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Introduction 
 

Regression models are common in experimental thermal and fluids engineering. Typical 
applications are calibration of instruments, correlation of thermodynamic properties, and 
development of transport models. For the models to be used confidently and competently, 
students and practitioners must understand both the development of the models and the 
evaluation of the uncertainty of the models. The latter understanding is apparently not adequately 
developed in typical undergraduate statistics courses. Engineering students usually have 
adequate familiarity with the development of simple regression models. An example of such a 
model is a linear or a polynomial calibration curve. A specific example is a fitting the data for 
the thermoelectric potential of a thermocouple to a polynomial of temperature over the range of 
calibration. Students are somewhat familiar with the uncertainty of the data with respect to such 
a model, but even in such a simple case, students are usually unfamiliar with evaluating the 
uncertainty of model itself.  

 
A further interesting complication is introduced when the model is developed not in 

terms of the variables directly measured but instead in terms of transformed variables calculated 
from the measured variables. An example of such a model is the widely applied Clausius-
Clapeyron expression for the logarithm of the vapor pressure as a polynomial function of the 
inverse absolute temperature. In the literature of experimental uncertainty, such as the report by 
Taylor and Mohr3, the result of reading a graduated instrument is called a direct measurement; 
and the result of a calculation using direct measurements is called an indirect measurement. For 
consistently in the absence of obvious distinguishing terms in the literature, this paper will refer 
to models based on direct measurements as “direct models”, and models involving indirect 
measurements will be called “indirect models”.  

 
The well understood theory and practice of developing simple direct models are easily 

expanded to include the development of indirect models so long as they are still linear in their 
parameters. In the case of even a relatively simple indirect model, however, most students are 
unable to evaluate even the uncertainty of the data and are certainly unable to evaluate the 
uncertainty of the model. The students are, of course, even less familiar with the development 
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and the evaluation of more complex indirect models that involve linearization. An example is the 
commonplace power law model for the Nusselt number in terms of the Reynolds number for 
forced convection. The shortcoming can be easily addressed. The basic principles and techniques 
of error propagation analysis (EPA) can be readily and concisely explained to engineering 
undergraduates, and these tools can be used to develop the desired uncertainty limits.  
 
 This paper reviews the principles of linear regression analysis and EPA and demonstrates 
applications to developing uncertainty limits for data and for models. The paper also includes 
laboratory examples of evaluating the uncertainties of direct and indirect linear and polynomial 
models.  
 
 
Synopsis of Linear Regression 

 
Linear regression fits a model that is linear in its parameters to the supporting data such 

that the variation of the data with respect to the model is minimized. The detailed statistical 
theory of linear regression is available in numerous elementary and intermediate textbooks. The 
excellent and comprehensive text by Draper and Smith1 was used as a source in developing this 
paper. Since excellent references on this well developed topic are available, a lengthy discussion 
here is not warranted; however, for completeness some overview is needed. In addition, even 
though numerous references on regression are available, none is in itself completely satisfactory 
for the experimentalist or student of experimental engineering for at least three reasons. One, the 
readily available references do not consider the error of the model, or they limit detailed 
consideration only to linear models. Two, the references are only concerned with direct models 
and not with transformed or indirect models. Three, there are no practical examples including 
examples that consider all aspects of uncertainty. This section will review linear regression. The 
other topics are addressed later. 

 
For an overview of regression, specifically consider a linear model 
 

 xbcy +=est  (1) 
 

The variation of the data with respect to the model is called the residual variation, RSS, which is 
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The two so-called normal equations that express the conditions for a minimum of the RSS are 

 ( ) ( )( ) 012RSS

1
=---=

¶
¶ å

=

n

i
ii xbcy

c
 (3) 

 

 ( ) ( )( ) 02RSS

1
=---=

¶
¶ å

=

n

i
iii xxbcy

b
 (4) P

age 7.215.2



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
 Copyright Ó 2002, American Society for Engineering Education 

 
or in expanded form 
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The two equations can be written in matrix form as 
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The explicit solution for the coefficient b can be found by using Cramer’s rule to be 
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Where  
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With the coefficient b known, it is easy enough to solve Equation 5 for the constant c as 
 
 aveave xbyc -=  (10) 
 
Where, of course  
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Equations 8 and 10 give the parameters for a least RSS linear model. These regression principles 
can be readily extended to more complex models. Next the uncertainty of the data with respect to 
the model should be considered. 
 
