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Analysis of Students’ Personalized Learning and Engagement 

within a Cyberlearning System 

 
Abstract 

 

“Advance Personalized Learning” is one of the 14 grand challenges of engineering as 

identified by the National Academy of Engineering. One possible approach for this 

advancement is to deploy systems that allow an investigator to understand the differences 

in the learning process of individuals. In this context, cyberlearning systems, like remote 

and virtual labs, that use networked computing and communication technology to reach a 

large number of learners offer the affordance to uniquely identify learners and track their 

learning process in real-time. Motivated by this idea, this study aims to investigate 

personalized learning and engagement within a cyberlearning system, called the Online 

Watershed Learning System (OWLS) that combines features of both remote and virtual 

labs. This cyberlearning system utilizes learning resources generated by a real-time high-

frequency environmental monitoring system, called the Learning Enhanced Watershed 

Assessment System (LEWAS).  

 

To understand individualized learning and engagement, the OWLS is advanced with a 

user-tracking system. Previously, the OWLS used a Google-Analytics based user-

tracking system. This new user-tracking system can identify individual users and their 

actions across devices. A pilot study was carried out by designing an OWLS-based 

learning task and implementing it within a senior level Environmental Science classroom 

for exploring personalized learning and engagement within the OWLS. Informed by the 

engagement theory and the literatures on learning analytics, the study follows a pre-

experimental research design where students completed the OWLS-based learning task 

followed by a post-survey within the in-class time. Results indicate that students’ 

learning scores are significantly related to the time students were spending outside the 

OWLS for completing the OWLS-based task. Various engagement patterns/ strategies 

taken by individual students to complete the task were also revealed.  The study shows 

that a custom user-tracking system, like the one developed in this study has the potential 

to overcome several limitations of the google-analytics based user-tracking system by 

providing fine-grained individualized student data that can help in understanding 

students’ engagement behaviors within a cyberlearning system. Finally, the study has 

implications of how a cyberlearning tool, like the OWLS, can be utilized in a hybrid 

classroom setting for helping students gain environmental monitoring knowledge, and 

skills in real-time data analysis, leveraging the idea of technology-enhanced laboratory 

instructions within a classroom environment. 

 

1. Introduction 

 

Advancements in computing and communication technologies have led to the development of 

powerful technological resources for teaching and learning. The 2017 Nation Education 

Technology Plan (NETP) of the U.S. Department of Education recommends that for every level 

of education, institutions should utilize learning technologies to facilitate education anywhere 

and at any time [1]. Specifically, for the success of American postsecondary students including 



students from diverse socioeconomic and ethnic backgrounds, genders, age-groups, and learning 

needs, the supplement of the NETP report includes recommendations for using these 

technologies to leverage student-centered approaches of teaching and learning [2]. These 

approaches are beneficial to promote personalized learning experiences by placing an active role 

on the student and making them the agents of their own learning [3].  The NETP report further 

recommends that for assessing individual competencies using technology, studies should 

consider collecting and using real-time learning data for providing targeted assistance to students 

[2]. Such assessments are known to improve students’ learning and promote personalized 

learning [4].  Advancing personalized learning is one of the 14 Grand Challenges of Engineering 

promoted by the U.S. National Academy of Engineering [5]. One possible approach for this 

advancement is to deploy systems that allow an investigator to understand the differences in the 

learning process of individuals, which can be utilized to create instructions tailored to an 

individual’s need. The focus of this paper is to investigate such personalized learning and 

engagement within a cyberlearning system developed in the context of environmental monitoring 

to promote technology-enhanced laboratory instruction.   

 

Cyberlearning systems are an innovative learning technology using networked computing along 

with communication technology to support teaching and learning [6], [7]. Diverse student 

population can access its learning resources regardless of their proximity to traditional classroom 

spaces. It also offers the affordance to develop personalized learning spaces where learners can 

be uniquely identified and their progress can be digitally traced [8]. Cyberlearning systems, 

including remote labs, virtual labs, online hybrid labs and augmented reality labs have gained 

popularity as tools that can engage individual students to gain important engineering skills in 

problem-solving, modeling and experimentation [9], [10] by substituting or complementing 

tradition laboratory instruction. For a long time, evaluation of cyberlearning systems for 

pedagogical effectiveness has been the focus of various empirical studies [9]. In recent years, 

cyberlearning systems are being equipped with user-tracking capabilities (data acquisition 

systems), thus enabling to investigate the individualized learning processes. These tracking 

methods can store/log the digitized traces of individual students, which can be represented by the 

time sequence of actions, such as mouse clicks, typed keys, and navigation through web-pages 

[11], [12].  Analysis of the logged student data assists in identifying the preferences and 

bottlenecks faced by each learner [13]. It can also explain the level of engagement of the students 

within the cyberlearning platform [14], [15] their study habits [16] and their patterns of inquiry 

while solving a problem [17].  These in-depth continuous assessments can allow educators to 

evaluate individual students’ performances, provide targeted feedback to students, understand the 

efficiency of the learning materials, and validate/evaluate the teaching strategies, which can 

inform the quality of education, and lay the foundation for a more effective technology-infused 

education system [18]. By reviewing empirical studies in the domain of learning analytics and 

educational data mining, it appears that research based on student analytics will be a major 

research topic for the upcoming years [3], [18], [19]. Additionally, by recognizing how personal 

learning experiences differ within cyberlearning systems, steps can be taken to advance a 

cyberlearning system to adopt the personal learning style, pace, and interest of diverse student 

groups.  

