
2006-434: ANIMATION AS THE FINAL STEP IN THE DYNAMICS EXPERIENCE

Thomas Nordenholz, California Maritime Academy
Thomas Nordenholz is an Associate Professor of Mechanical Engineering at the California
Maritime Academy. He received his Ph.D. from the University of California at Berkeley in 1998.
His present interests include the improvement of undergraduate engineering science instruction,
and the development of laboratory experiments and software for undergraduate courses.

© American Society for Engineering Education, 2006

P
age 11.215.1

Animation as the Final Step in the Dynamics Experience

Abstract

A method of incorporating animation into the student experience in the analysis of dynamics

(especially vibrations) problems is presented. After a student models the problem, draws free-

body diagrams, and derives equations of motion, he/she then obtains the solution for the position

coordinates as functions of time. The student generates and plots the solution within a simple

MATLAB program in which all parameters, such as mass, stiffness, damping, lengths, initial

conditions, etc. can be easily changed. The solution can be generated using either a closed form

solution or a numerical differential equation solver. In either case, at the end of the program, the

student can animate his/her own solution by running an animation function file provided by the

instructor. The function file requires a simple one-line command to run it. The function file

does not solve for the motion of the system; it merely provides the animation graphics.

Specifically, it displays the system in motion in real time (according to the student’s solution)

while simultaneously redrawing the student’s plots. The animation function files are problem-

specific. Several have been created by the author and are available for download.

The advantages of this approach to animation are that: i) it is simple, requiring only an

elementary knowledge of MATLAB, and no additional software, ii) it can be used with either

closed-form or numerical solutions to the problem, iii) it provides a physical interpretation of a

student’s mathematical solution (even if his/her solution is wrong!), and iv) it easily facilitates

the investigation of how the parameters of the problem affect the motion.

Four examples will be presented to illustrate the scope of this method: i) a basic free

spring/mass/damper, ii) a multi-degree of freedom system, iii) a suspension system subject to

shock (requiring numerical solution), and iv) a dynamics problem (the rolling/slipping wheel).

The author’s overall goal in using this approach is to provide students with a cumulative

experience in dynamics, understanding how the complicated motion of systems results from the

basic laws of mechanics.

This method of using animations has been used in the author’s vibration course. Some feedback

from the students on its effectiveness will be presented.

Finally, there will be a short section describing the basic techniques used by the author to

program the animation files

I. Introduction.

Several engineering educators
1-5

 have written on the use of animation in dynamics, vibrations,

and controls courses. Certainly, the theory behind the motion of mechanical systems is

mathematical and difficult for many students to grasp, and the animation of these systems

provides enhanced understanding and motivation.

 P
age 11.215.2

One common approach to animation involves the use of commercial software such as Working

Model that simulates motion from objects drawn by the user without any mathematical

formulation of the problem required by the user.
5
 Animations of this type can be used alongside

the theoretical solution developed in class, but there is no direct connection between the two.

Another method has been developed for use with the MATLAB Control Toolbox
3
, and later,

with Simulink
1, 2

simulations . Here, an animation function provided by the instructor can be

incorporated with a numerical solution. In the case of Simulink, it is incorporated into a block

diagram model of the mechanical system. Here, the user (for example, a student) would develop

the block diagram, which represents the equations of motion of the system. The solution,

however, is obtained numerically.

My ultimate (and elusive) goal in teaching dynamics and vibrations is for my students to

understand a dynamics problem seamlessly from start to finish - from the derivation of equations

of motion (applying the laws of motion and kinematical relationships), to the solution of those

equations of motion (using techniques from differential equations), to the interpretation of the

solution (through the use of plots and animations).

This presentation is an effort in moving towards that goal. It describes a method of using

animation that is designed to support (rather than to avoid) the mathematical formulation studied

in class. Essentially, this is an extension of the work of
1, 2, 3

 to animations of closed form

solutions studied in vibrations and dynamics and a simplification in the procedure, requiring

elementary MATLAB programming only.

