
Paper ID #6570

Applying a knowledge-generation epistemological approach to computer sci-
ence and software engineering education

Dr. Stephen T Frezza, Gannon University

Dr. Stephen T. Frezza, C.S.D.P. is a Professor of Software Engineering at Gannon University in Erie,
PA (USA). Dr. Frezza is a Certified Software Development Professional (CSDP), and at Gannon pursues
research in Program Assessment, Software Engineering Pedagogy, and Engineering Philosopy. His teach-
ing interests include Software Process, Requirements, Design, Testing and Quality Assurance. He is the
past chair of the Computer and Information Science Department in delivering accredited undergraduate
Computer Science and Management Information Systems programs, as well as an undergraduate Software
Engineering and graduate Computer and Information Science program.

Dr. Richard W. Moodey, Gannon University

Dr. Moodey received his PhD in sociology from the University of Chicago in 1971. He has taught at
Loyola University of Chicago, Allegheny College, and is currently chair of the department of Criminal
Justice and Social Work at Gannon University.

Dr. David Arthur Nordquest, Gannon University

David A. Nordquest is Assistant Professor of Philosophy at Gannon University.

Mr. Krishnakishore Pilla P.E., Gannon University

c©American Society for Engineering Education, 2013

P
age 23.201.1

Applying a knowledge-generation epistemological approach to computer
science and software engineering pedagogy

TLC Topic Area: Concepts and Philosophy of Engineering Literacy

Abstract This paper proposes a brief exploration of the epistemology of knowledge, specifically
distinguishing the development of scientific knowledge from the development of engineering
knowledge. Based on a pragmatic theory approach (1), the paper proposes a pattern for
distinguishing the ‘science’ of computer science from its ‘engineering’ aspects. The paper then
applies these distinctions to traditional Computer Science knowledge, and explores its
relationship to ‘engineering science’. The implications of this knowledge-generation approach to
discipline exploration are then applied to Software Engineering as an engineering discipline.
This application aims at distinguishing Software Engineering from the scientific and engineering
aspects of Computer Science.

A cursory introduction to the literature of the philosophy of engineering reveals competing
viewpoints on what distinguishes scientific from engineering knowledge, including engineering
(and technology) as applied science (2 p. 42) and the influence of knowledge generation as a
means to distinguish between ‘scientific’ and ‘engineering’ knowledge. When seen through the
lens of a pragmatic theory of knowledge, the crucial characteristics of scientific knowledge
include that scientific knowledge is theory bound, and scientific knowledge is developed to
explain the way the world works. (1 p. 2) Engineering knowledge can be considered a distinct
form of knowledge since scientific and engineering knowledge aim at different ends. In short,
science aims to explain and technology/engineering aims to create artifices. "Technology, though
it may apply science, is not the same as or entirely applied science" (3 p. 4).

Introduction
Technology literacy covers a broad spectrum of topics and constituents, not the least of which
are the users, producers, and those becoming producers of technology. The types of knowledge
produced, as well as the processes by which knowledge assimilated and utilized are different
among these groups of persons. Central to these sociological distinctions and their respective
knowledge generation/use is the relationship of different technological disciplines to one another,
and how the technological disciplines effect knowledge generation.

This paper examines a particular aspect of technology, computing, and its relationship to related
technological disciplines, specifically to ‘science’ and ‘engineering.’ Here science and
engineering are treated broadly, with the recognition that these disciplines each have long P

age 23.201.2

histories and significant nuances among them. The viewpoints of science and engineering are
idealistic and pragmatic respectively (4).

The nature, or goal of science as a whole, is to explain how the world works, as determined
through experiments and their artifacts. Knowledge generation, from the perspective of scientists
is approached via creating a hypothesis first, and testing it second. These scientific findings and
related technologies are often codified, and managed by a body of scientists, and transmitted
through published works and education.

The nature of engineering is for addressing human needs/problems, and generally applies
domain-specific heuristics for building a system, or components intended for system
deployment. The lessons learned and identified technologies are often (though not always)
codified, and may be transmitted informally, or formally to other engineers in the form of best
practices, or where applicable, via a hypothesis that generalizes the best practice and testing of
that hypothesis. In either case, the more formalized engineering findings are often codified, and
managed by a body of engineers, and transmitted through published works and education.

