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Abstract 
 
 This paper presents an example of application of xPC Target (product integrated with 
Matlab/Simulink) in an educational laboratory for real-time control experimentation.  
Equivalence between this environment and LabVIEW, another well known real-time 
environment for control, is discussed.  Operating characteristics, cost, realization time, required 
expertise and implementation time are also presented.  This example is realized on a classical 
system for position control using a DC motor. A complete control design process is applied on 
this test bench, from simulation to real-time control implementation.  Result analysis indicates 
that xPC Target is a powerful environment for fast prototyping of real-time control loop as 
needed by undergraduate laboratories and for research activities implying fast testing of control 
algorithms on a specific system. 
 
 
 
I. Introduction 
 
 Experimental testing of control algorithms requires an environment where simulation 
analysis and real time testing can be appropriately and efficiently realized. Unfortunately, 
simulations are time consuming and, most of the time in class room context, the effort needed to 
transfer the code from the simulation environment to the real-time control environment is under-
estimated, leading to poor results analysis. In both industrial and academic fields, development 
time is critical and it is important to maintain the development effort minimal. Ideally, simulation 
and real-time implementation of control algorithms on a given system should be realized on the 
same development environment, so as to minimize this development time. To attain this 
objective, the selection of an environment for both simulations and real-time control is a critical 
choice. 
 
 Commercial software solutions like xPC Target (with Matlab/Simulink) and LabVIEW  
offer integrated environment for simulation and real time implementation. Both include tools to 
help reduce time and effort spent on the development of a module for simulations and real-time 
implementation of a given control theory.  Moreover, a survey done in 1999 by ITRON [1] 
shows that performance, proved track record, industry usage and reliability are the main criteria 
for the selection of an operating system for a given control engineering project.  In this paper 
Matlab and LabVIEW are explored as an integrated environment since they are commonly used 
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in industrial and academic context and they show good performance at first glance.  Matlab is 
mainly used in research and education context for simulations on mathematical models, and 
LabVIEW is mainly used in real-time control in industrial context.  Both products offer the tools 
to integrate simulations and real-time implementation.   
 
II. Test bench for position control 
 
To explore both environments, a physical system will be considered: a test bench for position 
control using a DC motor and a single loop control commonly found in various applications. The 
first version of this test bench was presented in [6]. The objective is having the same 
environment for design, implementation and data analysis.  Since the ultimate goal is to reduce 
the time spent on the design phase, the environment needs to be easy to use in both design and 
implementation phases. 
 
The actual test bench in our laboratory uses LabVIEW as the control environment and xPC 
Target is proposed as a new alternative environment.  Figure 1 illustrates the physical setup of 
this test bench: 

 
- a servo system consisting of a DC 
motor, two inertia loads, a mechanical 
link and an output encoder; 
- a controller and interface running on a 
desktop computer (two computers in the 
case of xPC Target; 
- an I/O (inputs / outputs) interface box 
for connections between the computer and 
the system; 
- an amplifier for power conversion of the 
command coming from the computer; 
- two voltmeters  (not highlighted on 
figure) to help monitoring system state 
during control loop execution. 
 

  Modifications can be made on the servo system.  The mechanical link between the two 
inertia loads can be a rigid link (direct coupling) or elastic link (torsion springs).  Figure 1 show 
the torsion spring in the center of the bench.  Complete equipment for this system is: 
 

• one fast (1 GHz)PC operated under Windows (2000, XP or similar) and with: 
• Matlab 7.0.1 (with xPC Target 2.6.1); 
• SVGA monitor for design and operation; 

• one older PC (133 MHz) or any Intel compatible PC with any or no OS and with: 
• Ethernet TCP/IP card (xPC Target compatible, like Intel®PRO-100S) ; 
• National Instrument PCI-6025E analog I/O card (to output command); 
• Measurement Computing CIO-QUAD02 encoder input card (2 channels); 
• SVGA monitor is optional but can be useful sometimes; 

 
Figure 1: Test bench components and physical 

setup 
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• one KEPCO BOP-36M operational amplifier (±36 VDC; 5 A; max gain of -9.9); 
• one I/O interface box for connections between target PC and the system; 
• two digital voltmeters are optional but useful for system tuning; 
• physical system: 

• DC motor ; 
• end-line optical shaft encoder with 200 pulses per turn and two output channels 

for quadrature modes; 
• inertia loads (wheels) with a radius of 50 mm and a mass of 1 kg; 
• elastic link (homemade torsion springs). 