 
Uncertainty of the Data with Respect to the Regression Model  
 

Assuming that the model is a reasonable approximation of the systematic dependence of 
the dependent variable on the independent variable, then the random scatter of the data is the 
scatter of the data with respect to the model. This scatter is characterized by the Standard Error 
of Estimate (SEE) given by 
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Related experimental terminology will be reviewed later, but for now note that in experimental 
terms the SEE is the Standard Uncertainty A of the y data, uA,y. Since the regression is based on a 
small sample, the statistics should be governed by the t-distribution. The t-distribution has an 
index of sample size called the statistical Degrees of Freedom (DF). When the DF is very large, 
the t-distribution is identical to the Normal distribution. For lower values of the DF, the t-
distribution is slightly broader. In regression analysis the DF is the number of data less the 
number of parameters in the model. For a linear model the number of parameters, np, is 2, and for 
n data,   
 
 2plinear -=-= nnnDF  (13) 
 
Experimentalists need hardly be concerned with the details of the formula for the SEE since 
statistics packages and spreadsheet programs calculate it as part of the regression analysis.  
 
 As noted, the SEE is in experimental terms the Standard Uncertainty A or uA,y for the 
data, meaning the uncertainty due to random variation that can be analyzed statistically. The 
Expanded Uncertainty of the Data or UA,y is calculated to be the 95 % confidence interval using 
the appropriate coverage factor, kc, in the formula 
 
  SEEcyA,cyA, kukU ==  (14) 
 
This Expanded Uncertainty can be used to define the error limits of the data with respect to the 
model. Examples of such limits are the straight dotted lines labeled ELD (for Error Limit on 
Data) in Figure 1 below. Note that in standard regression analysis, the independent variables are 
assumed to be known exactly, and all of the variation is assigned to the dependent variable. The 
scatter in the dependent variable cannot be known exactly, but it is best approximated by the 
Standard Uncertainty in Equation 12 and the Expanded Uncertainty in Equation 14.  
 P
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The uncertainty in the data with respect to the model is seen to be rather simple to 
evaluate. In contrast, evaluating the uncertainty of the model is relatively sophisticated. To 
explain how this uncertainty is developed, the principles of error propagation analysis will be 
reviewed in the next section. These principles will then be applied to show how the uncertainties 
in the parameters of a model and then the uncertainties in the model itself can be developed. 
 
 
Recap of Error Propagation Analysis 
 

The first conceptual step of error propagation analysis (EPA) is recognizing the idea of 
direct and indirect measurements. An indirect measurement is merely a calculation based on one 
or more direct measurements. Assume that m independent direct measurements, identified as a 
set of wi s, contribute to an indirect measurement, z. The measurement formula is then merely the 
calculation formula, 
 
 ( )mwwwzz ×××= ,, 21  (15)  
 
The operational concepts of EPA are essentially incorporated in two equations. The first of these 
two basic equations of EPA concerns how uncertainty in some dependent variable or indirect 
measurement z is caused by the uncertainty in some independent or directly measured variable, 
w. Call this uncertainty uz,w. The formula relates the resulting uncertainty uz,w to the uncertainty 
in w as follows,   
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The other basic operational formula shows how independent uncertainties are combined when 
several direct measurements contribute to an indirect measurement. Analysis shows that the 
squares of the contributing uncertainties sum to give the squared combined uncertainty, or 
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Each partial derivative is recognized to be the influence factor showing how each direct 
measurement, wi, influences the indirect measurement, z. After reviewing the types of 
uncertainty, the two techniques presented above can be used to develop the formulas for the 
uncertainties of the parameters in a model and the uncertainty of the model itself as shown in the 
following sections. 
 
