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Abstract  

Professors of introductory electronics courses often want to use integer-based problems with 

integer-valued solutions. This paper shows how applying the ancient method of Egyptian fractions 

can be used for this purpose when teaching parallel resistors, whether a professor has a total 

resistance or a particular resistor in mind, or whether they want to use standard manufacturers’ 

values.   
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Introduction 

When teaching introductory electronics courses, I try to use examples with integer solutions in 

order to give students a better sense of the quantities involved in the circuits. This is similar to 

“when a teacher is first introducing students to the Pythagorean Theorem, she usually likes to give 

examples that have easy numbers, ones that don’t get too ‘messy’ in their calculations.”1 When 

teaching the Pythagorean Theorem, teachers often start with the 3-4-5 right triangle, which is the 

smallest right triangle with integer-valued sides. Similarly, I use the fact that 6Ω || 3Ω = 2Ω in my 

introduction to parallel resistors. Unfortunately, this example can often mislead students, even 

those who have been taught otherwise, into thinking that total parallel resistance of two resistors 

is simply equal to the quotient of those two resistors. When coming up with other integer examples 

I had some questions, all of which I will answer in this paper: 1) Is there a way to generate a list 

of all of the ways that a particular integer-valued total resistance can be achieved using two 

different integer-valued resistors, 2) Is there a way to generate a list of all of the integer-valued 

total resistances that can be achieved using a particular integer-valued resistor in parallel with 

another integer-valued resistor of a different value, and 3) Is there a way to make a list of the 

integer-valued total resistances that can be obtained by putting standard resistors in parallel? 

Achieving a Specified Total Parallel Resistance 

Long Before Kirchhoff and Ohm 

Ohm’s Law2 and Kirchhoff’s Current Law3 have been known since the first half of the 19th 

Century. Both of these laws can be combined to form the rule for calculating total parallel 

resistance (RT) with which we are familiar today: 



2018 ASEE Mid-Atlantic Spring Conference, April 6-7, 2018 – University of the District of Columbia 

𝑅𝑇
−1 = 𝑅1

−1 + 𝑅2
−1 + 𝑅3

−1 + ⋯. (1) 

This paper will be focusing exclusively on the case when exactly two resistors are in parallel, so 

we will be using this formula: 

𝑅𝑇
−1 = 𝑅1

−1 + 𝑅2
−1. (2) 

Solutions to this equation with integer values have been around much longer than 200 years. The  

Rhind Mathematical Papyrus, as it is most commonly called, dates back to 1600 B.C.E.4 It shows 

that Egyptian mathematicians expressed rational numbers as the sums of unit fractions, that is, 

fractions of the form 1/n, where the numerator is equal to 1 and n ≥ 2.5 Though not all fractions 

can be expressed as the sum of exactly two Egyptian fractions, 1/x and 1/y, all unit fractions can 

be expressed this way.5 Since we are trying to solve (2), which consists entirely of unit fractions, 

this means that all values of RT greater than or equal to 2Ω can be expressed as the result of two 

integer-valued resistors in parallel.  

Finding R1 and R2 for a Specific RT 

Based on Chen and Koo’s proof5, we find that if R1 and R2 form a solution to (2), then there exist 

positive integer factors f1 and f2 such that  

𝑓1𝑓2 = (𝑅𝑇)2
 (3) 

and  

𝑅1 = 𝑅𝑇 + 𝑓1 and 𝑅2 = 𝑅𝑇 + 𝑓2. (4) 

If we take the case where RT = 2Ω, then (RT)2 = 4Ω2. The only values of f1 and f2 that are not 

equal to each other yet will satisfy (3) are f1 = 4Ω and f2 = 1Ω. Then we can use (4) to find R1 

and R2: 

𝑅1 = 2Ω + 4Ω = 6Ω and 𝑅2 = 2Ω + 1Ω = 3Ω. (5) 

This gives the result mentioned in the introduction, that 6Ω || 3Ω = 2Ω. Since we used the only 

possible way to factor (2Ω)2 into two different integer values, this must be the only possible way 

to obtain 2Ω from two integer-valued parallel resistors. 