 

This study is a part of a project that focuses on advancing the research potential of a 

cyberlearning system, referred to as Online Watershed Learning System (OWLS) in this paper. 



OWLS is an interactive open-ended guided cyberlearning system delivering integrated live 

and/or historical environmental monitoring data (water quality and quantity, and weather data ) 

from a high-frequency environmental monitoring system, called the Learning Enhanced 

Watershed Assessment System (LEWAS), to end users regardless of the hardware and software 

platforms used for environmental monitoring education and research [20], [21]. Until now, the 

OWLS and the LEWAS have been introduced in 33 courses (freshman to graduate level) across 

9 institutions and in 3 countries [22], [23]. To understand individualized learning and 

engagement, OWLS is advanced with a user-tracking system. First, this paper presents the 

functionality of the user-tracking system. The paper includes details of an OWLS-based learning 

task designed and integrated within a senior level classroom for environmental monitoring 

education.  Then the research design and results of a pilot study implemented to assess individual 

students’ engagement and learning within the OWLS while completing the learning task are 

presented. Finally, the paper demonstrates that a custom user-tracking system, like the one used 

in this study, has the potential to overcome several limitations of the google-analytics based user-

tracking system by providing fine-grained individualized student data that can help in 

understanding students’ engagement behaviors within a cyberlearning system. 

 

The remaining sections of the paper are organized as follows. Section two includes a discussion 

of the theoretical frameworks that are relevant in the context of this study. In the third section, 

the OWLS and its user-tracking system are described. The research design employed to 

implement the OWLS-based learning task including the settings, participants, and data collection 

method are presented in the fourth section. The fifth section includes the study results and 

discussion. Finally, the conclusion and opportunities for future work are described in the sixth 

section. 

 

2. Theoretical Framework 

 

2.1 Engagement theory 

 

The literature on engagement is diverse and each researcher has explained it in various 

dimensions [24]. For example, Pace’s definition includes the idea of students’ involvement with 

his/her academic environment, and Austin’s definition includes students’ interaction with the 

learning environment. Both of these notions of engagement related it to behavioral features of a 

student [24]. According to include name of author here [25], the term engagement encompasses 

constructs such “as the quality of effort and involvement in productive learning activities” (p. 6). 

Engagement is also viewed as a “meta” construct that encompasses three aspects of engagement: 

behavioral, emotional and cognitive [26]. Behavioral engagement builds on the idea of students’ 

participation, effort, attention, positive conduct and persistence with activities within a context. 

Emotional engagement relates to the positive and negative reaction to do a certain activity. 

While, cognitive engagement includes the idea of the level of investment, the thoughtfulness, 

willingness and strategy put forth for a certain task. In this study, engagement will be explored in 

terms of behavioral engagement within the context of human-computer interaction, where 

engagement is defined as the human response to computer-mediated interactive systems [27].  

 

For traditional classrooms, behavioral engagement has been measured with class attendance or 

participation in class [28], [26], which are the only visible indicators of engagement. Similarly, 



participation in a cyberlearning platform can be observed to measure behavioral engagement 

[29], [30]. For measuring participation on online platforms time of engagement and the number 

of clicks have been utilized [31]. Similarly, for this study, these measures will be used to assess 

the behavioral engagement of the students. However, for a system like the OWLS, the aim is not 

only to facilitate engaging user experience but for users to behave in certain ways so that they 

have positive learning outcome utilizing the system [29]. In other words, the goal is not to 

increase the number of clicks on resources or engagement time within the OWLS, but the 

purpose is to engage users to invest time and effort in accomplishing a learning task with the 

system so that they can learn and develop skills utilizing it. The behaviors exhibited by an 

individual student within and outside the OWLS for accomplishing the learning task can be an 

indicator of the level of engagement as well as the engagement pattern that leads to learning. 

 

 Additionally, engagement is regarded as a multidimensional construct that is malleable, context-

specific and reactive to the changes in the learning environment [30], [26]. It mediates the 

impact due to the changes in the learning environment on achievement. This necessitates to 

clearly unfold the process of engagement and to understand its contribution to the learning of an 

individual student within a specific context [32], which is the focus of this study. 

 

2.2 Relevant literature on user tracking data 

 

There have been several research studies that have utilized user-tracking data to get insights 

about students’ actions within a learning environment and the way it impacts their learning. 