 
Types of Uncertainty and Combining Uncertainties  
 

Consensus standards representing the broad-based judgment of experienced professionals 
recognize two types of uncertainty. Uncertainty A is uncertainty that can be evaluated by 
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statistical analysis of the experimental data, such as the analysis of regression data in the 
preceding section. Uncertainty A is essentially the result of random variation. In contrast , 
Uncertainty B must be evaluated by analysis of the entire measurement system. Uncertainty B 
does not result in random variation but is rather the possible range of systematic error in the 
measurement system.  

 
The Expanded Uncertainty is the half-with of the error band for the measurement. 

Typically this is the 95 % error band. The Expanded Uncertainty, U, is typically computed using 
the appropriate coverage factor, kc, and the appropriate statistic called the Standard Uncertainty, 
u, as 
 ukU c=  (18) 

 
Typically the Standard Uncertainty is approximated using the appropriate standard error, and the 
coverage factor is computed using the t-distribution, which addresses small experimental 
samples.  
 

To compute the overall Combined Uncertainty, first compute the Expanded Uncertainty 
A of the measurement by statistical analysis. Then compute Expanded Uncertainty B of the 
measurement by applying EPA to the overall measurement system. Since the random 
Uncertainty A and the Uncertainty B due to possible bias are obviously independent sources of 
error, compute the Combined Uncertainty of the model, as 
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A spreadsheet block illustrated in Attachment A has been prepared to assist in calculating and 
plotting the uncertainties discussed in this paper. Careful inspection or use will reveal that the 
spreadsheet block includes a column for the Uncertainty B of the model. This uncertainty can be 
a constant; or, preferably, it can vary as a function of the independent variables. The spreadsheet 
block2 is posted on line for the use of interested teachers and researchers. 
 
 
Uncertainty of the Coefficient 

 
The coefficient cannot be known exactly because it is influenced by the uncertainty in the 

dependent variable. For the coefficient b, the information needed to evaluate the influence factor 
for one uncertain value of the dependent variable on the coefficient is contained in Equation 8, 
specifically 
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The data set contains n pairs of data, xi and yi. By convention every xi is assumed to be known 
without uncertainty, but every yi is assumed to have some uncertainty. Since the variation in 
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every yi value effects b, the uncertainty of the coefficient is written as follows by substituting the 
influence coefficients from Equation 20 into Equation 17, which is the rule for combining 
uncertainties. The pertinent result is  
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Then expanding the summed term in the numerator and regrouping gives 
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Then simplifying the numerator gives 
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Simplifying the fraction gives the essential result 
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In practice the uncertainty in y is not and cannot known a priori, so it is estimated by the 
Standard Error of y Estimate. The resulting computational formula is 
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The uncertainty of the coefficient is an important statistic used routinely in significance testing.  
  
 
Uncertainty of the Constant 
 

While the uncertainty of the coefficient is used routinely in significance tests, the 
uncertainty of the constant is not quite so important. It can be useful in some experimental work, 
however, so it is included here for completeness. For the constant c, the information defining the 
influence factor is contained in Equation 5, so 
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Since the uncertainty in every yi contributes to the uncertainty in c, the total uncertainty in c is 
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Which after expansion followed by simplification gives 
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After a final simplification and introducing the SEE for the uncertainty in y, this formula for the 
uncertainty in c results, 
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When needed, this uncertainty will typically be readily available, as it is computed by all of the 
common regression packages. 
 
 
Uncertainty of a Simple Linear Model 
 

EPA is also readily applied to the model itself. A quick look at Equation 1 might lead one 
to think that the uncertainty in a simple one variable linear model can be determined by direct 
application of the combining rule since the uncertainties in the constant and the coefficient are 
known from the analyses in the sections above. If this conjecture were true, the squared 
uncertainty in the model would be sum of the squared uncertainty in the constant and the squared 
uncertainty in the model due to the uncertainty in the coefficient, or 

 
  erroneous!2222

model bc uxuu +=  (30) 
 
This result is intuitively unsatisfactory because it increases monotonically with x while one 
would expect the uncertainty to increase toward the end points of the range of x. The conjecture 
in Equation 30 is wrong because the parameters c and b are not independent. The proper 
approach is to first eliminate c using Equation 10. After eliminating c, the model equation is 
 
 ( ) xbxbyxbcy +-=+= aveaveest  (31) 
so 
 ( )aveaveest xxbyy -+=  (32) 
 
