
Paper ID #39726

Automated Analytic Dataset Generation and Assessment for Engineering
Analytics Education

Dr. Bruce Wilcox, University of Southern California

Dr. Wilcox is a senior analytics consultant with over 30 years years experience with top-tier consulting
firms providing management and information systems consulting services to large corporate and govern-
ment clients. From 2013 until 2021, he was employed full-time by the SAS Institute, a premier provider
of advanced analytics software and consulting services, responsible for consulting with major SAS gov-
ernment clients in California on the use of advanced analytics tools and solutions.

With BS and MS degrees in Electrical Engineering from Carnegie-Mellon University and an MBA from
UCLA, Bruce earned his PhD in Engineering and Applied Mathematics from Claremont Graduate Uni-
versity in 2018 with thesis work in time series clustering for fixed income portfolio diversification using
model-based clustering and state space analysis techniques. Since January 2020 until taking a full-time
faculty position in the 2021 fall semester, Bruce was a part-time lecturer at USC Vitterbi College of En-
gineering in the MS Analytics program. Prior to that, he taught for twelve semesters as a lecturer at Cal-
ifornia State University, Long Beach and as a visiting international professor at the National Economics
University, Hanoi, Vietnam, teaching two short courses in quantitative analysis to advanced finance stu-
dents.

Yufan Fei
Jihao LI, University of Southern California
Junqiang Wang
Junmeng Xu, University of Southern California

©American Society for Engineering Education, 2023

Automated Analytic Dataset Generation and Assessment for

Engineering Analytics Education

Bruce Wilcox, Yufan Fei, Jihao Li, Junqiang Wang, Junmeng Xu

University of Southern California, Los Angeles, CA 90089, USA

Abstract

In recent years, there has been significant growth in analytics programs at the undergraduate and

masters’ levels in Industrial and Systems Engineering (ISE) departments at universities across the

country. When teaching analytics techniques, especially predictive analytics, instructors are always

looking for datasets that contain statistical characteristics that we want to discuss including multi-

collinearity, interaction effects between variables, skewed distributions, and nonlinear relationships

between predictor and response variables. Instructors generally must either search for existing datasets

that have these attributes or create them “manually” using programmatic techniques. An academic

toolset to permit instructors to specify the statistical properties desired in an analytic, to generate

multiple, randomized versions of this dataset (using a newly developed Python library), to provide

automation for creating individualized datasets for each student (to avoid inappropriate collaboration on

assignments and take-home exams among students), and to provide for automated grading support for

assignments and examinations.

This work is supported by a gift from the USC-Meta Center for Research and Education in AI and

Learning.

Keywords

Analytics, Dataset Generation, Automated Grading

Introduction and Background

The teaching of predictive analytics techniques involves instruction on different statistical

patterns that frequently occur in real-world datasets and algorithmic techniques to model these

patterns as accurately as possible. This work addresses three interrelated needs of instructors

when preparing lecture examples and assessment exercises:

• Generating datasets that contain desired statistical patterns and relationships as specified

in a high-level series of commands.

• Randomizing the datasets so that each student can receive unique datasets for assessment

purposes.

• Integrating with a commercial grading platform to manage the distribution, collection,

and automatic grading of individualized assessments.

For purposes of this discussion, we use the matrix notation of James, et. al. to describe our

datasets [1] with 𝑛 observations and 𝑝 predictor variables:

• An 𝑛 × 𝑝 “predictor matrix” 𝑿 where each column is an 𝑛 × 1 individual predictor

vector 𝑿𝟏, 𝑿𝟐, …, 𝑿𝒑, where 𝑿𝒊 = [𝑥1𝑖 , 𝑥2𝑖, … , 𝑥𝑛𝑖]
𝑇 with 𝑥𝑖𝑗 representing the value of

the 𝑗𝑡ℎ predictor variable for the 𝑖𝑡ℎ observation.

• An 𝑛 × 1 “response vector” 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑛] 𝑇 with 𝑦𝑖 representing the value of the 𝑖𝑡ℎ

observation of the response variable

• A basic model structure of 𝑌 = 𝑓(𝑋) + 𝜀 where 𝑌 is an 𝑛 × 1 “response vector”, and 𝑓

is a fixed but unknown function.

For an initial capability, we have identified the following statistical patterns in the predictor

variables that we wish to be able to generate:

• Multivariate normal predictors with specified mean vector and covariance matrix.

• Skewed predictor variables specified as normal random variables with mean, variance,

and skewness parameters

• Uniform random predictors with specified maximum and minimum values

• Discrete random variables with specified fixed probabilities for each discrete value

We have also identified the following relationships between the predictor matrix and the

response vector for automatic generation (all with one-hot-encoding of discrete predictors):

• Linear regression model (with one-hot-encoding of discrete predictors)

• Polynomial regression model

• Linear model with interactive (multiplicative) predictors

• Nonlinear (exponential) relationships between predictors and response

Related Work

A review of this field indicates that there is recent work in “synthetic dataset generation” which

focuses on creating new datasets that mimic the distributions of existing real-world datasets to

produce larger quantities of training data for machine learning and to anonymize sensitive data

but that also includes the generation of datasets from theoretical distributions. An overview of

this topic is presented in the books Practical Synthetic Data Generation [2] and Synthetic Data

for Deep Learning [3]

There are libraries in the Python scikit-learn package [4] for generating classification and

regression synthetic datasets (sklearn.dataset.make_regression and

sklearn.dataset.make_classification), but they do not allow the specification of an underlying

deterministic function. It has been suggested that combining these functions with the capabilities

of another Python package for symbolic mathematics (SymPy) could form the basis for the

functionality desired for this project.

