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Abstract 
 
The use of trigonometric Fourier series is applied when repetitive waveforms are found. This 
situation occurs at the output of full bridge single-phase rectifiers. As it will be seen, the 
application of a very powerful mathematical technique has given the right solution of a typical 
electrical engineering circuit. The waveforms analyzed are in their steady-state mode with a 
repetitive period “T” that depends on the physical electric circuit. [1]. We will indicate that the 
use of the fundamental signal of a distorted waveform becomes the most important piece of 
information. This is because in power electronics the calculation of “Power factor”, 
“Displacement power factor” and “Total Harmonic Distortion” make use of the fundamental 
value.   
 
Theory and simulation 
 
 Non-sinusoidal waveforms, f(t), that have angular frequencies “ω ” can be obtained as: 
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Where: 
The average value is: 

 00 2
1

aF =        2 

The average value of a periodic function is called the “DC value” of that function. 
The MATLAB statement for the average value of a waveform “v” is: 
 

 vdc=mean(v) 
 P

age 7.213.1



            2002-774 

“Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright  2002, American Society for Engineering Education” 

Now we will generate a waveform in order to obtain its dc value. The MATLAB code is given 
below. 
 
% Waverfom period divided in 512 points 
Ts=1;dt=Ts/512 
 t1=0:dt:Ts/4-dt; 
  t2=Ts/4:dt:Ts/2-dt; 
   t3=Ts/2:dt:Ts; 
t=[t1,t2,t3]; 
%Amplitudes for the waveform 
 v=[10*ones(size(t1)),-5*ones(size(t2)),zeros(size(t3))]; 
%Plotting the waveform 
 plot(t,v) 
%Axis limits 
 axis([0,Ts,-12,12]) 
%Setting the grid on 
 grid 
%Setting the labels  
 xlabel('time in seconds') 
%Calculation of the average DC value 
 Vdc=mean(v) 
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Figure1. Waveform created with MATLAB.  
Vdc = 
 
    1.2476 
 
 
The coefficient ha  becomes: P
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The coefficient hb  becomes: 
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It is a well known fact that [2] the average value of f(t) is: 
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Where the radian frequency is: 
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This average was obtained using MATLAB for the waveform generated. The value was 1.2476 
Volts. This can be easily proved using equation 5. 
 
Now, moving on to the frequency domain, we can obtain the RMS (root mean square) of f(t) as 
Fh. This notation usually is described as the “phasor” form of f(t). Then: 
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Another phasor form, using ha  and hb  coefficients, is given as follows: 
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Where the angle hθ  is obtained as follows:  
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Finally the RMS value of f(t) is F, then we have the following equation: 
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The MATLAB RMS of a waveform “v” can be obtained with the following statement: 
 

Vrms=sqrt(mean(v^2)) 
 
The RMS value of the waveform “v” is obtained with the following program. The only addition 
to the previous code (Vdc) is the statement Vrms=sqrt(mean(v^2)). 
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Ts=1;dt=Ts/512 
 t1=0:dt:Ts/4-dt; 
  t2=Ts/4:dt:Ts/2-dt; 
   t3=Ts/2:dt:Ts; 
t=[t1,t2,t3]; 
%Amplitudes for the waveform 
 v=[10*ones(size(t1)),-5*ones(size(t2)),zeros(size(t3))]; 
%Plotting the waveform 
 plot(t,v) 
%Axis limits 
 axis([0,Ts,-12,12]) 
%Setting the grid on 
 grid 
%Setting the labels  
 xlabel('time in seconds') 
%Calculation of the average DC value 
 Vdc=mean(v) 
%Calculation of the RMS value. 
 Vrms=sqrt(mean(v.^2)) 
 
Vrms = 
 
    5.5847 
 
» 
 
The MATLAB harmonic value of a waveform “v” is obtained as follows: 
 
» Ts=1;dt=Ts/512 
 t1=0:dt:Ts/4-dt; 
  t2=Ts/4:dt:Ts/2-dt; 
   t3=Ts/2:dt:Ts; 
t=[t1,t2,t3]; 
%Amplitudes for the waveform 
 v=[10*ones(size(t1)),-5*ones(size(t2)),zeros(size(t3))]; 
%Plotting the waveform 
 plot(t,v) 
%Axis limits 
 axis([0,Ts,-12,12]) 
%Setting the grid on 
 grid 
%Setting the labels  
 xlabel('time in seconds') 
% 
%Calculation of the spectrum 
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% 
[f,y,ph]=harmonic(v,16); 
title('Spectrum of "v" waveform') 
xlabel('harmonic number') 
ylabel('amplitude') 
ph*180/pi 
 
ans = 
 
   72.0387 
 
» 
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Figure2. Spectrum of figure 1 using MATLAB. 