This method has been used in a vibrations course. Students are required to derive equations of

motion for simple systems. Most of the problems encountered have closed form solutions;

others can be integrated numerically. In either case, the student is required to write a short,

simple MATLAB program which generates this solution (in the form of time and position

coordinate arrays). All parameters, such as mass, stiffness, damping, lengths, initial conditions,

etc., are left as variables that can be easily changed. At the end of the program, the student types

a one-line command that runs an animation function. The animation function, provided by the

instructor, animates the student’s solution (whether it is correct or not) to the problem, while

simultaneously plotting it in real time.

Following are four examples that illustrate this method, three in vibrations and one in dynamics.

II Free Vibration of the Spring/Mass/Damper

The free vibration of the mass, spring, damper, shown in figure 1, is one of the first systems

encountered in a vibrations course.
6

P
age 11.215.3

k

x

m

c

Figure 1

The equations of motion for displacement x as a function of time t are derived in class from

Newton’s Second Law:

,02 2 ?-- xxx nn y¦y %%% (1)

with the undamped natural frequency
m

k
n ?y and damping ratio

km

c

2
?¦ ,

and with initial conditions defined by * + ,0 0xx ? * + .0 0vx ?% The analytical solution is derived in

class from standard methods of differential equations. The form of the solution depends on the

value of the damping ratio ¦.
6

For ¦ > 1 (the overdamped case)
i
,

.,1)(
2,11,2

001,2

2,1

2

2,121
21

nn
n

¦y¦ynnn

/

/
?/‒/?-?

vx
awhereeaeatx nn

tt (2a)

For ¦ = 1 (the critically damped case),

* + 0020121 ,,)(xvaxawhereetaatx n

tn yy -??-? /
 (2b)

For ¦ < 1 (the underdamped case),

* + * +hy¦y -? /
tAetx d

tn sin , (2c)

where P
age 11.215.4

ÕÕ
Ö

Ô
ÄÄ
Å

Ã
-

?ÕÕ
Ö

Ô
ÄÄ
Å

Ã -
-?/? /

00

01

2

002

0

2 tan,,1
xv

xxv
xA

n

d

d

n
nd ¦y

y
h

y
¦y

¦yy .

The method for studying this problem now proceeds as follows. Students are asked to write a

MATLAB program to compute x(t) for set values of the parameters m, k, c, x0, and v0. An

example is shown below:

% free sping/mass/damper
clear,clc,close all
% set parameters
% all dimensions in m, kg, s
k=100;m=4;c=4;
x0=.2;v0=0;
% calculate wn(natural frequency)and z(damping ratio)
wn=sqrt(k/m);
z=c/2/sqrt(k*m);
% define time array
t=0:.02:5;
% generate x array (depends on z)
if z>1
 %overdamped case
 lam1=-z*wn+wn*sqrt(z^2-1);
 lam2=-z*wn-wn*sqrt(z^2-1);
 a1=(lam2*x0-v0)/(lam2-lam1);
 a2=(lam1*x0-v0)/(lam1-lam2);
 x=a1*exp(lam1*t)+a2*exp(lam2*t);
elseif z==1
 %critically damped case
 a1=x0;
 a2=v0+wn*x0;
 x=(a1+a2*t).*exp(-wn*t);
else
 %underdamped case
 wd=wn*sqrt(1-z^2);
 A=sqrt(x0^2+((v0+z*wn*x0)/wd)^2);
 phi=atan2(x0,(v0+z*wn*x0)/wd);
 x=A*exp(-z*wn*t).*sin(wd*t+phi);
end
%plot and animate!
freesmd_sim(t,x);

In the last line of the program, the student runs a function file which is provided by the

instructor. The specific one used here, freesmd_sim, is displayed in the Appendix and is

available for download. (See the Appendix.) The inputs to the function are the t and x arrays

P
age 11.215.5

which are generated in the program. The function animates the motion of the mass while

simultaneously plotting x(t) in real time
ii
, as shown in figure 2.

The student can run several simulations of the system for different parameters m, k, c, and

different initial conditions, and in so doing, can investigate how the parameters affect the motion.

If the student makes an error in obtaining the solution (or program), the incorrect solution is

animated. This may tip the alert student off that something is wrong. A good example of this

occurs when the constants of integration are incorrectly calculated, so that the initial conditions

are not satisfied.