 
 The open loop model for this system (considering the second inertia wheel position as the 
output) is given by the transfer function of equation 1.  An open loop test and a closed loop test 
using the Haglund Astrom non linear method (high gain proportional controller with saturation 
of the command at 1 Volt) are necessary to identify the parameter values.  The optimal parameter 
values are then obtained using function minimization (fminsearch in Matlab) and the 
mathematical equations linking the model and the actual tests results.  The complete procedure 
and equations can be found in [7]. 
 

2

-1

( )
( ) ( )( )

with a=3.5 sec, b=177, c=4 sec  and G=8126 rad/sec*volt.

s G
U s s s as b s c
Φ

=
+ + +     (1) 

 
 To control this system a novel PID configuration is used. This novel PID  is named “PID-
Dual-Loop” (later referenced as PIDDL in this paper) and has been  proposed by DeSantis [8].  
One of the main advantage of this controller is that the tuning of its gains is realized 
independently for the follower mode (reference following) and regulator mode (disturbance 
cancelling).  The actual mathematical form of this controller is given by equation 2.  Complete 
procedure for experiment with this controller can be found in [  ]. 
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 To help obtain the best performances on the system using the elastic link, a « masking » 
filter is added to cancel the main elastic poles of the transfer function (equation 1).  Equation 3 
gives the transfer function of this filter, which is inserted between the controller and the system. 
 

2 2

2

( ) ( )
( ) ( )

with a and b as identified in simulation model; p as the new double pole.

o

i

U s p s as b
U s b s p

+ +
=

+    (3) 

 

P
age 10.210.3



Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2005, American Society for Engineering Education 

 Since testing any algorithm always implies running both simulations and real-time 
control tests, the complete application program includes the simulation model and the real-time 
control model. A logical switch will allow the activation of each model in the final 
implementation.  The same logical activation procedure is done for each component of the 
model: the controller can be de-activated (resulting in an open loop operation), the filter can be 
de-activated (Uo/Ui = 1 in this case) and the rigid link model can be selected for simulation 
instead of the elastic link model. 
 
III. LabVIEW implementation of the real-time controller 
 
 The version 7.0 of LabVIEW (see technical reference on National Instruments website 
[5]) used in the case study operates under Windows XP SP2. To obtain the best performance 
with Windows, which is not a real time operating system, the VI (Virtual Instrument) 
programmed for the case study, is set on time critical priority in the execution part of its VI 
properties.   
 
 A Virtual Instrument in LabVIEW consists of a graphical panel grouping controls and a 
circuit-like diagram grouping functional blocks.  While designing an application is easy and fast 
with this system, designing a complete interface for parameter tuning and data logging on a 
complete system needs more time and special attentions.  For the position control, the tabbing 
option of the graphical interface was used (see figure 4) and the resulting diagram is quite 
complex.  Overall diagram for this control application spans on many computer screens in its 
actual state (see figure 5 for a small portion of the “while” control loop). 
 
 Tools available in LabVIEW are primarily designed to be used in-line with the execution 
of the program.  Data logging was chosen to allow post-execution analysis.  Analysis of the 
logged data is realized using Matlab.  Since Matlab is already well-known for modelling and 
simulation, it was natural to use it for the data analysis.  Data logging is realized by filling a table 
with execution data, and then saving it in a text file using the corresponding I/O blocks available 
in LabVIEW.  In this text file, few command lines are added to make it directly compatible with 
Matlab.  The block create tab pid at bottom right of figure 5 manage this table. 
 
 To create the real-time system I/O, a block named DAQ Assistant simplify the integration 
and configuration of the I/O card present in the computer.  Data formatting is then done using 
common functional blocks. 
 
 Figures 4 and 5 shows the actual implementation of this system in LabVIEW with the 
interfaces needed to modify the reference, the sampling period, the PID controller gains, the 
system type and the system's parameters.  Circuit diagram also include a section (not shown on 
figure) to transfer all useful signals in the text file later analyzed with Matlab.   
 