Now, the uncertainty in the model is easy to represent by applying the combining rule to the 
preceding relationship as 
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The SEE is used as the estimate of the uncertainty in the y data. Then the uncertainty in the 
average of y, which is the average of n individual y data, is  
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Since the uncertainty in the coefficient has been determined in Equation 25, then the uncertainty 
in the model is 
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or simplifying slightly 
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This result is intuitively entirely satisfactory for at least two reasons. First, because it is a 

minimum at the average value of the x data where the information about the actual trend in y is 
should be the best. Second, because it increases monotonically and approximately quadratically 
toward the either end of the range in x. These features are the expected and observed behavior in 
uncertainty of a linear model. As is usual, the uncertainty in the preceding equation is taken to be 
the Standard Uncertainty of the model. Note that this is the uncertainty due to random error or 
Uncertainty A. To plot the 95 % error band, the appropriate coverage factor, kc, should be used in 
computing the Expanded Uncertainty A, or 

 
 modelcmodel ukU =  (37) 
 
For a large number of data, the coverage factor will be 2, and many investigators use 2 even for 
small samples. Rigorously, the coverage factor should be computed from the t -distribution using 
as the Degrees of Freedom (DF) the number of data less the number of parameters in the model. 
The limits defined by this expanded uncertainty are a pair of curved somewhat hourglass shaped 
broken lines. A typical example is shown in Figure 1. 
 

The graph shown in Figure 1 is the result of a practical application of linear regression 
including the regression model along with the corresponding error limits on the data and the , 
possibly more interesting, error limits on the model. The figure displays the calibration 
relationship between the temperature indicated by a digital thermometer and the calibration 
temperature measured by a field standard RTD. The standard RTD is taken to have an 
independently determined Uncertainty B due to possible bias and residual random variation of 
0.01 Celsius degree. This Uncertainty B can be combined with the Uncertainty A for the data or 
the model by the usual rule for combining uncertainties from independent sources of error,  

 
 2

B
2

modelA,
2

model C, UUU +=  (38) 
 
Error limits based on this combined uncertainty, UC, are the hour glass shaped pair of curved 
lines drawn on the figure.  
 

The regression parameters and the SEE for the data in Figure 1 were computed by the 
Excel regression package. The complete spreadsheet4, including actual data, for this calibration 
exercise is posted on the author’s web page for use by interested students or instructors. The 
curves showing the error bounds were computed in a compact block of the Excel workbook 
illustrated below as Attachment 1. This block is available in a more convenient format as a 
separate spreadsheet2 for calculating the error limits of a model (ELM) on the author’s web page. 
This example has 12 data points resulting in a DF of 10 for a linear model that has 2 parameters. 
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For the resulting 10 degrees of freedom, the t-distribution rigorously requires a coverage factor 
of 2.23 as is calculated by the spreadsheet block. If this value were used in drawing the graph, 
the error band would be invisibly small; therefore an exaggerated coverage factor of 40 was used 
for legibility. Note that the error band for the data is significantly wider than the error bound on 
the model, reflecting the averaging effect of the regression modeling. 
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Figure 1. Temperature Calibration Data with Exaggerated Error Bands 
ELM is the Error Limit on the Model calculated using Equation 38. 

ELD is Error Limit on the Data calculated using Equation 14. 
 

 
The practical benefit of knowing the uncertainty of the model is particularly important in 

a calibration application such as this example. The uncertainty of the calibration is fixed once the 
calibration is completed, and any part of the uncertainty caused by mere random variation during 
the calibration is from there on included in the now fixed combined uncertainty of the 
calibration. The combined uncertainty of the calibration must be considered as Uncertainty B 
when the calibrated instrument is used in an experiment since this uncertainty cannot be further 
evaluated by repeated experimental measurements. To minimize the uncertainty in the 
experimental application, the uncertainty of the calibration should be minimized. Since the 
calibration is intended to represent the systematic trend between the indicated temperature and 
the calibration temperature, the uncertainty of the model not the uncertainty of the data should be 
used. Increasing the number of well distributed calibration points will significantly reduce the 
uncertainty of the model since the averaging effect tends to balance out the fluctuations caused 
by mere random variation. In contrast, the uncertainty of the data is hardly changed by repeated 
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measurements since it represents the inherent random variation in the data. In this case the 
Expanded Uncertainty of the data is .38 Celsius degree, while the average Expanded Uncertainty 
of the model is a considerably smaller value of .15 Celsius degree.  