Both science and engineering involve the identification of and development of technology, and
both include significant relationship to and roots in mathematics. The tested formalizations of
theory, identified technology, and best practice can lead to the creation of new branches of
engineering and/or science.

Epistemology and knowledge
Briefly stated epistemology is the study of knowledge as justified belief. Development in
epistemology since the work of David Hume has focused on identifying the justified true belief
about what a single person knows. When applied to disciplines or communities, it also includes
the requirement that to qualify as knowledge a proposition or set of propositions must be
endorsed by an appropriate community. Hence, there is both an individual, and a significant
sociological aspect to knowledge and justified belief. Individuals produce candidate claims for
knowledge, and these candidates become knowledge once they are endorsed by the appropriate
community using agreed upon standards. (1 p. 2) Components of the method of the human mind
(5) (Lonergan, 1992) and of Polanyi's Personal Knowledge are outlined as foundations for
individual understanding, followed by an outline centered on Polanyi, Sorokin and Vanderburg
for the sociological approaches to epistemology.

Individual and Communal Knowing Lonergan argues a “method of the human mind,” consisting
of experiencing, understanding, and judging, underlies all specialized forms of knowing. This
basic heuristic method or structure is tailored in various ways to meet the particular requirements
of specialized contexts such as everyday practical life and the fields of mathematical and
empirical science. (5)

In the "method of the human mind," experiencing provides us with data and depends upon
adherence to a norm of attentiveness. Our striving to make sense of the data (e.g., “What is it?),

P
age 23.201.3

promotes us from experiencing to attempts to understand; to finding the form, pattern, meaning,
or significance of what we have experienced. Inquiry and imagination yield insights, which are
expressed in concepts and definitions to provide a formulation of the understanding we have
attained. Inquiry, insight and formulation embody a norm of intelligence. (Citation?) Because
understandings may be misunderstandings, we cannot stop with them but must go on to ask the
critical question, “is it really so?” The process of answering this question thematizes our desire to
move through critical reflection to judgment. Judging marshals and weighs the evidence to assess
the adequacy of our understanding. The evidence is adequate if it shows that the conditions
necessary for something's being so are all met. If they are met, within the context our knowing
reaches a “virtually unconditioned” state, whose conditions for justified belief are all fulfilled, so
that it no longer is conditional and must be so. The norm embodied in these operations of judging
is that of reasonableness. The overall method is adjusted based on the perceived need for
timeliness, precision, comprehensiveness, universality, and/or completeness. (5)

Thus knowing is both a process, involving both covert and overt human actions, which involve
the application of personal and social criteria. These knowledge-generation actions apply to the
production of scientific and technological things. Polanyi describes covert actions to include
operations such as sensing, perceiving, imagining, understanding, judging, and deciding. The
overt actions include operations such as speaking, writing, drawing, calculating, grasping,
shaping materials, and using tools. (6)

Individual knowing is a precursor to the community endorsement necessary for knowledge and
justified belief to become part of the body of accepted knowledge. Both covert and overt actions
have an internal structure that Polanyi calls a from-to relation. A skillful achievement, whether
practical or theoretical, is the to- term of this relation, and the subordinated particulars constitute
the from term. He suggests a movement metaphor for this relation when, in discussing the from-
to relation in acts of knowing. (6 p. 10) Sociological models of the epistemological process by
which we create scientific and technological products also embody a movement metaphor. As
presented in Table 1, Sorokin breaks the process into three stages, which are used here as an
outline of the individual + communal knowledge development process. (7) For technical
development, Vanderburg proposes a “technological cycle” with five phases. (8) In both models,
the movements are from each earlier stage or phase to the next one.

Table 1. Correspondences between knowledge development stages (7), and phases of
technological development (8)

Sorokin 3 Stage Model

Vanderburg 5 Phase Technological
Cycle

1. Mental Integration 1. Invention
2. Empirical Objectification 2. Innovation and Development

3. Application
3. Socialization 4. Diffusion
 5. Displacement

P
age 23.201.4

This parallels Lonergan’s proposals. According to Morelli and Morelli, Lonergan, similarly,
“identifies the scheme of recurrence which constitutes technological, economic, and political
advance: situation – insight – communication – persuasion – agreement – decision – action –
new situation – insight,” etc.