From a critical review of these studies, it is known that user-tracking data are usually collected 

using one of the following ways: 1) learning management system (LMS), 2) custom user-

tracking system or 3) Google Analytics-based system [3], [14]. An LMS, for example, Moodle or 

Blackboard, are used with online or traditional courses that can collect user-tracking data and 

generates statistical reports to summarize users’ activities related to the utilization of course 

resources [33], [34], [35]. These can track individual users, but the information collected is very 

basic, such as the time when a quiz was accessed or time when students submitted an assignment 

or number of times a resource was accessed, and it cannot trace every interaction a student does 

with the computer for solving a certain learning task/problem to complete an assignment [3]. It 

provides data to understand students’ online participation that often aids the management for 

improving institutional teaching and learning. On the other hand, Google Analytics-based user 

tracking systems can track students’ actions, such as the time when a cyberlearning system or its 

certain web pages are visited, number of times visited, average duration of each visit, and 

whether a site has new or returning visitors [3], [14], [21]. These data are then presented at an 

aggregate level on the Google Analytics dashboard rather than data at an individual level as it 

cannot track a student across devices [14]. An aggregate description can mask the precise 

learning behaviors and strategies that students employ while working on a system. Again, for 

both these technologies, user-tracking data is stored in a proprietary server and the data analysis 

is limited by the functionality of such systems. In comparison, developing a custom user-tracking 

system can benefit researchers in collecting in-depth user-tracking data as well as in tracking 

individual users across devices, and storing these data in a secure custom-database. This enables 

researchers to build trust among users about the privacy of their data storage and usage, which 

can improve users’ experiences with a learning technology [36]. A custom user-tracking system 

can also be tailored for collecting necessary and in-depth data in a required format, and have 



added functionalities, which can considerably save time in data pre-processing for producing 

actionable insights. This paper aims to present the functionality of the custom user-tracking 

system and compare its advantages over a Google-Analytics system for in-depth assessment of 

individual students’ user-tracking data. In the following paragraphs, some studies are reviewed to 

show how user-tracking data has been utilized for cyberlearning systems. 

 

Within the context of cyberlearning systems, only a few studies have indicated the integration of 

user-tracking capabilities with their cyberlearning system. Some virtual and remote labs (VRL) 

are integrated with LMS for collecting user-tracking data [37], [38]. For example, UNILAB, 

which is a collection of 15 remote and virtual labs on automatic control, was deployed into the 

Moodle LMS to promote online sharing of the lab resources, and to support the administration, 

maintenance, interaction between students and teachers, and reporting of various online events 

[39]. Another study integrated a user tracking system for their remote laboratory to portray the 

effectiveness of their remote lab [40]. An open remote laboratory, called VISIR has a built-in 

user tracking system to measure resource utilization by collecting information on access 

frequency over the semester, access per type of user, average access per task, usage distribution 

over the semester and users’ average access [41]. These data showed a positive correlation 

between students’ grades and VISIR usage. It should be noted that these studies focused on 

evaluating their VRLs. Thus, the user-tracking data was used to establish the effectiveness of 

their VRLs and not for explore the relationship student learning and engagement.   

 

Branch & Butterfield [16] have developed a web-based simulation environment with a user 

tracking system, which tracks students’ mouse movement and clicks and keyboard event with 

corresponding time. Analysis of the user tracking data using ensemble averages of successful and 

unsuccessful students helped in identifying the variation in their mouse locations along with their 

study habits and problem-solving strategies, which lead to the modification of educational 

materials. These data also detected that students attempted to interact with the non-interactive 

components of the system, which lead to redesigning the system.  The analysis of the user 

tracking data collected within a cyberlearning system, called gStudy, provided information about 

the frequency, pattern, and duration of actual studying activities of the students [42]. It reflected 

different ways of students’ self- regulated learning over time although every student was trained 

and exposed to the gStudy before the actual study activity. They demonstrated that transition 

graphs are also helpful in visualizing the pattern of activities. It is suggested that the frequency of 

actions can be compared to student performance and motivation or to cluster student groups. 

However, there is a need for techniques for examining patterns across groups of students. Similar 

to the earlier study, Kinnebrew, Loretz  & Biswas [43] from their classroom study with a 

cyberlearning system, called Betty Brain with custom user-tracking capabilities, suggest that user 

tracking data provides an opportunity to accurately understand students’ learning behaviors 

patterns and strategies used, by capture all the interaction of a students within the learning 

environment [43], [44]. They explored the differential sequential data mining algorithm to 

identify differentially frequent patterns between high and low performers.  Baltierra [14] 

developed a user-tracking system with login functionality for a web-based 

healthMpowerment.org (HMP) site and complemented it with Google Analytics data. They 

engaged 15 participants in a pilot study for one month to measure the usability and efficacy of 

the HMP system. They also measured the level of engagement within the HMP with time spent 

(total and across sections) and points earned through various activities performed within the 



HMP. They found that there is a significantly high correlation between the total times spent with 

points earned and site satisfaction for 9 participants who were active throughout the one month 

period.  In addition to the approaches used in the reviewed studies, these studies have been 

helpful in showing that there is a variation in how each student engage in an online learning 

environment and its relationship with the learning outcome varies in a different learning context. 

Thus, it is important to explore individualized engagement and learning within the OWLS, which 

is developed in the context of environmental monitoring. 