 
 

Uncertainty of a More Complex Model 
 
EPA is also readily applied to the uncertainty of a more complex model with multiple 

independent variables so long as it is linear in its parameters. It can be shown that centering the 
data by subtracting their averages from the dependent variable and the independent variables 
always eliminates the constant, so the model can always be written as  

 
 ( ) ( ) ( )ave,ave1,11ave1,11aveest mmm xxbxxbxxbyy -+×××+-+-+=  (39) 
 
As before, the uncertainty in this centered model is easy to formulate by applying the combining 
rule to the preceding relationship, so 
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The uncertainty in the average of y, is again computed using the SEE as the standard deviation in 
the formula for an average of n data, so 
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The uncertainty in this more complicated model, such as a polynomial model, is then 
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An example of application of the previous equation is a polynomial regression model such as 
typically used for a thermal anemometer calibration. The general form of the uncertainty for a 
polynomial model is 
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Since the uncertainties of the coefficients are always computed by standard commercial 

regression packages, it is straightforward to calculate and plot the Expanded Uncertainty A 
according to the usual formula, 
 modelcmodelA, ukU =  (44) 
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The spreadsheet block called ELM illustrated in Attachment 1 is designed for applications with 
as many as four independent variables. The results for an example quadratic calibration model 
for a thermal anemometer are shown in the Figure 2 below. The complete spreadsheet3, including 
actual data, for this thermal anemometer calibration is also posted on the author’s web page for 
review or use by interested students or instructors. This complete spreadsheet includes the block 
called ELM, which made it easy to compute and plot the Uncertainty A for this and indeed any 
regression model. 
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Figure 2 Example Plot of a Quadratic Model with the Uncertainty Limits 

 for the Data (ELD) and the Uncertainty Limits for the Model (ELM) Included.  
 
 

As noted above, to compute the Combined Uncertainty first compute the Expanded 
Uncertainty A of the model as detailed above. Then compute Expanded Uncertainty B of the  
indirect measurement by applying EPA to the overall measurement system. Then compute the 
Combined Uncertainty of the model, as 

 
 2

B
2

modelA,
2

modelC, UUU +=  (45) 
 
For this calculation the spreadsheet block called ELM, illustrated in Attachment A, has a column 
for the Uncertainty B of the model. This uncertainty can be a constant; or, preferably, it can vary 
as a function of the independent variables. 
 

P
age 7.215.13



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
 Copyright Ó 2002, American Society for Engineering Education 

In Figure 2, the uncertainty band for the data is delimited by dotted lines plotted the 
Expanded Uncertainty A of the data above and below the model. For the data the Uncertainty A 
is a constant. Indeed, the Expanded Uncertainty A of the data is the constant computed by the 
usual formula 
 SEEcdataA, kU =  (46) 
 
The uncertainty band for the model is delimited by broken lines plotted the Expanded 
Uncertainty of the Model above and below the regression model. The Uncertainty A of the 
model varies with x in a roughly quadratic fashion. The Uncertainty B of the model could be 
estimated by error propagation analysis and included, but in this case it has been ignored for 
simplicity. 

 
 

Uncertainties of an Indirect Model 
 

The model in Figure 2 is actually a simplistic case of an indirect model since the 
regression variables are normalized. A more interesting and realistic example of an indirect 
model is a model with transformed variables such as the familiar Clausius-Clapeyron model for 
the vapor pressure. The simplest case is a model linear in the inverse temperature, 

 

 
T

bc
P
P 1ln

0

v +=÷÷
ø

ö
çç
è

æ
 (47) 

 
Here P0 is the unit pressure, which was taken to be 1 kPa in this particular example. Normalizing 
the vapor pressure by dividing by unit pressure ensures that the argument of the logarithm i s 
dimensionless. Note that the transformed dependent variable is the logarithm of the normalized 
transformed model, and note that the transformed independent variable is the inverse absolute 
temperature.  
 