Mental Integration: In defining “mental integration,” Sorokin states that the “integration of two
or more meanings into one system is an act of creation occurring in the human mind.” (7 p. 63)
This treats it as a covert act “in the human mind.” Vanderburg’s description of “invention”
includes both covert acts, covert states, and overt acts (8 pp. 135-6), although the acts of
exploring and working out details are usually overt actions, including actions such as writing,
calculating, sketching, building physical models, and conversing with others.

Empirical Objectification: Sorokin’s characterization of empirical objectification emphasizes
the need for "empirical vehicles through which [new knowledge propositions] can be conveyed
to others.” (7 p. 64)These can be incarnated through documents, examples, products, or other
means. They key point among these processes is the development and presentation to a wider
(more than individual) audience.

Socialization implies that the “empirical vehicles” are utilized to share knowledge among
individuals, led by agents of socialization. He adds that most of the thousands of texts and
artifacts produced never succeed in socialization, in being accepted and used by anybody but
their authors. (7 pp. 63-4). The key here is that people are the agents of socialization, and
socialization efforts begin early in the process and continue throughout. When the original
inventor or discoverer attempts to explain his idea to another person, he is an agent of
socialization. When members of an original group attempt to persuade controllers of resources
to support their project, market products, etc., they are agents of socialization.

The point of these phases is to recognize that individuals produce candidate claims for
knowledge, and these candidates become knowledge once they are endorsed by the appropriate
community using agreed upon standards. (9) The importance of the different stages is two-fold:
first to recognize the importance of the inner mental state of a single individual, and to
understand the difficulties this presents with respect to the certainty with which one can assert
that someone actually ‘knows’ something. Among philosophers, this has led to “devising
doomed criteria by which we can determine whether an individual uttering a proposition with X,
Y, and Z properties can be said to know something. The criteria are doomed because they ignore
contingency, historical and otherwise.” (1 p. 1)

A pragmatic view of knowledge, on the other hand, shifts the emphasis to the criteria that the
community has devised. But, even here, the criteria must meet some bottom line condition. For
the pragmatist the bottom line is successful action. C. I. Lewis put it this way: "the utility of
knowledge lies in the control it gives us, through appropriate action, over the quality of our
future experience" (10).

P
age 23.201.5

Understanding scientific knowledge
Moving from these more generalized forms of knowledge-generation to study those used in
engineering and science is not straightforward. Common sense knowing is a form of the general
method of the mind (5) where the process is tailored to the requirement for timely action and has
less need for great precision, comprehensiveness, universality, or completeness, especially where
attempting to meet such standards would only delay action unnecessarily. Common sense is
content to find out only what we need to know right now, in this particular context, and to
formulate itself allusively and incompletely in rules of thumb, examples, proverbs, and parables.
Because its concern is our practical living, it relates things to ourselves rather than to each other,
as the mathematical equations of science would do. In this sense, scientific knowing (sciences)
develop from common sense and may be more or less distant from it. This distance is critical,
and plays a difficult role in the development of a ‘new’ science. For example, botany, relying on
descriptions of plants as they appear to us, is much closer to a common sense method than the
current study of plant genetics. Yet, botany is a well-recognized subfield within biology, and
both common sense and theoretical approaches are used in its pedagogy.

Lonergan distinguishes mathematical and empirical scientific heuristic structures. He subdivides
empirical approaches into classical and statistical types. Classical approaches yield an intrinsic
intelligibility and pertain to systematic aspects of reality, marked by schemes of recurrence.
Statistical approaches pertain to non-systematic aspects of reality and yield no intrinsic
intelligibility but, rather, probabilities, ideal frequencies around which actual events tend to
cluster randomly.