 

3. OWLS and user tracking system 

 

OWLS is an interactive open-ended guided cyberlearning system of the LEWAS, which is a 

unique real-time high-frequency environmental monitoring system established to promote 

environmental monitoring education and research [20], [45], [46], [47]. The LEWAS includes 

the following four stages: 1) environmental monitoring instruments collecting water quality and 

quantity data as well as weather data, 2) data processing, 3) data storage and 4) end-user 

interfaces/web applications, which enable users to visualize and use LEWAS data, e.g., the 

OWLS, for research and education [48], [49]. The LEWAS initiated by providing remote access 

to real-time environmental data to students [45], [46]. To evaluate its effectiveness in increasing 

students’ motivational gain, expectancy-value theory (i.e., intrinsic, attainment, utility, and cost 

value) was used [45]. Following this study, the OWLS was developed using HTML5, which is 

accessible on any device and browser over the internet. Compared to different types of labs, 

OWLS combines features of both remote and virtual labs. Analogous to remote labs, it remotely 

situates users to a physical field site location that has various environmental instruments, and let 

users monitor and analyze the continuous high-frequency environmental data from those 

instruments. But, unlike remote labs, these instruments are fixed in their setup and cannot be 

manipulated by users. Similar to virtual labs, OWLS allows users to navigate a simulated 

environment through geographic depictions of the physical world. The OWLS has several 

components and features including live camera feed of the monitoring site, an interactive live 

graph, local weather radar, background information about LEWAS and a local watershed, and 

several case studies to learn about the environmental changes at a local watershed, monitored by 

LEWAS. Users also have the ability to download data for comparing, contrasting and analyzing 

the environmental data. Classroom testing of the OWLS led to the evaluation of the effectiveness 

of the OWLS in increasing students’ learning and motivation in environmental monitoring 

concepts [20], [21], [49], [50]. Additionally, Google Analytics based user-tracking system was 

integrated into the OWLS, which was able to detect groups of users accessing the OWLS 

components from around the world [51]. However, it was not able to identify individual users 

across devices and was not able to detect users’ actions within an OWLS webpage.  A user-

tracking system was developed within the OWLS to address the limitation of the Google 

Analytics based user-tracking system and to understand in-depth students’ strategies in solving 

an OWLS-based learning task. This initiative is for advancing the research potential of the 

OWLS in the context of personalized learning. 

  

A user-tracking system is developed for the OWLS following the client-server architecture. It 

includes a login system to identify individual users and tracking functionalities for detecting each 

user’s interaction within the OWLS. To fully capture users’ actions on the OWLS browser, the 

tracking system collects both the process of interaction (e.g., dropdown clicks, playing videos, 



etc.) and its product (e.g., the name of the environmental parameter chosen, dates chosen, etc.) 

information, unlike many other user tracking systems [52]. A database is used to securely store 

all users’ login and user-tracking information. This makes the OWLS a secure learning 

environment for the users and addresses the concern of protecting sensitive personal data within 

a cyberlearning system [52]. The functionalities of the user-tracking system are as follows: a) 

authorizing and authenticating a user to uniquely identify a user across the OWLS webpages and 

various devices, such as desktops, laptops, and tablets, b) retrieving each of the web pages 

accessed by an user to solve a problem, c) retrieving user’s action information within a webpage 

to detect the various objects, such as YouTube videos, buttons, and parameter from drop-down 

menus clicked by the user, d) retrieving information useful to detect the various devices used by 

an user and to identify the compatibility of the user- tracking system with various operating 

systems, browsers and device types/models, e) retrieving users’ location information to identify 

from which part of the world a user is accessing the system, and f) retrieving users’ browser 

status at a regular interval of time (60 sec) to detect whether a user is actively using the OWLS 

browser or using a different browser or have gone offline. This last feature overcomes the 

limitation of logging out users after a fixed interval of time in the middle of their interaction 

commonly implemented in studies for effective estimation of engagement time [14]. 

 

4. Research method 

 

An IRB approved pilot study was carried out to implement the OWLS for investigating 

personalized students’ learning and behavioral engagement. The research question is:  

How individual students learn and engage with a cyberlearning system (i.e., OWLS) to complete 

an environmental monitoring task?  

 

A senior-level course “Monitoring and Analysis of the Environment” at a large university in the 

eastern part of the United States was chosen. This course offers a complete hands-on-laboratory-

and field-based experience and information on the principles and methods for field monitoring 

and sampling. For this study, an OWLS-based environmental monitoring task (hereafter referred 

to as a OWLS-based task) and an online post-survey were developed in consultation with the 

instructor.  The specific learning objectives (LO) of the OWLS-based task were to: 1) determine 

the importance of continuous environmental monitoring data, and 2) analyze, compare, contrast 

and interpret real-world environmental monitoring data. These objectives were consistent with 

the course learning objectives.   For the OWLS-based task (see details in Appendix A), students 

had to answer questions related to the following three themes: a) description of the OWLS 

targeted watershed and its current water quality condition, b) benefits of continuous 

environmental monitoring data, and c) analysis of a specific conductivity event that was 

available to students as a case study at the LEWAS field site. The course had two section, but 

data were collected from one section with 16 students. It was designed as an in-class task that 

required students to explore various components of the OWLS and complete an electronically 

written report based on their findings. It provided a means for measuring individual students’ 

learning utilizing the OWLS. An online post-survey was used to collected students’ background 

information, their perceptions towards learning with the OWLS and their perceptions towards 

learning values of various components of the OWLS. One student couldn’t participate due to 

computer-related issues which lowered the sample size to 15. The research design followed a 

pre-experimental design [53] as shown in Table 1 where students completed the environmental 



monitoring task using the OWLS and then completed the post-survey. As the students worked on 

the OWLS, their interactions were tracked by the user-tracking system and stored in the 

database.  