Of course, the instructor can write the program above and run simulations as in-class

demonstrations.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.2

-0.1

0

0.1

0.2

t (sec)

x
 (

m
)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.1

-0.05

0

0.05

0.1

0.15

0.2

|-> x

Figure 2

P
age 11.215.6

III A Multi-degree of Freedom System

This method is particularly suitable for multi-degree of freedom systems, where the computer is

an essential tool for both the calculation of the coordinate responses (calculations which involve

matrices), as well as the visualization of the complicated motions that occur. Figure 3 shows a

classic three degree of freedom structure, modeled with the lumped masses (the floors)

connected by massless springs (the walls).

m
1

m
2

m
3 x

3

x
2

x
1

k
1

k
2

k
3

Figure 3

The equations of motion, derived from Newton’s Laws, are

] _] _] _] _] _0?- xKxM %% , (3)

where

] _] _] _ .,

0

0

,

00

00

00

3

2

1

33

3322

221

3

2

1

Ù
Ù
Ù

Ú

×

È
È
È

É

Ç
?

Ù
Ù
Ù

Ú

×

È
È
È

É

Ç

/
/-/

/-
?

Ù
Ù
Ù

Ú

×

È
È
È

É

Ç
?

x

x

x

x

kk

kkkk

kkk

K

m

m

m

M

To solve this system of equations, Inman’s
6
 version

iii
 of modal analysis, a procedure which

decouples the equations of motion, is applied. The eigenvalues and eigenvectors of a symmetric

mass normalized stiffness matrix] _] _] _] _ 2

1

2

1~ //? MKMK are found. The eigenvalues are the

squares of the natural frequencies. The (normalized) eigenvectors are arranged in columns in a

P
age 11.215.7

matrix which is then premultiplied by the matrix] _ 2

1
/

M to form the matrix of mode shapes [S]

(the columns of which are the mode shape vectors arranged in the same order as the

corresponding eigenvalues) . The coordinate transformation [x]=[S][r] transforms the equations

from physical coordinates [x] to a decoupled set of equations in the modal coordinates [r], which

can be easily solved as functions of time (using simple single degree of freedom methods) and

transformed back to physical coordinates.

After deriving the equations of motion expressed in (3), students write a simple program that

performs modal analysis and calculates displacement responses x1(t), x2(t), and x3(t) for set

values of the mass and stiffness parameters and initial conditions. For example,

%threedofbuilding
clear,clc,close all
%set parameters (units in kg, m, s)
m1=4000; m2=2000; m3=2000; k1=2e5; k2=1e5; k3=1e5;
%set M and K matrices
M=[m1,0,0;0,m2,0;0,0,m3];
K=[k1+k2,-k2,0;-k2,k2+k3,-k3;0,-k3,k3];
%get Ktilde(mass normalized stiffness),
Ktilde=M^(-.5)*K*M^(-.5);
%get eigenvectors eigenvalues, matrix of mode shapes
[P,L]=eig(Ktilde);
S=M^(-.5)*P;
%extract natural frequencies(wi)and mode shapes(ui)
w1=sqrt(L(1,1)),u1=S(:,1)%mode 1
w2=sqrt(L(2,2));u2=S(:,2)%mode 2
w3=sqrt(L(3,3));u3=S(:,3)%mode 3
% set initial conditions in physical coordinates [x]
x0=[0;0;.1]%initial positions
xdot0=[0;0;0] %initial velocities
% convert to modal coordinates [r]
r0=S^-1*x0
rdot0=S^-1*xdot0
%solve for [r(t)]
w=[w1;w2;w3];
A=sqrt(r0.^2+rdot0.^2./w.^2);
phi=atan2(r0,rdot0./w);
%set time array
t=0:.04:5;
%modal coordinate solutions
r1=A(1)*sin(w(1)*t+phi(1));
r2=A(2)*sin(w(2)*t+phi(2));
r3=A(3)*sin(w(3)*t+phi(3));
%transform back to [x(t)] [x]=[S][r]
x1=S(1,1)*r1+S(1,2)*r2+S(1,3)*r3;
x2=S(2,1)*r1+S(2,2)*r2+S(2,3)*r3;

P
age 11.215.8

x3=S(3,1)*r1+S(3,2)*r2+S(3,3)*r3;
%plot and animate!
threedofbuilding_sim(t,x1,x2,x3);

The last line of the program runs a function file which is provided by the instructor. The specific

one used here, threedofbuilding_sim, is available for download. (See the Appendix.) The

inputs to the function are the t and x1, x2, and x3 arrays which are generated in the program. The

function animates the motion of the building while simultaneously plotting x1(t), x2(t), and x3(t)

in real time, as shown in figure 4.