 The transformed logarithmic data and logarithmic model can be plotted with error limits 
for the data and model on a log-linear plot. The linear scale would be used for the inverse 
temperature. The result is hardly different in concept from Figure 1, so it is not shown. 
 

Developing the uncertainties for the dimensional data and the dimensional model, i. e. the 
uncertainties in terms of the vapor pressure itself, is more interesting. The transformation of the 
logarithmic results to dimensional results is straightforward. First recall Equation 16, which is 
the relevant basic relationship from EPA. This equation is used to estimate the uncertainty in a 
calculated variable, otherwise called an indirect measurement z, when the uncertainty in the 
direct measurement, w, is known. The partial derivative in this equation is calculated for the 
function relationship between the two variables, otherwise called the measurement formula. In 
this case the relationship is    

 
 ( )( )0v0v lnexp PPPP =  (48) 
 
Here the indirect measurement, z, is 

P
age 7.215.14



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
 Copyright Ó 2002, American Society for Engineering Education 

 vPz =  (49) 
 
Note carefully in this case that the direct measurement is the normalized pressure, or  
  
 ( )0vln PPw =  (50) 
 
So the partial derivative needed in the basic EPA relationship, Equation 16, is 
 

 ( )( ) v0v0 lnexp PPPP
w
z

==
¶
¶  (51) 

 
Therefore an uncertainty for the vapor pressure can be inferred from an uncertainty for the 
logarithm of the vapor pressure as follows. 
 
 LPVvPV UPU =  (52) 
 
Where the symbol identified as ULPV can stand for either the Uncertainty A for the logarithmic 
data, UALD, or the different uncertainty for the logarithmic model, UALM, as appropriate. 
Obviously the uncertainty determined for a logarithmic representation is a fractional uncertainty 
for the underlying data. 
 
 To illustrate the uncertainty in the vapor pressure data and model, consider Figure 3. This 
figure shows the dimensional vapor pressure data and the vapor pressure regression model in the 
form of PV versus T. Error limits for the data and the model are also included. The error limits 
for the data are computed from  
 
 ALDvPVD UPU =  (53) 
 
Here the uncertainty of the logarithmic data is computed with the SEE of the logarithmic model. 
Note that even though the uncertainty of the logarithmic data is constant the uncertainty of the 
vapor pressure data varies with the vapor pressure. The error limits for the vapor pressure model 
are computed from 
 
 ALMvPVM UPU =  (54) 
 
The results are shown in Figure 3 below. Note how all error limits are now curved since the 
uncertainties increase with the vapor pressure. The complete spreadsheet5, including actual data, 
for this vapor pressure correlation is also posted on the author’s web page for review or use by 
interested students or instructors.  
 
 
Conclusion 
 
 This paper has reviewed the principles of linear regression analysis and  error propagation 
analysis as related to the uncertainty analysis of regression models. Various applications of 
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interest in experimental thermal and fluids engineering have been demonstrated. Methods for 
evaluating uncertainty limits for data and for models are presented. The paper also includes 
laboratory examples for evaluating the uncertainties of direct and indirect linear and polynomial 
models. It is seen that the uncertainty limits for data and models can be easily generated with 
data that are readily available from standard regression packages. 
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Figure 3. Plots of Vapor Pressure Data, Model, and Uncertainty Limits. 
 The model and the uncertainty limits were inferred from a logarithmic model. 
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Appendix: Spreadsheet Block ELM for Computing Uncertainty of a Model 
 

Sheet to Compute and Plot the Uncertainty of a Model, SMJ Nov 2001, updated 11 Jan 2002
User must insert and/or update data coded with yellow. User should format these and other cells for neatness or legibility as needed.
Instructions: (1) Copy this sheet to your experimental *.xls workbook. (2) Insert the experiemtal data into block 4. 

(3) Insert the regression results into block 2. (4) Select the desired coverage factor in Block 3.
(5) Update the cell ranges to compute the averages in Block 3. (6) Identify by cell formula the max and min X1 values in Block 5.
(7) Insert data or formulas for other XN data in Block 5. (8) Insert optional data for U_b  in Blocks 4 and 5.
(9) Plot experimental data points with green block in Block 4. (10) Plot model and limits with green block in Block5.