 

Table 1. Pre-experimental Research Design 

Student 

Population 

Self-Selection 

Sample 

(ENSC 4414) 

Treatment  User 

Tracking 

data 

Post-

Survey 

Students 

from a 

course 

meeting 

LO1 and 

LO2 

n=15 Students were familiar with the 

OWLS as they previously used it 

for a different assignment. 

Students were asked to complete 

the environmental monitoring task 

in-class. No further demo of the 

OWLS was given. 

Data 

collected 

using the 

user-tracking 

system of the 

OWLS 

Data 

Collected 

using a 

survey 

 

 

5. Results and discussion 

 

5.1 Students’ background information 

 

Of the15 participants (7 males and 8 females), majority of them (11/15) had taken or were taking 

a senior level lecture-based course on water quality. According to students’ self-assessment, they 

had different levels of proficiency in water quality concepts: 7 students were “advanced”, 7 

students were “intermediate” and 1 student was “basic”. Additionally, this course had already 

used the OWLS without the tracking system for a prior assignment in the course, which helped 

the students to have familiarity with the system. The differences among students with respect to 

their gender, background knowledge, and proficiency level was not investigated in this study 

because of the small sample size (n=15).  

 

5.2 Behavioral engagement measurements 

 

To measure individual student’s level of engagement within the OWLS, the data collected by the 

user-tracking system in the database was analyzed. The following parameters were calculated for 

analysis: total time on task, total Off OWLS time, total On OWLS time, and total number of 

clicks within the OWLS. The total time on task was calculated by taking the time difference 

between a student’s first visit to the OWLS home page and the time the student logged out. This 

time measurement can be assumed to be the total time a student had spent on the OWLS-based 

task. It should be noted that students were not restricted to only work on the OWLS-based task 

during this time. However, the instructor and the researcher observed that the students were 

either on the OWLS browser or on the electronic report during the in-class time. The total Off 

OWLS time was calculated by summing all the time periods when the database registered that a 

student is not using the OWLS browser. A student might not use the OWLS browser if he/she is 

working on the electronic report or doing calculations on the excel data sheet downloaded from 

the OWLS or busy with other activities on the computer. Making the assumption that the student 



was Off OWLS between consecutive “Off OWLS Time” measurements, the Off OWLS time 

was calculated with a maximum error of ±60 seconds for each Off OWLS time period.  The time 

calculation is demonstrated in Figure 1. The Off OWLS time was subtracted from the total time 

on task to find the On OWLS time, which is the time a student was actively using the OWLS 

browser. The total number of clicks is the sum of all the clicks within the OWLS.  The total On 

OWLS time and the total number of clicks can be considered as a measurable variable for the 

level of engagement within the OWLS, the Off OWLS time can be considered as the level of 

engagement with the work outside the System 1 to complete OWLS-based task, and the total 

time on task can be considered as the measure of engagement with the complete OWLS-based 

task. Figure 2a shows all these measurements for each of the 15 students. To complete the full 

task in-class, these students spent in a range of 29 to 59 minutes with an average of 42.41 

minutes. Within this time, students were On OWLS for around 6 to 20 minutes with an average 

of 13.44 minutes. They were Off OWLS for times ranging from 9 to 49 minutes with an average 

value of around 29 minutes. This shows that the students were on the OWLS for less amount of 

time compared to the time they were out of the OWLS. The total number of clicks within the 

OWLS ranged from 10 to 44 clicks with an average of 29 clicks. Using Spearman correlation it 

is found that the total On OWLS time and the total number of clicks have a significant and 

positive correlation (ρ = 0.9) at 0.01 level of significance (Figure 2b), suggesting that either of it 

can be considered as a measure for the level of engagement within the OWLS. 

 

 
Figure 1. Calculation of the “On OWLS” and “Off OWLS” time with one “Off OWLS” time 

period 

 

 

Figure 2. (a) Each student’s “On OWLS” time, “Off OWLS” time and total number of clicks 

(left); (b) Shows the correlation between students’ “On OWLS” time and total number of clicks 

(right) 



5.3 Level of engagement and learning outcome 

 

To measure students’ conceptual learning, a rubric was iteratively developed in consultation with 

the instructor to score the OWLS-based task (Appendix B). The first draft of the rubric was 

created by looking into the assignment requirements. Next, it was used to grade some of the 

randomly picked assignments, which helped in improving the rubric according to students’ 

responses. Figure 3 shows the grades of the 15 students out of a maximum score of 21. The 

grades ranged from 7 to 18, with a mean of 12.2 and std. dev. equals to 3.825; indicating that the 

scores were moderate and widely spread out.  