The central point is that scientific claims derive their meaning from the theories within which
they are associated, hence, scientific knowledge is theory-bound. The dynamic process in which
scientists continuously revise what they are willing to endorse – and by which they examine their
assumptions and their methods – is at the very heart of the strength of the sciences. Thus, despite
the theory-bound nature of scientific knowledge, the self-critical process of scientific inquiry
insures that the knowledge it claims is the best available at that time insofar as it is judged "best"
according to community standards. The ultimate aim of scientific inquiry is explanation. Thus, in
the context of a pragmatic account, the ultimate success of the use of scientific knowledge is
explanation. (1 pp. 2-3)

Understanding engineering knowledge
Both science and technology may borrow from or rely on each other in various ways – they
constitute two distinct forms of knowledge since they aim at different ends. Science aims to
explain and technology/engineering aims to create artifices. Vincenti puts it this way,
"technology, though it may apply science, is not the same as or entirely applied science" (3 p. 4)

Engineering refers to the practice of organizing the design and construction and operation of any
artifice which transforms the physical or social world around us to meet some recognized need.
Engineering – like science – is an activity with specific objectives. Consequently engineering
knowledge concerns the design, construction, and operation of artifices for the purpose of

P
age 23.201.6

manipulating the human environment. (1 p. 5) One can reasonably narrow the focus of
engineering knowledge to the topic of "design knowledge," by concentrating on design.

"Design" in this context denotes both the content of a set of plans (as in "the design for a new
airplane") and the process by which those plans are produced. In the latter meaning, it typically
involves tentative layout (or layouts) of the arrangement and dimensions of the artifice, checking
of the candidate device by mathematical analysis or experimental test to see if it does the
required job, and modification when (as commonly happens at first) it does not. This is a
process of refinement, subject to a perceived need for timeliness, precision, comprehensiveness,
and/or completeness. As such, this procedure usually requires several iterations before finally
dimensioned plans/specifications/requirements can be released for production, and the effort is
judged by its results – the usefulness of the design and/or product. (3 p. 7), (1)

Comparing the knowledge generation processes involved, engineering and science appear
related, but significantly different, differentiated in both purpose and manner. This follows the
distinctions suggested by Lonergan in his observations on empirical science. One of the
distinctions between mathematical and empirical science/research is the empirical researcher's
return to overlooked or neglected data that “forces the revision of initial viewpoints.”

“The circuit, then, of mathematical development may be named immanent; [as] it moves
from images through insights and conceptions to the production of symbolic images
whence higher insights arise. But the circuit of [empirical] scientific development
includes action upon external things; it moves from observation and experiment to
tabulations and graphs, from these to insights and formulations, from formulations to
forecasts, from forecasts to operations, in which it obtains fresh evidence either for
confirmation or for the revision of existing views." (5 p. 35)

One of the key pragmatic distinctions between this iterative scientific approach and the
engineering approach is its goal: The scientist aims at explanation: universal, reliable,
comprehensive and sufficiently precise formulation of knowledge; the engineer, aims at
timeliness, completeness, with sufficient precision and comprehension.

Pitt provides a similar comparison of scientific and engineering knowledge

“First, the characterization of scientific knowledge as theory-bound and aiming at
explanation appears to be in sharp contrast to the …task-specific knowledge of
engineering that aims at the production of an artifact to serve a predetermined purpose.

“The second important difference between the two forms of knowledge [is]…the manner
in which engineers solve their problems does have a distinctive aspect. The solution to
specific kinds of problems ends up cataloged and recorded in the form of reference works
which can be employed across engineering areas. For example, measuring material stress
has been systematized to a great extent. Depending on the material, how to do it can be
found in an appropriate book. This gives rise to the idea that much engineering is
"cookbook engineering," but what is forgotten in this caricature is that another part of the
necessary knowledge is knowing what book to look for. This a unique form of knowledge
that engineers bring to problem solving. (1 pp. 5-6)

P
age 23.201.7

The viewpoints of science and engineering are pragmatic and idealistic respectively (4). The
nature of science explains how the world works and this can be learned though experiments
(producing artifacts). Knowledge generation, from the perspective of scientists is approached via
creating a hypothesis first, and testing it second. The nature of engineering is for addressing
human needs/problems, and generally applies domain-specific heuristics for building a system.
Both involve the identification of and development of technology.