1. Summary Data:
The averaged U_a  of model = 0.152 The averaged U_c  of model = 0.152

The constant U_a  of the data = 0.380

2. Block of Data from Regression
User must insert the following data from from the regression block.

Constant = 1.43743
Coefficient B1 = 0.96190 0.00142 = Std error of B1
Coefficient B2 = 0.00000 0.00000 = Std error of B2
Coefficient B3 = 0.00000 0.00000 = Std error of B3
Coefficient B4 = 0.00000 0.00000 = Std error of B4

Std Error of y Est = 0.17056
n, number of data = 12

p, number of parameters = 2
coverage factor, kc, by t-dist = 2.23

3. Block of Calculations
User must specify the desired coverage factor to be used. Rigorous value is in cell D16.

coverage factor, kc, used = 2.23 <-----User must select.

User must update the cell ranges in the following four formulas to calculate the correct averages.
Average value of X1 = 44.54383
Average value of X2 = 3194.737
Average value of X3 = 0.00000
Average value of X4 = 0.00000

4. Block of Experimental Data and Results, plot the data with the block in green
User must insert the complete set of y and x data from the experimental data set into following block. Add rows as required.
User may insert column of data for Expanded Uncertainty B, uncertainty due to possible bias, if desired.

Experimental Data, insert at least one zero in every otherwise unused XN column
Y data X1 data X2 data X3 data X4 data

X1 X2 X3 X4 U b of Ua of U c of X1 data Y data regress
model model model model

-8.737 -10.698 114.45 0.000 0.000 0.010 0.206 0.206 -10.698 -8.737 -8.853
0.781 -0.880 0.77 0.010 0.180 0.181 -0.880 0.781 0.591

10.382 9.302 86.53 0.010 0.156 0.156 9.302 10.382 10.385
19.988 19.309 372.84 0.010 0.136 0.136 19.309 19.988 20.011
29.583 29.308 858.96 0.010 0.120 0.120 29.308 29.583 29.629
39.266 39.434 1555.04 0.010 0.111 0.111 39.434 39.266 39.369
48.948 49.531 2453.32 0.010 0.111 0.111 49.531 48.948 49.081
58.663 59.688 3562.66 0.010 0.120 0.120 59.688 58.663 58.852
68.340 69.723 4861.30 0.010 0.135 0.136 69.723 68.340 68.504
78.093 79.810 6369.64 0.010 0.156 0.157 79.810 78.093 78.207
88.056 89.923 8086.15 0.010 0.180 0.181 89.923 88.056 87.935
98.048 100.076 10015.21 0.010 0.207 0.207 100.076 98.048 97.701

5. Block Uniformly Spaced Data for Plotting wrt X1, plot model and limits with the block in green
User must insert cell references to identify the maximum and minumum X1 values in the cells on the next row.
max X1 = 100.076 min X1 = -10.698 1.11E+01 = computed delta X1

Spreadsheet will compute uniformly spaced X1 values. User must code columns for corresponding values of X2, X3, and X4.
User may insert column of data for Expanded Uncertainty B, uncertainty due to possible bias, if desired.

X1 X2 X3 X4 U b of Ua of U c of X1 data regress
model model model model

-1.1E+01 114.45 0.010 0.206 0.206 -1.1E+01 -8.853
3.79E-01 0.14 0.010 0.177 0.178 3.8E-01 1.802
1.15E+01 131.26 0.010 0.151 0.152 1.1E+01 12.458
2.25E+01 507.79 0.010 0.130 0.130 2.3E+01 23.113
3.36E+01 1129.74 0.010 0.115 0.115 3.4E+01 33.769
4.47E+01 1997.11 0.010 0.110 0.110 4.5E+01 44.424
5.58E+01 3109.89 0.010 0.115 0.116 5.6E+01 55.079
6.68E+01 4468.09 0.010 0.130 0.131 6.7E+01 65.735
7.79E+01 6071.71 0.010 0.152 0.152 7.8E+01 76.390  

P
age 7.215.18