 
To obtain the spectrum we created a function that is stored in the work file of MATLAB. This 
function is listed below: 
 
%Creation of a function called “harmonic” 
% 
function[f,y,ph]=harmonic(x,n) 
N=size(x,2); 
f=0:1:N-1; 
y1=fft(x); 
y=2*(abs(y1)/N); 
y(1)=y1(1)/N; 
ph=angle(y1(2))+pi/2; 
stem(f,y,’r’) 
axis([0,n-1,0,1.2*max(y)]) 
% 
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Fourier analysis of voltage and current 
 
 As stated earlier, the trigonometric Fourier analysis of a repetitive waveform can be obtained 
using equations 1 through 10. If we let )sin(2)( tvtv ss ω=  be the input voltage for a typical 
circuit (see figure 1) the input current can be obtained as: 
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Where: 
 )(

1
tis  is the fundamental component (at line frequency f1). 

)(tish  is the component at the “h” harmonic frequency (fh). 
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Figure3. PSPICE circuit of a single-phase rectifier 

 
 

* source FOURIER2 
V_V1         N03719 N03754   
+SIN 0 60 60 0 0 0 
R_R1         0 N02751  10   
D_D30         N03719 N02751 D1N4148  
D_D31         N03754 N02751 D1N4148  
D_D32         0 N03754 D1N4148  
D_D33         0 N03719 D1N4148 

 
Then we have [1]: 

1hff h =         12 
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Then equation 11 can be expanded as follows: 
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Typical distortion occurs at the current level, voltages remain, for the most part, undistorted. 
Figure 4 shows a very typical voltage-current waveform where the distortion of currents is 
apparent and the process of the Fourier trigonometric analysis can be seen. 
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Figure 4. Typical voltage-current output and its Fourier components 
 
The RMS current is: 
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The IEEE [10] standard recommends the maximum allowed harmonic content in power 
electronics depending on the type of circuit. This value is calculated using equation 15.  “THD” 
stands for “total harmonic distortion” and it is usually given in %. PSPICE determines 
automatically this value. In MATLAB we have to calculate it. In the next section we show a 
PSPICE output for a simple single-phase rectifier.  
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Full bridge single-phase rectifier 
 
Using PSPICE we obtained the output of a single-phase full bridge rectifier. Figure 2, shows the 
circuit and figure 5 shows the output. The trigonometric Fourier analysis is performed with 
PSPICE. 
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age 7.213.7



            2002-774 

“Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright  2002, American Society for Engineering Education” 

Time

0s 10ms 20ms 30ms 40ms
-I(R1) V(D30:2)

0

20

40

 
  

Frequency

0Hz 50Hz 100Hz 150Hz 200Hz 250Hz 300Hz
-I(R1)

0A

2.0A

4.0A

4th Harmonic

2nd Harmonic
DC component

 
Figure5. PSPICE output of the single-phase rectifier shown in figure 3 

   Upper graph indicates the voltage and current output. 
   Lower graph indicates the Harmonic analysis. 
 
Conclusions 
 
Power electronics and Power quality are one of the major fields in electrical engineering that 
require the understanding of “trigonometric Fourier series” and its applications. It is of no 
surprise that this technique works very well in obtaining the necessary information from 
input/output voltage/current signals. By doing so, we go a step further and determine the %THD 
that gives us an indication of the “goodness” of our electrical design. Again, by using one of the 
most powerful mathematical techniques we arrive to a simple, yet, very important solution of a 
problem that in the past was tedious and cumbersome in its solution. Recently, with the powerful 
use of Personal Computers and, perhaps the most widely used, software simulator and 
mathematical packages the application and solution of trigonometric Fourier series has become a 
lot simpler. Consequently the design of electrical circuits in general is getting better and better. 
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