The awkward case of computer science
Computing as a discipline (11 p. 13) is one of the more epistemologically complex disciplines to
emerge. Computing is applied in nearly all scientific and engineering disciplines, with significant
historical roots in mathematics (not science). The study and development of computing
technology historically began in Mathematics and Electrical Engineering, emerging as Computer
Science. It has been openly argued about the ‘scientific’ nature of Computer Science - is the
discipline a science (12), bad science (13), or not science at all (14).

Computing as… science
The process of identifying a discipline for computer science as a science or natural science has
been a challenge and has engendered significant debate. Dijkstra argued that computer scientists
do theoretical work like mathematicians, and therefore computing cannot be called as natural
science as mathematics. On the flip side, Peter Denning argued that computer science is a natural
science in the sense that it studies naturally occurring information processes. (15) Often the pro-
science argument is that although computer science might not be a natural science, it is still an
empirical or experimental science. Paul Rosenbloom argued that computer science is a new
domain which differs from physical science, life science and social science. (4 pp. 363-364) (16)

Colburn presented the analogy relating the scientific method as used in computer science, noting
that what is being tested in the scientific method is not the experiment, but the hypothesis. The
experiment is a tool for testing the hypothesis. (17) Similarly, what is being tested in problem-
solving in computer science is not the program, but the algorithm. This idea finds its roots in an
earlier analogy by Kahlil and Levy: “programming is to computer science what the laboratory is
to the physical sciences”. (18)

Computing as bad science

In this area researchers argue that computer scientists publish relatively few papers with
experimentally validated results also research reports in computing disciplines rarely include an
explanation of research approach in the abstract, keyword, or research report itself, which makes
it difficult to analyze how computer scientists arrived at their results

Fletcher criticized the strong adherence to experimental procedure and disagreed with Denning’s,
Glass’s and others’ preoccupation with experimentation. He argued that most research in
computing is not of the experimental sort “to find best solution to the previous problem,” rather
that computer scientists work with problems that are poorly understood, and with one major goal

P
age 23.201.8

is to understand the problem and delimit it more precisely. (19) Here, the argument suggests that
computing is pragmatically oriented, and more like engineering, hence ‘bad’ science.

Computing as... not science
The scientific nature of computer science was significantly criticized in the 1990s. McKee
argued that computer scientists are not honest about their work and they are “just acting like
scientists and not actually doing science”. For instance, Brooks (1996) wrote that computer
science is a synthetic, engineering discipline. He also argued about the misnaming of computing
as a science. Firstly, it leads computer scientists to accept a pecking order where theory is
respected to more than practice. Secondly, it leads them to regard the invention [INCOMPLETE
thought]. Thirdly, it leads them to forget the users and their real problems. Fourthly, it directs
young and brilliant minds towards theoretical subjects. Among the arguments against the
scientific aspects of computing were several calls to rename the discipline. (4 pp. 366-367)

There are an abundance of viewpoints about valid activities, methods, and research approaches
in computing fields. While the foundations laid by Lonergan suggest that Computer Science is
most closely related to empirical science, the current gamut of topics, subjects, and approaches in
computing fields does not fit under any single epistemological or methodological system. That
variety is a source of strength and progress (Tedre and Sutinen 2009), but it also exposes the
field to critique from all directions, both external and internal. The heated debates about the soul
of computing have not ceased. Among all the debates about definition or characterization of
computing as a scientific discipline, there has not yet been an argument that would have brought
the discussion to closure. (4)

However, these tensions about the soul of computing as a scientific discipline do not come
without a cost. “Throughout its history, computing as a discipline has been overshadowed by an
identity crisis.” (4 p. 382). The identity crisis for this significant area of technology has led to
ambiguity about the proper topic and proper methods of computer science, as well as how the
term ‘computer science’ should be operationalized. (4 p. 363). The present need for this
operationalization is even more critical, as the operational definition of ‘computer science’
remains central to the definition of Software Engineering as a discipline. (20 p. 82).

Computing Pedagogy: Scientific, Engineering, or Other?
In computer science, problem solving skills and hypothesis testing is different and is more
complicated due to its intangible nature. Thus the traditional “analysis-design-technology”
trichotomy (21) useful for achieving technology literacy applies differently in learning computer
science. The focus of this presentation is how technology literacy (understanding) is
differentiated in science and engineering. Technology awareness in computer science is further
complicated, as computing is different than other technology fields due to its abstract nature.