IV. Matlab-Simulink-xPC target implementation 
 
 The 7.0.1 version of Matlab (see technical reference on The Mathworks website [3]) used 
in our example operates under Windows XP SP2.  However, Matlab integrates a tool named Real 
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Time Workshop that allows targeting real-time code to xPC Target, which is essentially an 
operating system for the execution of control loop running on a second computer.  Matlab also 
have a graphical extension named Simulink (see technical reference on The Mathworks website 
[2]) which allows modelling of dynamical systems using functional blocks and data flow signals.  
Since Matlab and Simulink share the same memory workspace, variables in Matlab and Simulink 
are common to each other.  This characteristic eliminates the need for a complete graphical 
interface (like the LabVIEW panel) to manipulate the various parameters of the system. 
 
 For each specific application, a Matlab script and a Simulink model are developed to 
fulfill the corresponding needs in terms of simulation and design of control law.  The interface 
proposed on figures 6 and 7 has the same role than the one in LabVIEW (figures 4 and 5).  Since 
a script is used for the configuration, the resulting model is very simple and easy to understand 
and modify.    It is also possible to use the guide function in Matlab to create a full graphical 
interface.  But the result wouldn't be as simple as the script and the model actually presented.  
The simulation model is created using simple functional blocks like constants, gains, transfer 
functions, scopes, summations, etc.  Sub-systems are created to group these blocks in functional 
groups like the controller, the physical system, the reference generator and the visualization 
interface.  The parameters of these blocks are directly read from the Matlab workspace which is 
initialized by the script.  For the I/O of the real physical system, xPC Target library contains over 
250 driver blocks for various I/O cards available on the market.  To use a specific card, the 
corresponding block in the library must be found and inserted in the model to replace the 
simulation model (see case study). 
 
 Compiling is an essential step using xPC Target.  Real Time Workshop is called to create 
a version of the actual Simulink model to be executed on the target computer.  The actual 
configuration of a system using xPC Target is of the type host – target, involving the use of two 
computers.  The first computer running under Windows is used only for design and for control 
execution and the second computer running on the xPC Target kernel allows a perfect real-time 
execution of the compiled model.  In the most recent version (xPC Target 2.6.1 with Matlab 
7.0.1), the compiled model is actually linked to the Simulink model on the host to allow easy 
control of the execution on the target.  This link is activated by the external mode on the 
Simulink model.   
 
 Communications between the host and target use the TCP/IP protocol on an open (WAN) 
or closed (LAN) network.  A closed network (intranet) permits to obtain maximal link speed in 
our laboratory.  The command xpcsetup in Matlab allows the user to configure all the parameters 
of xPC Target on both the host and the target.  Notice that the target is set up using a boot disk 
that actually configures the system and launches the kernel from the floppy disk.  This allows to 
take any existing computer and to use it as a target as long as it can be reached by the network 
connection (some Ethernet card are not supported; in our application the Intel®PRO/100S 
Ethernet card and the I82559 driver on xPC Target were used).  It is interesting to note that even 
an old processor like a Pentium 133 MHz can gives good real-time performance (a sampling 
period of about 1 millisecond) with xPC Target. 
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 To analyze the logged data, a specific script is created to store the data in the Matlab 
workspace allowing an easy analysis and graphical presentation.  Since all these operations are 
realized in the Matlab workspace there is no need to transit the data through a file.  When data 
analysis is done, Matlab offers the possibility to save its workspace in a « .MAT » file that can 
be stored on a permanent memory and loaded later if necessary. 
 
 Globally, xPC Target allows to develop both the simulation and real-time control 
environment on the same Simulink model, with the configuration and the data analysis realized 
using Matlab scripts.  All these tools use the same workspace which greatly simplifies exchange 
of information between them, using variables, vectors and matrices.  Since xPC Target uses its 
own operating kernel, a second computer is necessary.  However, the boot disk generated by xPC 
Target converts temporarily any computer as a target for xPC as long as a TCP/IP connection can 
be established between the host and target PCs. 
 