Other values for RT have more options. If we now set RT = 10Ω, then (RT)2 = 100Ω2. If we factor 

100Ω2 into f1 = 100Ω and f2 = 1Ω, we find that 

𝑅1 = 10Ω + 100Ω = 110Ω and 𝑅2 = 10Ω + 1Ω = 11Ω. (6) 

Factoring 100Ω2 into f1 = 50Ω and f2 = 2Ω results in 

𝑅1 = 10Ω + 50Ω = 60Ω and 𝑅2 = 10Ω + 2Ω = 12Ω. (7) 

Factoring 100Ω2 into f1 = 25Ω and f2 = 4Ω results in 

𝑅1 = 10Ω + 25Ω = 35Ω and 𝑅2 = 10Ω + 4Ω = 14Ω. (8) 

Finally, factoring 100Ω2 into f1 = 20Ω and f2 = 5Ω results in 

𝑅1 = 10Ω + 20Ω = 30Ω and 𝑅2 = 10Ω + 5Ω = 15Ω. (9) 
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From (6), (7), (8), and (9) we can see that there are four ways to obtain 10Ω from two integer-

valued resistors in parallel: 110 Ω || 11 Ω, 60 Ω || 12 Ω, 35 Ω || 14 Ω, and 30 Ω || 15 Ω. 

Determining if the List is Complete 

When compared to each other these two examples show that an (RT)2 with more factors is 

directly correlated to an RT that can be expressed as the result of more combinations of two 

integer-valued resistors in parallel. Chen and Koo’s paper5 gives us the method for determining 

exactly how many different possibilities there are for a specific RT. 

If prime numbers are denoted by the letter p with different subscripts, then we can express any 

integer value RT by its prime factorization 

𝑅𝑇 = (𝑝1)𝑟1(𝑝2)𝑟2 … (𝑝𝑘)𝑟𝑘. (10) 

Squaring both sides results in the prime factorization of (RT)2: 

(𝑅𝑇)2 = (𝑝1)2𝑟1(𝑝2)2𝑟2 … (𝑝𝑘)2𝑟𝑘. (11) 

If we denote the number of different positive divisors of a given whole number n by τ(n), then 

the formula for τ((RT)2) is as follows: 

𝜏((𝑅𝑇)2) = (2𝑟1 + 1)(2𝑟2 + 1) … (2𝑟𝑘 + 1). (12) 

The square root of (RT)2, namely, RT, cannot be used as the value of f1 and f2 in (3) because that 

would result in identical values of R1 and R2 in (4). In addition, for each possible value of f1 that 

is less than RT, its corresponding f2 will be greater than RT, so all divisors of (RT)2 other than RT 

can be paired off to form unique pairs of two-resistor sets. This means that the total number of 

possible resistor pairs for a given value of RT can be determined from the following expression: 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 𝑝𝑎𝑖𝑟𝑠 𝑓𝑜𝑟 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑅𝑇 = 
𝜏((𝑅𝑇)2)−1

2
=

(2𝑟1+1)(2𝑟2+1)…(2𝑟𝑘+1)−1

2
. (13) 

 

We can use (13) to determine if we did, indeed, find all possible parallel resistor pairs to obtain 

2Ω and 10Ω. Since 2 is a prime number, its prime factorization is expressed as 21. Plugging in 

r1=1 into (13) with no other r values, we get that the number of possible resistor pairs for 2Ω is 
(2×1+1)−1

2
=

3−1

2
= 1. (14) 

This confirms that 6Ω || 3Ω = 2Ω is in fact the only possible way to obtain 2Ω from two integer-

valued resistors. Since (14) will hold true for any prime number, we see that for any prime-

number-valued resistor RT, there is only one way to produce that value from two different 

parallel resistors. Using this fact and (3) and (4), we see that those two resistors will always be as 

follows: 

𝑅1 = 𝑅𝑇 + (𝑅𝑇)2 = 𝑅𝑇 (𝑅𝑇 + 1) and 𝑅2 = 𝑅𝑇 + 1.  (15) 

Now we will confirm that we found all of the possible resistor pairs for 10Ω. The prime 

factorization of the number ten is 10 = 2151. Using this factorization in (13) gives us  
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(2×1+1)(2×1+1)−1

2
=

9−1

2
= 4. (16) 

This means that the four possibilities determined in (6-9) form a complete set. 