 

 
Figure 3. Conceptual learning scores for the 15 students on the OWLS-based task 

 

From literature, it is known that the relationship between level of engagement and learning 

outcome varies in different educational context [27]. In the context of System 1, there is no prior 

research that investigated this relationship (i.e., between learning and engagement). Thus, the 

focus of this study is to explore if there is a relationship between any of the four level of 

engagement, and learning. This led to finding the correlation between the four different measures 

of level of engagement with learning. Specifically, Spearman’s correlations were computed 

between the scores on the OWLS-based task and the following measures of level of engagement 

for 15 students: total On OWLS time, total number of clicks within OWLS, total time on task 

and total Off OWLS time (Table 2). The total On OWLS time had a low negative correlation (ρ= 

-0.31) with the scores. Similar relationship was found out between total number of clicks and 

scores (ρ= -0.42). This consistency in result is due to the significant correlation found between 

the On OWLS times and total number of clicks. For total time on task and scores, there was a 

low positive correlation with Spearman coefficient (ρ) equal to 0.49. In comparison, the 

correlation was significantly positive at the 0.05 level of significance between the total Off 

OWLS time and the scores. From these four results it can be interpreted that in the context of the 

System 1, there is a positive relationship between students’ level of engagement with the work 

outside the System 1 to complete OWLS-based task, and learning. This might be true as OWLS 

is a cyberlearning tool that allows students to explore and monitor the environment of the 

OWLS-targeted watershed and to download the data. But, students need to put in significant 

amount of time outside the OWLS to analyze the downloaded data, evaluate environmental 

events and report the finding in the electronic report. Therefore, students had to spend a 
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substantial amount of time outside the OWLS for performing better on the OWLS-based task. 

This trend is being further studied with a larger sample size, which is not presented in this paper. 

 

Table2. Comparison between measures of engagement and learning scores  

Different measures for 

Level of Engagement 

Learning Scores 

N Spearman ρ p-value Level of significance 

Total On OWLS time 15 -0.31 0.2554 Non-significant 

Total number of clicks 15 -0.42 0.1183 Non-significant 

Total time on task 15 0.49 0.0633 Non-significant 

Total Off OWLS time 15 0.56 0.0291 0.05 level of significance 

 

5.4 Engagement patterns 

 

Figure 4 shows the navigational pattern of each student within the OWLS, differentiating On 

OWLS and Off OWLS time periods, for the specific environmental monitoring task. For each 

student’s path, the full height lines represent the On OWLS times and the small height lines 

show the Off OWLS times, while each color represents the different webpages visited by the 

students within the OWLS during the total in-class time (75 min). From this graph, various 

student engagement behaviors can be interpreted visually. First, it can be seen that the most 

commonly used pages were the live graph, data download, watershed summary, and the case 

study pages. Second, some students also went to live camera, LEWAS intro, key components, 

photos, glossary, map, site map, radar, and other pages. Third, student #12 and #15 seemed to 

use multiple browsers while accessing the OWLS. Student #12 opened live graph in one browser 

and LEWAS intro in another, while student #15, first opened two browsers, then opened four 

browsers, which can be detected by the alternating colors in the graph. Fourth, most of the users 

closed their browser/s after completing the task, but students #7 and #8 kept their browsers open 

even after their class. Moreover, student #7 seemed to go back and forth for using the OWLS 

browser between 3.30 and 3.40 pm. Fifth, there seems to be a frequent activity trend in which 

students were accessing the system for the OWLS-based task. Students were mostly navigating 

from the home page (grey color) to the watershed summary (dull green), to the live graph 

(maroon), to the case studies (light blue), and finally to the data download page (bright download 

page (bright green). These types of information were helpful in understanding individual 



student’s behavioral engagement pattern within the OWLS- providing data on students’ 

strategies in solving the problem. 

 

 
 

Figure 4. Each student’s “On OWLS Time”, “Off OWLS Time” and total number of clicks 

 

5.4 Resource utilization 

 

The user-tracking data also provided information to understand the variability of the utilization 

of the OWLS resources by the students for the specific environmental monitoring task. Figure 5 

shows a bubble plot to represent the number of times each of the OWLS web pages has been 

accessed by each student. The sizes of the circles are proportional to the usage of each of the 

OWLS components by each of the students. If a OWLS component is used n number of times, 

the radius of the circle is calculated as r = log(n+1)/0.2, where 0.2 is a constant determined by 

trial and error with the plot as in [56].  It is seen that the singleGraph (or live graph) page and the 

rawData (or data download) page was the most frequently utilized page followed by the case 

study pages and the index (or home) page and watershed summary page. The pages, such as 

components of the LEWAS, LEWAS introduction and overhead view (or map) were moderately 

used. The other pages were very less used. Comparing this usage with the OWLS-based task, it 

can be said that the usage of the OWLS resources was related to the assignment structure as the 

most used pages were the ones that were the “must use” pages of the OWLS for the particular 

task. This result also corresponds with the results shown in Figure 4.  



 
Figure 5. Total number of clicks on each of the OWLS webpages clicked by each of the students 

 

5.5 Efficiency of the user-tracking system 

 

In this section, the efficiency of the newly developed user-tracing system in comparison to the 

Google-Analytics-based user-tracking system utilized earlier with OWLS is presented [51]. First, 

the pilot study results show that the developed user-tracking system is able to track each 

student’s engagement within the OWLS across devices, like laptops, desktops, etc., which was 

one of the limitations of the Google Analytics-based user tracking system [51]. Additionally, the 

new user-tracking system also detected the operating system, device type and the browser 

information of each student’s computer, which was used to access the OWLS. This provided 

evidence that the new user-tracking system is compatible with several browser types, operating 

systems, and device types without installation of any additional software. 