IV.1 Simulation and real-time implementation  using xPC Target 
 
 In Matlab/Simulink/xPC Target, the possibility to use configuration scripts and the shared 
workspace between Simulink and Matlab, allows us to create a very simple diagram with few 
data flow signals and a sub-system representation, that groups the various blocks of a system in a 
single block easy to identify and to understand.  Figures 6 and 7 illustrate the script used for 
configuration and the root model of the system.  Blocks on figure 7 are in fact sub-systems 
containing many other blocks.  There is no graphical interface on this model since it is easier to 
modify the configuration script than to build and use a complete graphical panel as in LabVIEW.   
 

 Figure 2 shows the content of 
the system block of figure 7.  The 
highlighted part of this figure shows 
the models for simulation (rigid and 
elastic link) and the top part of the 
figure shows the I/O blocks for the 
real-time control model.  The 
configuration script groups all the 
parameters needed to guarantee 
correct data flow in each mode (rigid 
or elastic simulation, and real 
control).  Every other sub-systems in 
the complete diagram of figure 7 uses 
functional blocks from Simulink 
library: constants, sum, mux, demux, 

gain, transfer function, integral, derivative, etc.  After the control model is created and all its 
parameters properly initialized, the build function of Real Time Workshop is called and the 
control model is compiled (xPC Target need to be configured as explained in the technical 
documentation from The Mathworks [4]).   
 
 

 
Figure 2: Content of the system block in the Simulink 

model for first case study 
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 Execution on the target should always pass by the host version of the application to allow 
parameter modifications between each execution of the control loop.  To synchronize both 
models (host and target versions), xPC Target uses the External mode of Simulink.   When they 
are connected together, the parameters on the host and on the target are synchronized.  This 
External mode allows fast testing for sets of parameters without compilation of the model. 
 
 Once the execution on the target system is completed, simple commands allow 
downloading the resulting data on the host system by the Ethernet link.  Two different logs are 
useful: the outputlog and the timelog.  The output-log contains every signal the user wants to 
memorize.  A third log command can be used to track system's performances: the task execution 
time log (TET log).  This log memorizes the time used at every sample to calculate the control 
law of the model on the target.  Larger is the difference between the TET and the sampling 
period, easier it will be to control the execution, since more time will be available for 
communication functions of the xPC Target operating system. 
 
 When all data have been downloaded from the target to the host, data analysis is realized 
with the standard functions of Matlab / Simulink, including the save or uisave functions for 
storage of the data.  Since the workspace between Matlab and Simulink is completely shared, no 
added data links are needed on the model and all the data processing is automated using a script. 
 

 
 Figure 3 shows results where simulation mode and real-time mode results are superposed.  
These results are obtained by two executions of the model presented on figure 6 (with only a 
change on the ex_mode parameter).  This parameter controls the switching between the real 
system I/O, the rigid link simulation model and the elastic link simulation model (see figure 2).  
With the external mode in Simulink, it is even possible to change configuration parameters 

Figure 3: Actual results for a test in simulation and real control  
(using proposed system model) 
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without compiling the model again.  This allows fast testing of the controlling algorithm actually 
implemented.  To test a new algorithm, only the controller block in the model and the 
configuration script have to be modified (no compiling is needed again). 
 
 All these features give to our undergraduate laboratories a new way to develop more 
interesting and motivating demonstrations and allow the introduction of new algorithms that 
were not programmed experimentally before.  Since the final diagram is very simple in Simulink 
and the scripts in Matlab are easy to modify, changes are easy and fast to program. 
 
 Another feature that has been successfully tested in our laboratories is the capability to 
drive an xPC Target application from a second model running in Simulink.  This scheme allows 
the implementation of a two level controller.  For example, xPC Target can run a model similar 
to the one in the case study (see figure 7), but receives its parameters from a joystick input 
(instead of the configuration script) acquired through a second Simulink model (Joystick input 
block from the Virtual Reality library).  In this case, buttons on the joystick allow to switch 
signal values and the joystick axis input could becomes the reference signal of the controller.  
This allows experiments with dynamically changing signals and parameters. 
 