In science, experiments based on an analysis of the world embody a design calculated to produce
an effect in reality. However, the resulting alteration of reality is not for its own sake but for the

P
age 23.201.9

sake of testing and confirming the analysis. In the case of engineering technology, goal of
developing and deploying technology is the alteration in reality accomplished – changing reality
with the intent of addressing some person’s needs (problem solving). For example, engineering
draws on a foundation in physics and chemistry to solve design problems, but those sciences will
not help directly in developing the needed novel artifacts. Stated more formally, engineering
knowledge is transformational in that laws and theories are used to solve real problems.
Engineering knowledge always aims at success in the product.

Knowledge generation in engineering explains how problems can be solved by performing some
series of actions leading to new functionalities. These functionalities are achieved by practicing,
designing and solving a set of concrete problems such as those answered by Vincentti’s air foil
design. (3) If the functional rules are satisfied, then engineers jump into structural design of the
artifact where the fundamental laws of physics are applied in order to connect the technical
objects with the natural environment.

This process is significantly different in computer science. Like mathematics and logic, it
produces little or no alteration of the world, even for the sake of testing. (We may leave to the
side Sorokin's empirical objectification discussed above). The ‘problem’ that computer science
deals with is internal to the discipline and usually involves the development of an algorithm - a
reusable, mathematical structure that is sufficiently comprehensive and precise. While the
algorithm itself may yet be applied to some real problem, and the process of developing the
algorithm may also be applied to some problem, the science focuses on the development of the
algorithm. Its’ application, while motivational, is neither the initial intent nor a necessary part of
the process by which it is developed.

The patterns and operations distinguished and studied by computer science often have great
heuristic value for solving both scientific and engineering problems. The algorithms become, like
differential equations, part of the tool-kit of the scientist seeking to understand and of the
engineer intending to analyze, design and transform reality. However, computer science is closer
to science than to engineering because its aim is a comprehensive understanding of certain
logical relations rather than a transformation of reality. Indeed, it is even farther from
engineering than the physical sciences are, because its concern is less with the concrete world
than with a world of symbolic structures and constructs. In this regard, it is closer to mathematics
and symbolic logic. On the other hand, computer science is, and in practice computer science
education (CSE) is often more closely linked to technology, to computers, than either logic or
mathematics or other empirical sciences are. The aim of the science, and of learning the
technology is about algorithms and the symbolic structures and constructs that manifest them.

In contrast, in software engineering, the aim is entirely different. There we seek the application
of the algorithm in a sufficiently timely, sufficiently complete (satisficing) manner to produce an
artifact and a desired change in reality. Given this fundamental difference in goals, ‘computer
science’, at least as taught, will look more like science than engineering, and only in its more

P
age 23.201.10

pragmatic areas will its methods be more engineering-like. This distinction suggests that
computer science, and especially CSE is more like mathematics and science - a foundation for
engineering, rather than branch of engineering.

Devon and Ollis have proposed seven dimensions to the effective learning of technology. Among
these dimensions, three are particularly useful for distinguishing knowledge generation in
engineering from that in science: “for whom it works”, “its deployment: market value and other
measure of value”, “the tradeoffs: strongest and weakest features (what the critiques say)” (21).
Because such concerns are not typical of CSE, they help us to differentiate computer science
from computer engineering (11). Computer science is more a pure than an applied science and so
works for itself more than for external purposes or clients. Computer engineering, however,
serves other masters: it determines how to meet needs and purposes that are external to it and set
by others. Similarly, the deployment of computer science occurs in journal articles, books,
conferences and classes, in which it is the focus. Computer engineering, on the other hand, is
deployed in response to external needs and its value is generally considered instrumental, derived
from the value of its products. Even in its teaching, real world problems are constantly posed
and solved. In regard to trade-offs, typically such problems arise in engineering in addressing
real world concerns involving time and economy in the use of materials. These are, of course,
external factors, whereas, in computer science, while trade-offs of simplicity and precision may
be possible, they are internal to the process of doing computer science.