Finding All Valid Combinations for a Specified R1 

Deriving the Formulas 

Using the facts from the previous section we can find all of the possible sets of integer-valued 

resistors that satisfy (2) for a given R1. Squaring R1 as expressed in (4) results in 

(𝑅1)2 = (𝑅𝑇 + 𝑓1)2 = (𝑅𝑇)2 + 2𝑅𝑇𝑓1 + (𝑓1)2.  (17) 

Applying (3) and factoring results in the following: 

(𝑅1)2 = 𝑓1𝑓2 + 2𝑅𝑇𝑓1 + (𝑓1)2 = 𝑓1(𝑓2 + 2𝑅𝑇 + 𝑓1). (18) 

This means that the set of resistors that satisfy (2) for a given R1 can be determined by using the 

factors of (R1)
2. Values of RT and R2 can be determined by rearranging (3) and (4): 

𝑅T = 𝑅1 − 𝑓1 and 𝑅2 =
(𝑅1)2

𝑓1
− 𝑅1 = 𝑅1 (

𝑅1

𝑓1
− 1).  (19) 

This would lead us to believe that the number of unique pairs of R1 and R2 that satisfy (2) could 

be determined in a similar way to the formula given in (13) as shown here: 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 𝑝𝑎𝑖𝑟𝑠 𝑓𝑜𝑟 𝑎𝑛 𝑜𝑑𝑑 𝑅1 =
𝜏((𝑅1)2)−1

2
=

(2𝑟1+1)(2𝑟2+1)…(2𝑟𝑘+1)−1

2
.

 (20) 

This formula does work, but only for odd values of R1. For even values of R1, it would be 

possible to choose an f1 that is equal to exactly half of R1. Solving (19) in this case gives 

𝑅T = 𝑅1 −
𝑅1

2
=

𝑅1

2
 and 𝑅2 = 𝑅1 (

𝑅1

(
𝑅1
2

)
− 1) = 𝑅1. (21) 

Since, in this case, R1 and R2 have the same value, they do not qualify for the terms specified in 

the introduction. The number of unique pairs of R1 and R2 that satisfy (2) given an even R1 are as 

follows: 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 𝑝𝑎𝑖𝑟𝑠 𝑓𝑜𝑟 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑅1 =
𝜏((𝑅1)2)−1

2
− 1 =

(2𝑟1+1)(2𝑟2+1)…(2𝑟𝑘+1)−1

2
− 1. (22) 

Examples 

If R1=2Ω, the prime factorization of R1=21. Since 2 is an even number, we apply (22), which 

results in  
(2×1+1)−1

2
− 1 =

3−1

2
− 1 = 1 − 1 = 0. (23) 

This means that there are no values of R2 and RT that satisfy (2) when R1=2Ω. 
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If R1=3Ω, the prime factorization of R1=31. Since 3 is an odd number, we apply (20), which 

results in  
(2×1+1)−1

2
=

3−1

2
= 1. (24) 

This means that there is exactly one set of values of R2 and RT that satisfy (2) when R1=3Ω. They 

can be determined from using (19) and factoring 9Ω2 into 1Ω and 9Ω as follows: 

𝑅T = 3Ω − 1Ω = 2Ω and 𝑅2 =
(3Ω)2

1Ω
− 3Ω = 6Ω. (25) 

We have just shown that the only “Parallel Triple” that includes R1=3Ω is 3Ω || 6Ω = 2Ω. 

Since all prime numbers other than 2 are odd, there will always be one set for all greater prime 

numbers. Using (19) with f1 = 1Ω , that set is 

𝑅T = 𝑅1 − 1Ω and 𝑅2 = 𝑅1(𝑅1 − 1Ω). (26) 

These results are similar to (15). 

If R1=10Ω, the prime factorization of R1=2151. Since 10 is an even number, we apply (22), which 

results in  
(2×1+1)(2×1+1)−1

2
− 1 =

9−1

2
− 1 = 4 − 1 = 3. (27) 

This means that there are exactly three sets of values of R2 and RT that satisfy (2) when R1=10Ω. 

The three divisors of (R1)
2 that are less than R1 and are not equal to (R1/2) are 1Ω, 2Ω, and 4Ω. 

We can apply (19) to each of these three divisors. 