 

Second, this user-tracking system has the potential to detect each student’s specific actions 

within a webpage, which was not possible with the previous Google Analytics-based system. 

Figure 6 provides an example of the sequence of actions derived from the user-tracking data 

collected by the user-tracking system of the OWLS of a student, who completed a similar 

OWLS-based environmental monitoring task like the one used for this pilot study. The figure 

demonstrates the exact sequence of OWLS components/web pages chosen (in red) by the student 

and the action employed within each of the web pages (in blue) to complete a similar 

environmental monitoring task. It also shows the time when students went off the OWLS and 

when they come back to work on the OWLS. The data also captures the student’s login and 

logout time from the OWLS. This clearly portrays that the user-tracking system has advanced the 

research potential of the OWLS in the context of personalized learning. This type of user-

tracking system is beneficial for any future research agenda related to understanding individual 

students’ learning behavior within a cyberlearning platform. 
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Figure. 6. An example of sequence of actions derived from the user-tracking system of a student 

completing an OWLS-based environmental monitoring task. 

To compare it further with the Google Analytics-based system, calculations were done with the 

current data to find out the total On OWLS time that would have been produced by the Google 

Analytics-based system if it could be used for measuring the individual engagement of the 

students involved in the pilot study. It is to be noted that Google Analytics records only the 

timestamp when a web page is visited and does record the time he/she left the webpage. As 

shown in Figure 7, the Google Analytics-based total On OWLS time (light blue bars) was 

compared with the total On OWLS time (dark-blue bar) and Off OWLS time (yellow) calculated 

by the new user-tracking system. It can be observed that for all the students, Google Analytics 

system over-estimated the total On OWLS time compared to the new user-tracking system, 

providing evidence for the effectiveness of the new user-tracking system. From this result, it can 

be said that in the context of the OWLS, this study is able to show better measurement of 

engagement time than done before. 

 

Moreover, the new user-tracking system provides data to estimate when students were using the 

OWLS and not using it. It also provides information to know when a user logs out or becomes 

offline from the OWLS, while the Google Analytics-based system was able to find only the time 

when the last page was accessed by an user and not when they left that page.  

 

From literature, it is known that Google Analytics is an easy tool that is often integrated into 

online learning technologies for capturing students’ actions [3], [14]. However, this study 

provides evidence to demonstrate that custom user-tracking system, like the one developed for 

this study, is a better choice for tracking individual students’ interaction within a cyberlearning 

system compared to a Google Analytics-based user-tracking system. Moreover, it facilitates the 



measurement of engagement time on an online environment, which has been regarded as a 

variable that is difficult to measure even utilizing LMSs [31]. 

 

 
Figure 7. The user-tracking system compared to the earlier Google Analytics-based system. 

 

6. Conclusion 

 

In this paper, the authors have presented the following: a) the functionalities of a secure 

individualized user-tracking system developed within a cyberlearning system, b) the design of an 

OWLS-based environmental monitoring task implemented within a classroom environment for 

in-class field site visit and laboratory experience, c) the pilot study to investigate the relationship 

between individualized students’ behavioral engagement and learning for the specific OWLS-

based learning task, and d) the efficiency of the custom user-tracking system in comparison to 

Google-Analytics based user-tracking system used within a cyberlearning system to capture 

individual student’s behavioral engagement. 

 

The custom user-tracking system is developed to collect in-depth information about each 

student’s interaction within the system. The data collected are analyzed to find insights about 

individualized behavioral engagement and its relationship with learning.  In prior studies, time 

spent on a task has been regarded as a measure of behavioral engagement [14], however, this 

study identified a better measure of behavioral engagement time by including a unique feature in 

the user-tracking system that detects whether a user is using the OWLS browser or not. A 

comparison of the engagement time detected by the user-tracking system and Google Analytics-

based system showed that for all the students, Google Analytics-based system overestimated the 

engagement time with the OWLS, providing evidence for the efficiency of the user-tracking 

system. Moreover, overcoming the limitation of the Google Analytics-based system, this user-



tracking system is capable of detecting individual users across devices, browsers, and operating 

systems.  

 

Overall, the design of the OWLS-based task and its pilot implementation was useful in testing 

out the user-tracking system in a classroom environment and exploring various approaches to 

analyze the user-tracking data. The development and implementation of the OWLS-based 

learning task demonstrate how a cyberlearning tool, like the OWLS, can be utilized in a hybrid 

instruction mode (i.e., classroom lessons amplified by the use of technology) for imparting in-

class field visit and laboratory experience. Students spent more time outside the OWLS than on 

the OWLS to analyze the environmental data and writing the findings in the report on the 

OWLS-based task. It was found that the Off OWLS time is significantly and positively 

correlated with the learning score at the 0.05 level of significance. This result indicates that 

students spending more time on analyzing the data and writing the report, outside the OWLS, 

performed better on the learning task. Again, the On OWLS time was significantly and positively 

correlated to the number of clicks on the OWLS at the 0.01 level of significance, indicating that 

either of them can be considered for measuring the level of engagement within the OWLS. In 

addition, data visualization was used to explore the various actions and behaviors portrayed by 

each of the students to complete the OWLS-based task. Data mining algorithms will be used to 

further detect various common patterns/ strategies taken by students to complete the task [54], 

[55].  Furthermore, the analysis of resource utilization of the OWLS components by each student 

portrayed that the students mostly used the components that were required for the task, in 

comparison to the other components. A poster based on this work was presented at the meeting 

of the Grand Challenges Scholars Program (GCSP) at the National Academy of Engineering 

(NAE) in Washington, D.C [57]. 