V. Simulation and Real-time performances 
 

On this classical control example, both applications developed with LabVIEW and 
Matlab / Simulink / xPC Target gives the same simulation results and similar real-time results for 
a relatively large sampling period (20 ms).  In terms of development time, figures 4 and 5 
(LabVIEW) compared to figures 6 and 7 (xPC Target) shows the difference in complexity 
resulting from both programming structures.  The shared workspace in Matlab allows fast and 
easy parameter changes and Simulink diagrams are also easy to modify.  In LabVIEW, 
modifications are more time consuming and every parameter change must be carefully planned 
and included properly in the panel.  However both environments offer essentially the same tools 
and the resulting model is similar.  In this case, parameters such as ease of use, available 
capabilities, implementation time, and background expertise required are too qualitative to be 
used for a discussion around performances of these two environments.  As for the acquisition 
cost, both products are similar with a few thousands dollars for the most common options in an 
industrial context, and both products offer a discount for academic use. 

 
For our needs in real-time control, operating characteristics like sampling time and time 

stability are quantitative data important to analyze.  The first parameter is about the smallest 
sampling time the system can operate, and the second is about how constant and robust is the 
application of this sample time.  For the numerical computations needed in the controller, one 
CPU is used for execution in LabVIEW and xPC Target, but development and execution control 
can be done on a second computer in the xPC Target case, while these functions are supported by 
the same CPU in LabVIEW.   
 
 With LabVIEW, a sampling period of 1 ms on a 266 MHz processor gives results shown 
on figure 9.  This figure shows that it is not possible to obtain the sampling period specified 
(mean sampling time of 15 ms).  To obtain best performances with LabVIEW, an extension 
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called LabVIEW Real Time is needed, and it includes a specific processor (more expensive 
option) for targeting the real-time application.  Because xPC Target uses any personal computer 
as a target, there is an advantage in terms of simplicity and performances for rapid prototyping. 
 
 To illustrate performances of xPC Target, a time log file is analyzed.  Since it contains 
sampling times, difference between two samples of this log is the elapsed time between two 
samples.  This information and the content of the TET (Task Execution Time) log show xPC 
Target kernel performances.  This test is done with a sampling time of 1 millisecond (ms) in 
three different execution conditions: 
 

1) simulation mode with elastic link model; 
2) simulation mode with rigid link model; 
3) real-time control mode (elastic link on physical system). 

 
On figure 8 there is absolutely no glitch on the curves of sampling time versus time.  This 

shows good stability of the sampling time. The same test can be done using a 500 microseconds 
(µs) or even 250 µs sampling period.  A function in xPC Target, xpcbench ('this'), automatically 
puts the target computer under test to determine its performance.  The results of this test shows a 
minimal sampling time ranging from 12 µs (for a very simple model) to 819 µs (for a very 
complex model) using the 266 MHz processor of the computer used for the case study.  
Automatic detection of sampling period overrun is also included in XPC Target to ensure robust 
real-time execution. 
 
VI. Conclusion 
 
 In this paper, xPC Target has been presented as a development and operating 
environment for real-time control experimentation.  A classical test bench for position control 
has been used to implement a real-time controller with LabView and xPC Target. Both 
implementations give satisfactory results. However the Matlab/Simulink/xPC Target 
combination can clearly be used as an environment for fast prototyping and testing of control 
algorithms in both simulation and real-time control modes.  For undergraduate control laboratory 
applications, these characteristics are useful to obtain more motivating demonstrations and more 
interesting and challenging projects.  Modelling, simulations and real-time control in this 
environment is a fast process, easy to develop or to modify, and Matlab scripts allow quick 
configuration and easy data analysis. 
 
 Because of its performances and easy to use, xPC Target has been adopted in other 
projects in our laboratories: design and implementation of a vehicle for rapid prototyping of 
intelligent guidance algorithms [9], assisted guidance for a tractor-trailer like vehicle [10] and 
[11] and temperature control for a three heat zone cylindrical oven [12].  Other projects are still 
to come with new versions of the software. 
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Figure 4: Diagram in LabVIEW (example from case study) 

 
Figure 5: Panel in LabVIEW (example from case study) 

P
age 10.210.12



Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2005, American Society for Engineering Education 

 

 
 
 

 
Figure 7: Configuration script in Matlab (example from case study) 

 
Figure 6: Simulation / real control model in Simulink (example from case study) 
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Figure 8: Sampling time results for performance testing 

 
Figure 9: Applied sampling period in LabVIEW 
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