Students are typically asked to run this program for several different sets of initial conditions,

including independent excitations of each of the modes, as well as complicated multi-mode

motions (like the one shown in figure 4).

0 1 2 3 4 5
-0.1

-0.05

0

0.05

0.1

t (sec)

x
1
 (

m
)

0 1 2 3 4 5
-0.1

-0.05

0

0.05

0.1

t (sec)

x
2
 (

m
)

0 1 2 3 4 5
-0.1

-0.05

0

0.05

0.1

t (sec)

x
3
 (

m
)

-0.1 -0.05 0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 4

Damping (modal) and forcing can be easily incorporated. In the case of forcing, the animation

file can be modified to provide applied force vector arrows acting on the floors.

IV Numerical Solutions

This method can also be used with numerical solutions. Consider the example of a 1 degree of

freedom vehicle traveling over a sinusoidally shaped speed bump as shown in figure 5.
iv

P
age 11.215.9

m

k/2 k/2

c

x

y
Y

d

v = const.

s =vt

Figure 5

The equations of motion are

,kyyckxxcxm -?-- %%%% (4a)

where x(t) represents the vertical displacement of the sprung mass of the vehicle, while y(t)

represents the given base motion y(t):

* +
Ì
Ë
Ê

~~
@>

?
vdtdvtY

vdtt
ty

/0/sin

/,0,0

r

Let F(t) = , the right hand side of (4a), since it is specified by the base motion above and

acts as a forcing function to (4a). Defining

kyyc -%

xz ?1 and xz %?2 , the 2
nd

 order differential equation

(4a) can be rewritten as a system of two 1
st
 order differential equations:

m

tF
z

m

k
z

m

c
z

zz

)(
122

21

-//?

?

%

%
 (4b)

P
age 11.215.10

This system of differential equations can be solved in MATLAB using the ode45 numerical

solver and a user-written function defining the system. This is shown below. The first program

is the “driver” program which sets parameters, solves, and animates. The second program is the

function speedbump which defines (4b).

%speedbumpdriver
% driver program to numerically solve and animate
% the motion of a cart over a speed bump
clear,clc,close all
% make parameters global for use by function
global v m k c d Y
%set parameters
m=1000;k=4e5;c=2e4;d=.8;Y=.1;
v=10;
% set initial conditions and time span
y0=[0;0];
tspan=d/v*linspace(-1,5,100);
% Use numerical solver ode45 to solve the differential
% equations represented in speedbump
[t,z]=ode45('speedbump',tspan,y0);
x=z(:,1); %ode45 returns z in 2 columns, z1 & z2
% x = z1
%animate and plot results
speedbump_sim(v,t',x');

function zdot=speedbump(t,z)
%function for use with speedbumpdriver
global m k c v d Y
if t<=0|t>(d/v)
 y=0;
 ydot=0;
else
 y=Y*sin(pi/d*v*t);
 ydot=Y*pi*v/d*cos(pi/d*v*t);
end
F=k*y+c*ydot;
zdot(1,1)=z(2);
zdot(2,1)=-k/m*z(1)-c/m*z(2)+F/m;

The last line of the driver program animates and (simultaneously) plots the motion x(t) using the

animation function file speedbump_sim (available for download - see the Appendix). The

inputs to speedbump.sim are the speed v of the car and the t and x arrays.
v
 This particular

animation is shown in figure 6.

P
age 11.215.11

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(m)

v = 10 m/s

y
 (

m
)

Figure 6

Students are required to derive the equations of motion and write the driver program and system

function. The instructor provides the animation function. Students are typically required to run

several animations at different speeds, in order to investigate the effect of speed on the vertical

motion of the car.

Instead of using one of the ode functions solve the differential equations, Simulink can be used.