 

This study has motivated the authors to continue this research with a larger sample size.  This 

will also allow examination of the effect of various variables (gender, familiarity with the 

OWLS, proficiency level of the students, etc.) that might affect students’ learning and 

engagement with the OWLS. According to literature, the behavioral engagement captured by the 

user-tracking data might be related to how students perceive their engagement with the system 

[58]. To examine this relationship, the authors are investigating use of a user engagement scale 

for measuring the perceived engagement and the results will be a presented in forthcoming 

papers. 
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Appendix A. OWLS-based environmental monitoring task 

Webb-Branch-Watershed-based Environmental Monitoring Task 

The Learning Enhanced Watershed Assessment System (LEWAS) is a unique real-time water 

and weather monitoring system that has been developed at at Virginia Tech in Blacksburg to 

enhance watershed monitoring education and research. LEWAS field site has environmental 

instruments including an acoustic Doppler current profiler, a water quality sonde and a 

weather station, each taking measurements every 1-3 min continuously for 24 hours. LEWAS 

has an open-ended, guided cyberlearning environment called the OWLS. It delivers integrated 

live and/or historical environmental data from the LEWAS instruments to end users via the 

following link: http://owls.lewas.ictas.vt.edu/login. The OWLS has been designed so that a 

user can explore its various components to learn about the LEWAS and its field site, the 

Webb-Branch, the environmental parameters, changes in its environmental parameters over 

time, to understand different environmental events, to download data for calculations, and to 

compare, contrast and analyze the environmental data. 

In this OWLS-based assignment, you will focus on remotely conducting continuous 

environmental monitoring of the Webb Branch watershed using the OWLS. Please use the 

supporting evidences of data, graphs and/or imagery from the OWLS to answer the following 

3 questions: 

1. Describe the Webb-Branch 

 Describe the Webb-Branch including its area and other details that you can find within the 

OWLS. Also, describe the current condition of water quality of the LEWAS field site relative 

to what you can observe for the water quality parameters of the last 6 days. Clearly indicate 

the dates for this investigation.  

2. What are the benefits of Continuous Environmental Monitoring Data? 

Explore the OWLS to discuss the benefits using a specific example available from OWLS case 

studies. 

3. Select and analyze an Environmental Event shown on the OWLS: 

Find a 3 hour specific conductance event from the OWLS, where the specific conductance 

value was more than 40000 µS/cm and analyze it. Specifically, find the start, end time of the 

event. Find the highest specific conductance value during the event.  Find the average specific 

conductance values during and after the event. Show relevant graph and imagery of the event. 

Reflect on how it might affect the aquatic species in the Webb Branch watershed. Support 

your conclusions. 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B. Rubric for the OWLS-based environmental monitoring task 

Topic 

 

Subtopics 1 point 2 points 3 points 

Describe the  
Webb-

Branch 

(8 points) 

Watershed 

Description 

One line 

description 

Average description Thorough 

description 

Area Present   

Description 

of the  

current 

condition of 

water quality 

of the 

LEWAS 

field site  

Description 

includes 

qualitative/quantitat

ive description 

without too much 

analysis 

Description 

includes both 

quantitative and 

qualitative 

description with 

good analysis 

Description 

includes 

quantitative and 

qualitative 

description with 

evidences of 

pictures/graphs 

Clearly 

indicate the 

dates for this 

investigation 

Exact dates present   

What are 

the benefits 

of 

Continuous 

Environmen

tal 

Monitoring 

Data? 

(6 points) 

Benefit 

discussion 

One benefit 

presented 

Two benefits  

presented 

More than two 

benefits  

presented 

Case study 

example 

Case study 

mentioned  

Case study 

mentioned and 

discussed well 

qualitatively/quantit

atively 

Case study 

mentioned and 

discussed 

qualitatively and 

quantitatively 

with evidences of 

pictures/graphs 

Select and 

analyze an 

Environmen

tal Event 

shown on 

the System 1 

(8 points) 

Start and end 

time of the 

event 

Presented 

(Answer: around 

1.30 - 4.30am on 

April 18) 

  

Highest 

specific 

conductance 

value during 

the event 

Presented (429000 

microS/cm at 2.39 

am) 

  

Average 

specific 

conductance 

values during 

the event 

Values presented 

(around 

12100microS/cm) 

  

Average 

specific 

conductance 

Values presented 

(around 

1770.9microS/cm) 

Values presented 

with graph and 

imagery 

 



 

 

values after 

the event 

Reflect on 

how it might 

affect the 

aquatic 

species in the 

Webb 

Branch 

watershed 

Moderate reflection In-depth reflection  