The pragmatic theory of knowledge provides a means by which, particularly in a learning
environment, the critical terms of ‘science’, and ‘engineering’ can be reliably distinguished. This
paper has outlined some of these distinctions, and applied them briefly to the challenges of

Bibliography
1. What Engineers Know. Pitt, Joseph C. 3, Fall 2007, Techné: Research in Philosophy and
Technology, Vol. 5.

2. Durbin, Paul T. Multiple Facets of Philosophy and Engineering. [ed.] Ibo and Goldberg,
David E. Ibo van de Poel. Philosophy and Engineering, An Emerging Agenda. s.l. : Springer,
2010, 4, pp. 41-47.

3. Vincente, Walter. What Engineers Know and How They Know It. Baltimore : Johns Hopkins
University Press, 1990.

4. Survey of Viewpoints. Tedre, Matti. 21, s.l. : Springer, 2011, Minds and Mission, pp. 361-
387.

5. Lonergan, Bernard. Insight: A Study of Human Understanding. Collected Works. [ed.]
Robert M. Doran, S.J. and Frederick E. Crowe, S.J. 5th. Toronto : University of Toronto Press,
1992. p. 810. Vol. 3.

P
age 23.201.11

6. Polanyi, M. Personal Knowledge: Toward a Post-Critical Philosophy. Chicago : University
of Chicago Press, 1958.

7. Sorokin, P. Social and Cultural Dynamics. New York : American Book Company, 1941. Vol.
IV.

8. Vanderburg, W. Living in the Labyrinth of Technology. Toronto : University of Toronto
Press, 2005.

9. Pitt, Joseph C. Thinking about Techonlogy: Foundations of the Philosophy of Technology.
s.l. : Seven Bridges Pr Llc, 1999.

10. Lewis, C. I. Analysis of knowledge and valuation. La Salle : Open Court, 1946.

11. Force, Interim Review Task. Computer Science Curriculum 2008, An Interim Revision of
CS 2001. s.l. : Association for Computing Machinery and IEEE Computer Society, 2008.

12. Computer Scvience Revisited. Cerf, Vinton G. 12, December 2012, Communications of the
ACM, Vol. 55, p. 7.

13. Research in Information Systems: An empirical study of diversity in the discipline and its
journals. Vessey, I., Ramesh, G., and Glass, R. L. 2, 2002, Journal of Management Information
Systems, Vol. 19, pp. 129-174. As quoted in "Computing as Science, a survey of Competing
Viewpoints".

14. The computer scientist as toolsmith II. Brooks, F. P. Jr. 3, March 1996, Communications of
the ACM, Vol. 39, pp. 61-68.

15. Computing is a Natural Science. Denning, Peter. 7, July 2007, Communications of the
ACM, Vol. 50, pp. 13-18.

16. A New Framework for Computer Science and Engineering. Rosenbloom, Paul. 2004, IEEE
Computer, pp. 31-36.

17. Colburn, T. R. Philosophy and Computer Science. Armonk, NY : M. E. Sharpe, 2000.

18. Kahlil, H. Levy and L. S. The Academic Image of Computer Science. ACM SIGCSE
Bulliten. 1978, Vol. 10, 2, pp. 31-33.

19. Fletcher, P. The role of experiments in computer science. Journal of Systems and Software.
1995, Vol. 30, 1-2, pp. 161-163.

20. Computer Science: Is It Really the Scientific Foundation for Software Engineering? Frezza,
Stephen T. 2010, IEEE Computer Society , pp. 82-85. P

age 23.201.12

21. Technology Literacy for the Technologically Literate. Devon, Richard and Ollis, David.
2007. Proceedings of the ASEE.

22. Computer Science:Is it Really the Scientific Foundation for Software Engineering? Frezza,
Stephen. s.l. : IEEE Computer Society, August 2010, Computer, pp. 82-85.

23. Know Your Discipline: Teaching the Philosophy of Computer Science. Tedre, Matti. 2007,
Journal of Information Technology Education, Vol. 6, pp. 105-122.

24. Survey of Viewpoints. Tedre, Matti. 21, s.l. : Springer, 2011, Minds and Mission, pp. 361-
387.

P
age 23.201.13