A driver program sets the parameters and runs a Simulink Model (using the sim command). The

solution array is returned to the workspace, and the driver program runs the same animation

function (speedbump_sim) as used above.

V. A Dynamics Example

This method can also be employed in a dynamics course. Consider the example of a wheel of

mass m, moment of inertia (about the center of mass) IG and radius R, released from rest on an

incline of angle d with a coefficient of friction o"(figure 7). Let x and s denote translational and

rotational displacement as shown.

P
age 11.215.12

d

o

R

m

s

x

g

I
G

Figure 7

The wheel will either roll or slip, depending on the value of o. After applying Newton’s and

Euler’s Laws for translational and rotational motion and the necessary roll or slip conditions, one

can conclude the following:

If do tan
2mRI

I

G

G

-
‡ , the wheel is rolling without slipping and the angular and linear

acceleration of the wheel are

.,
sin sds %%%%%% Rx

R

I
mR

mg

G

?
-

? (5a)

If do tan
2mRI

I

G

G

-
~ , the wheel is slipping and

.cossin,
cos doddos ggx

I

mgR

G

/?? %%%% (5b)

In either case, it is easily demonstrated that linear and angular accelerations are constant and so

can be easily integrated.

P
age 11.215.13

The student (or instructor, in the case of a class demo) prepares a MATLAB program to generate

x(t) and s(t) for a specified value of o and a length of time sufficient for the wheel to travel a set

distance d. For example,

%rollslipwheel
clear,clc,close all
%all dimensions in kg, m, s, rad
beta=30*pi/180; %incline angle
m=10;R=.1;
IG=m*R^2/2; %for a homogeneous cylinder
g=9.81;
mu=.3; %set mu here
d=2*pi*R; %distance traveled by wheel
mucrit=IG/(IG+m*R^2)*tan(beta);%critical value of mu
% for no slip
if mu>mucrit
 %wheel is rolling
 alpha=m*g*sin(beta)/(m*R+IG/R); %ang accel
 a=R*alpha; %linear accel
else
 %wheel is slipping
 alpha=mu*m*g*R*cos(beta)/IG; %ang accel
 a=g*sin(beta)-mu*g*cos(beta); %linear accel
end
t=linspace(0,sqrt(2*d/a),100); %generate time array
x=a*t.^2/2; %translation x
theta=alpha*t.^2/2; %rotation theta
rollslipwheel_sim(t,x,theta); %animate!

The last line of the program animates the motion of the wheel using the animation function file

rollslipwheel_sim (available for download – see the Appendix). The inputs to

rollslipwheel_sim are the t, x, and s arrays generated in the program. In this example, (m = 10

kg, R = .1 m, IG= 2

2

1
mR , d= 30º), and the value of o is set to .3, which is large enough for

rolling without slipping. Furthermore, the distance d is set to one circumference of the wheel, so

that during the simulation the wheel turns through exactly one revolution. (The wheel was

released with its center positioned adjacent to the upper end of the line segment, and with its line

marker parallel to and pointing up the incline) The results of this animation are shown below in

Figure 8a.

P
age 11.215.14

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

2
R

Figure 8a

If the value of o (in line 8) is changed to .1, which is less than the critical value for no slip, and

the program is rerun, the wheel is seen to slip as it rolls down the incline. This time, the wheel

rotates less than once around as its center travels one circumference down the incline. The result

is shown in Figure 8b.

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

2
R

P
age 11.215.15

Figure 8b

VI Conclusion

All four cases above illustrate the basic approach to this method. The student formulates the

equations of motion, and then writes a MATLAB program to generate the solution arrays for the

position coordinates, either utilizing a closed form solution derived by the student (as in

examples of Sections II, III, and V) or by numerical integration (as in example IV) .The program

is written in such a way that the parameters can easily be changed. Then, instead of just plotting

the position coordinates as functions of time, the solution is animated (and simultaneously

plotted, in many cases) by a function file provided by the instructor. The function files are

available for download, but are easy to create as well. (See the Appendix.) Once the program is

written, the student can run several simulations for different values of the parameters, thus

enhancing his/her understanding of how the parameters affect the motion.

Of course, the instructor can also play the role of the student described above for the purposes of

doing in class demonstrations.