𝑅T = 10Ω − 1Ω = 9Ω and 𝑅2 =
(10Ω)2

1Ω
− 10Ω = 90Ω, (28) 

𝑅T = 10Ω − 2Ω = 8Ω and 𝑅2 =
(10Ω)2

2Ω
− 10Ω = 40Ω, (29) 

and 

𝑅T = 10Ω − 4Ω = 6Ω and 𝑅2 =
(10Ω)2

4Ω
− 10Ω = 15Ω. (30) 

From (28-30) we see that the three sets that include 10Ω are 9Ω = 10Ω || 90Ω, 8Ω = 10Ω || 40Ω, 

and 6Ω = 10Ω || 15Ω. 

Standard Values 

In 1963 the International Electrotechnical Commission established a preferred number series for 

resistors and capacitors.6 Also known as “E-series,” these values are determined by rounding 

10n/E to the nearest integer, where n is any integer and E can be equal to 6, 12, 24, 48, 96, or 192, 

which are the numbers that were established in the standard. Since rounding is involved there is 

no one formula that can be used to directly calculate the E-series resistors that satisfy (2). 

However, the formulas used in this paper can be used to write an efficient computer program that 

will generate the values that work. 
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The standard values for resistors in the E6 series are 10Ω, 15Ω, 22Ω, 33Ω, 47Ω, 68Ω, and those 

six numbers multiplied by powers of ten. Integer values of RT that can result from using the E6 

series can be determined by computer program. The first four “Parallel Triples” in this series are 

as follows: 

6Ω = 10Ω || 15Ω 

20Ω = 22Ω || 220Ω 

30Ω = 33Ω || 330Ω 

132Ω = 220Ω || 330Ω. 

Since the same standard values were established for capacitors, the same values can be used for 

capacitors in series.6 

Conclusion 

The work of Egyptian mathematicians from almost 4000 years ago has helped to generate 

“Parallel Triples.” As a professor who gives lectures and creates laboratory assignments in 

electronics fundamentals, I will now be able to use this research to create “unmessy” parallel 

resistor examples with standard values that, unlike the formula 6Ω || 3Ω = 2Ω , will not cause my 

students to assume that the parallel resistance formula can simply be replaced with division.  

References 

1  Evelyn B. Christensen, “Pythagorean Triples Served for Supper,” Mathematics Teaching in the Middle 

School, National Council of Teachers of Mathematics, Sept. 1997, vol. 3, no. 1, pp. 60-62. 

 

2  Tony Atherton, “A History of Ohm’s Law,” Electronics and Power, June 1986, vol. 32, no. 6, pp. 467-471. 

 

3  Aziz S. Inan, “What did Gustav Robert Kirchhoff stumble upon 150 years ago?” Proceedings of 2010 IEEE 

International Symposium on Circuits and Systems, May 2010, pp. 73-76. 

 

4  Karen Dee Michalowicz, “Fractions of Ancient Egypt in the Contemporary Classroom,” Mathematics 

Teaching in the Middle School, National Council of Teachers of Mathematics, May 1996, vol. 1, no. 10, pp. 

786-789. 

 

5  Tieling Chen and Reginald Koo, “Two-term Egyptian fractions,” Notes on Number Theory and Discrete 

Mathematics, vol. 19, no. 2, 2013, pp. 11-25. 

 

6  Stanislov Sykora, “Passive Electronic Components: Standard Values,” 2005 Accessed February 16, 2018. 

doi: http://dx.doi.org/10.3247/SL1Ee05.002 

 

Jeffrey L. Schwartz 

Jeffrey L. Schwartz received the B.S. and M.S. degrees in electrical engineering from MIT in 1993. 

From 1993 to 2001, he was a Product Design Engineer on car radios with Ford Motor Company 

and Visteon Corporation. His first full-time teaching job was at DeVry Institute of Technology 

from 2001 to 2007, which is where he first became aware of the traps that students fall into when 



2018 ASEE Mid-Atlantic Spring Conference, April 6-7, 2018 – University of the District of Columbia 

learning basic electronics. He worked as a Component Engineer at Mini-Circuits from 2007 to 

2009, where he became aware that standard values and ideal values for design do not always match. 

Since 2009, he has been an Assistant Professor with the Engineering Technology Department, 

Queensborough Community College, Bayside, NY. 


