model by 

simply measuring the time between the subsequent peaks, and obtained system’s damping ratio 

by measuring the subsequent amplitude ratios and employing the logarithmic decrement formula. 

By setting the damping coefficients to zero in their model (Figure 3) students observed the 

change in systems’ response by noticing a constant amplitude oscillatory response. They also 

observed, in the process, the closeness of the numerical values of system’s natural frequency and 

its damped natural frequency; something that they came across before while doing part b of this 

project. They were also instructed to use negative damping ratios and observe the unstable 

response of their system. The concepts of eigenvectors were specifically illustrated in the 

SIMULINK model (Figure 3) by multiplying the eigenvectors of the system by any constant 

value and noticing that this resulted in  no change in the response of the system. As part d of the 
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project indicates student were also able to see the contribution of each mode to the system’s 

response as a result of arbitrary initial conditions. 

 

One of students’ difficulties, noticed by the authors through teaching vibrations and differential 

equations courses, is the idea behind the application of the Laplace transform method to linear 

differential equations. It was interesting to observe that how students appreciated the notion of 

converting the coupled system of simultaneous differential equations to system of algebraic 

linear equations in part e of this project, using the (dreaded) Laplace transform approach. 

SIMULINK model built in part f of the project has the advantage of showing the transfer 

functions due to each input and output clearly. Obviously, no command-line programming 

software can show these four transfer functions as clearly and as effectively as SIMULINK does 

(See Figure 8, for example). Besides the SIMULINK model implements the Inverse Laplace 

transform to obtain the time domain response of the system to the input excitation in a graphical 

approach. Something that is not done as easily as it is shown here by means of any command- 

line programming.  The principle of super position is also clearly depicted in the SIMULINK 

model of part f (Figures 8-10) by the “summation blocks” in the model. 

 

The big advantage of using SIMULINK in this project is its ability to engage its users in 

improving the design of the desired system with relative ease. The last part of the project 

certainly makes use of this strength in the software by requiring students to design for a smaller 

transmissibility ratio. Obviously, we are talking about optimization techniques, which 

theoretically is beyond the scope of a vibration course in the junior level year. In addition, this 

ability is not provided in such an effective manner in command-line software. Yet, this is done 

easily in SIMULINK by having literarily a virtual laboratory at our disposal in terms of a model 

utilizing variable gains (e.g., variable damping coefficients) to check for the improved response 

of the system. Moreover, as it is evident from the time-domain model (Figure 11), SIMULINK 

(unlike the command-line software languages) does not convert the second order differential 

equations to state form to obtain the solution. We believe SIMULINK is a great tool (in 

education and/or industry), due to its’ GUI features and simulation capabilities! This approach 

constitutes a new frame work in vibrations education. We would like to emphasize again, that the 

solution part of these governing equations for the suspension system, using SIMULINK and 

MATLAB is also new. 

 

Conclusion 

 

This project clearly shows how helpful MATLAB and SIMULINK are to expose vibration 

students to practical problems with industrial implication. Clearly our classical methods are not 

sufficient enough to solve application problems such as this one. In their feedback, students 

indicated a great sense of appreciations for these software tools, especially SIMULINK, in 

helping them achieve holistic understanding of physical concepts of vibrations course. Out of 

this experience, the authors greatly believe that integrating these software tools in vibrations 

courses greatly improve students’ ability to face challenging application problems, find an 

appropriate solution successfully, and gain a strong sense critical thinking that helps them unite 

knowledge with human experience.   
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