This approach was used in 21 assignments and in-class demonstrations (including the 3 examples

of sections II, III, and IV) in a fall 2005 vibrations course at the California Maritime Academy.

The class was very small (6 students), so that it is premature to draw conclusions about the

effectiveness of this approach. However, the response from the class was overwhelmingly

enthusiastic. A survey was issued at the end of the course to all 6 students. Students we asked to

express their agreement or disagreement with three statements, on a scale of 1 (strongly disagree)

to 5 (strongly agree). The results are tabulated below:

Statement Average Student Response

(1: strongly disagree, 2: disagree,

3:neutral, 4: agree, 5: strongly agree)

“I ran and carefully studied the

animations whenever they were

provided”

4.83

“The animations helped me to

understand the problems”

5.00

“The animations helped motivate me in

this course”

4.83

In addition, a space for comments was provided. Some of the comments were:

“Loved them, able to see what the math does”

“Very good learning tool!”

“The sim files helped to see effects of changing variables”

“It really motivated me to finish my m-file to see if it worked out properly. It also helped me fix

my m-files if there was a problem”

P
age 11.215.16

“The sims helped visualize the actual problem and helped determine if the analysis is correct”

With the dynamics of such a small class, it is hard to tell whether the animations have

significantly improved student performance, especially on exams. The use of animations in this

course will be continued and their effect on student learning and motivation will be continually

assessed.

Appendix: Animation Files

The animation files referred in the sections above, along with many more, are available for free

download at the MathWorks File Exchange:

http://www.MathWorks.com/matlabcentral/fileexchange/loadCategory.do

Search for the author upon arriving at this site. The files can also be accessed from the author’s

website at: www.csum.edu/faculty/n/tnordenholz.

However, the animation files, which are problem specific, are generally easy to write. The

following is a brief outline of the general procedure used. For illustration, the animation file of

section II (the spring/mass/damper) is included.

The procedure is based on the techniques established in
2
 and

3
, with some modifications and

enhancements. MATLAB Handle Graphics is used
vi

. There are three basic steps:

1. A function statement, followed by initialization of geometric parameters.

2. The creation, formatting, and initialization of plots. Subplots are used to create axes for

both the position coordinate vs. time plots and the animations. The initial point of the

plot and configuration of the system are drawn. Lines are drawn using the line or plot

commands, and areas are drawn using the patch, fill, or area commands. Object handles

are assigned to variable names for later access. Objects can be grouped (using the

hgtransform command and setting the ‘Parent’ property of all objects within the group

to the group handle), allowing the entire group to be translated, scaled, or rotated (by

setting values of the group property ‘Matrix’). All formatting of objects, like setting

color and line styles, is done here. After all plots and objects have been created, the

drawnow commands updates the figure, and a while loop with timing features tic and toc

is used to hold the plots for one second.

3. The Animation. The animation proceeds by looping through the time and coordinate

arrays, and updating the location of the objects within the plots at each step. Plots of

position coordinates vs. time are always drawn from the initial value through the current

value (so that a trace is seen). To simulate in real time, a while loop is inserted to wait

until the current value of simulated time has elapsed in real time before plotting.

(Commands tic and toc start a clock and read the elapsed time, respectively)

P
age 11.215.17

function freesmd_sim(t,x)
%animation function for a horizontal spring/mass/damper
%written by T. Nordenholz, Fall 05

% set geometric parameters
W=.05; %width of mass
H=.1; %height of mass
L0=.2;%unstretched spring length
Wsd=.5*H; %spring width
%plotting coordinates of mass
xrect=[-W/2,-W/2,W/2,W/2,-W/2];
yrect=[0,H,H,0,0];

%set up and initialize plots
%x vs t plot
Hf=figure('Units','normalized','Position',[.1,.1,.8,.8]);
Ha_f2a1=subplot(2,1,1);
Hls_f2plot1=plot(t(1),x(1));axis([0,t(end),-L0,L0]),...
grid on,xlabel('t (sec)'),ylabel('x (m)')

% animation plot
Ha_f2a2=subplot(2,1,2);
% create mass
Hp_f2rect=fill(xrect+x(1),yrect,'b');
axis([-L0,L0,-H,2*H]),grid on
Hl_cm=line(x(1),H/2,'Marker','O','MarkerSize',8,'MarkerFaceColor
','k');
% create spring/damper
Hgt_springdamp=hgtransform;
Hl_Lend=line([0,.1],[0,0],'Color','k','Parent',Hgt_springdamp);
Hl_Rend=line([.9,1],[0,0],'Color','k','Parent',Hgt_springdamp);
Hl_Lbar=line([.1,.1],Wsd*[-
1,1],'Color','k','Parent',Hgt_springdamp);
Hl_Rbar=line([.9,.9],Wsd*[-
1,1],'Color','k','Parent',Hgt_springdamp);
Hl_spring=line(linspace(.1,.9,9),Wsd*[1,2,1,0,1,2,1,0,1],'Color'
,'k','Parent',Hgt_springdamp);
Hl_dampL=line([.1,.4],Wsd*[-1,-
1],'Color','k','Parent',Hgt_springdamp);
Hl_dampLpist=line([.4,.4],Wsd*[-1.3,-
.7],'Color','k','Parent',Hgt_springdamp);
Hl_dampR=line([.6,.9],Wsd*[-1,-
1],'Color','k','Parent',Hgt_springdamp);
Hl_dampRcyl=line([.55,.6,.6,.55],Wsd*[-.5,-.5,-1.5,-
1.5],'Color','k','Parent',Hgt_springdamp);
% set initial length

P
age 11.215.18

L=L0+x(1)-W/2;
set(Hgt_springdamp,'Matrix',[L,0,0,-
L0;0,1,0,H/2;0,0,1,0;0,0,0,1]);
text(0,1.5*H,'|-> x');
% draw and hold for 1 second
drawnow
tic;while toc<1,end
tic

% Animate by looping through time and x arrays
% and redrawing at each value
for n=1:length(t)
 L=L0+x(n)-W/2;
 set(Hls_f2plot1,'XData',t(1:n),'YData',x(1:n));
 set(Hp_f2rect,'XData',xrect+x(n));
 set(Hl_cm,'XData',x(n));
 set(Hgt_springdamp,'Matrix',[L,0,0,-L0;0,1,0,H/2;

0,0,1,0;0,0,0,1]);
 while toc<t(n),end;
 drawnow;
end

Bibliography

1. Chang, Timothy and Chang, Daphne, Enhancing Learning Experience with Dynamic Animation, Proceedings of

the 2002 Annual ASEE Conference.

2. Zivi, Edwin, and Piepmeier, Jenelle A., Dynamic System Animation Within a Simulink Laboratory Environment,

Proceedings of the 2001 Annual ASEE Conference.

3. Watkins, John, Piper, George, Wedeward, Kevin, Mitchell, E. Eugene, Computer Animation: A Visualization

Tool for Dynamic System Simulations, Proceedings of the 1997 Annual ASEE Conference.

4. Brooking, Cole J, and Smith, Donald A., Simulation and Animation of Kinematic and Dynamic Machinery

Systems with MATLAB, Proceedings of the 1998 Annual ASEE Conference.

5. Rezaei, Amir G. and Davari, Asad, Teaching Vibration and Control Courses Using Animation, Simulation, and

Experimentation, Proceedings of the 2005 Annual ASEE Conference.

6. Inman, D., Engineering Vibration, 2nd Ed., Prentice Hall, 2001

7. Rao, S., Mechanical Vibrations, 4th Ed., Prentice Hall, 2004.

8. Hanselman, D. and Littlefield, B., Mastering MATLAB 7, Prentice Hall, 2005

P
age 11.215.19

i The second of (2a) represents two equations, one for n1 and one for n2. Similarly, the last of (2a) represents two

equations, one for the subscripts of a and n to the left of the comma, and one for the subscripts to the right of the

comma.
ii Animations are performed in real time provided that the time increment in the time array is greater than the time

required to render each step of the animation.
iii There are several ways of performing modal analysis. Inman’s approach is used here.
iv This example is taken from Rao 7.
v This particular animation function is not written to receive geometrical parameters d and Y as inputs or global

parameters, but it could easily be modified to do so.
vi See 8 for a guide of how to use MATLAB Handle Graphics.

P
age 11.215.20