Significant academic research on the topic of synthetic data generation was done by the

Synthetic Data Vault project within the MIT Data to AI Lab (https://dai.lids.mit.edu/) which was

recently transferred to a private company, datacebo (https://datacebo.com/). Their core product

is described in the paper The Synthetic Data Vault. [4]

Dataset Specification System

We have developed an initial capability in the form of a Python library named analyticsdf built

“on top” of the Pandas package. Full documentation is located in the github repository

https://faye-yufan.github.io/analytics-dataset/ and is summarized below.

The analyticsdf class implements a single object called AnalyticsDataframe which consists of

two data structures, predictor_matrix, a Pandas dataframe that represents the predictors (𝑿) and

response_vector, a Pandas series that represents the response variable (𝒀).

The class is instantiated with the method AnalyticsDataframe that is called with two mandatory

parameters representing the number of observations (𝒏), the number of predictor variables (𝒑),

and optional parameters predictor_names and response_vector_names, and seed which permits

the optional specification of a seed to be used for all randomized methods using this object. The

seed variable can be used to control the generation of individualized analytic datasets for

distribution to students.

This method returns an AnalyticsDataframe class object which can be queried with the two

attributes predictor_matrix and response_vector implemented as a Pandas dataframe and series

respectively. Both of these Pandas structures are originally populated with NaN values.

The methods that have been implemented to date for the purpose of defining the statistical

patterns in the predictor matrix are summarized below:

• update_predictor_normal: generates a continuous predictor matrix using a multivariate

normal distribution based on a specified mean vector and covariance matrix. This

predictor matrix can be used to populate any combination of variables in the

predictor_matrix object.

• update_predictor_uniform: generates a continuous predictor vector using a uniform

distribution based on a specified min and max that can be used to populate any specified

variable in the predictor_matrix object.

• update_predictor_beta: generates a continuous predictor vector using a beta distribution

based on a specified alpha and beta that can be used to populate any specified variable in

the predictor_matrix object.

https://dai.lids.mit.edu/
https://datacebo.com/

• update_predictor_categorical: generates a categorical predictor vector based on

specified category frequencies that can be used to populate any specified variable in the

predictor_matrix object.

The methods that have been implemented to date for the purpose of specifying the relationship

between the predictor matrix and the response variable are summarized below:

• generate_response_vector_linear: the basic method that allows generation of a response

vector based on a linear regression generative model with specifications for the model

coefficients and the variance of the error term.

• generate_response_vector_polynomial: a more advanced method that allows for

specification of polynomial models with interaction effects between predictors and

nonlinear relationships between the predictors and the response.

The following two examples illustrate the use of these methods to create analytic datasets:

Example 1:

• Predictor matrix has 1000 observations and six attributes (X1, X2, X3, X4, X5, X6)

• All except X6 are uniformly distributed with a min of 0 and a max of 100

• X6 is a categorical variable with values of Red (30%), Yellow (40%), or Blue (30%)

• The response variable has the relationship:

𝒀 = 𝟏𝟓𝑿𝟏 − 𝟑𝟎𝑿𝟐 + 𝟐𝑿𝟐𝟐 + 𝟓𝑿𝟒 − 𝟐𝟎𝟎𝟎𝑰(𝑿𝟔 = 𝑹𝒆𝒅) +
𝟏𝟎𝟎𝟎 𝑰(𝑿𝟔 = 𝑩𝒍𝒖𝒆) + 𝜺, 𝜺~𝑵(𝟎, 𝟐𝟎𝟎𝟎)

The dataset specification code to generate this dataset is provided in the figure below:

Figure 1: AnalyticsDataframe Code to Generate Example 1 Dataset

A dataset visualization routine has been developed to provide the educator with visual feedback

regarding the dataset that has been specified. Sample outputs for example 1 are shown below:

Figure 2: Univariate and Bivariate Visualizations of Example 1 Dataset

Example 2:

• Predictor matrix has 1000 observations and six attributes (X1, X2, X3, X4, X5, X6)

• X1 through X3 are correlated normal random variables with a mean vector of [100, 80,

120] and a covariance matrix of [
𝟏𝟎 𝟗 𝟒
𝟗 𝟏𝟎 𝟔
𝟒 𝟔 𝟐𝟎

]

• X5 is uniformly distributed with a min of 0 and a max of 100

• X6 is a categorical variable with values of Red (30%), Yellow (40%), or Blue (30%)

• X4 is dependent on X1 and X3 according to the formula (creating a multicollinearity)

𝑿𝟒 = 𝑿𝟏 + 𝟏. 𝟓𝑿𝟐 + 𝜺, 𝜺~𝑵(𝟎, 𝟐𝟎)

• The response variable has the relationship:

𝒀 = 𝐞𝐱𝐩 (𝟎. 𝟎𝟎𝟏 ∗ (𝟏𝟎𝟎 + 𝜷𝑿𝟏 + 𝟏. 𝟓𝑿𝟑 + 𝜺, 𝜺~𝑵(𝟎, 𝟐𝟎)

Where 𝜷 = 𝟓 𝒊𝒇 𝑿𝟔 = 𝑹𝒆𝒅 𝒂𝒏𝒅 𝜷 = 𝟏 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

The dataset specification code to generate this dataset is provided in the figure below:

Figure 3: AnalyticsDataframe Code to Generate Example 1 Dataset

Auto-grading for Individualized Datasets

Practical implementation of individualized datasets for homework and exams requires integration

into an auto-grading framework. After review of candidate frameworks, we have selected the

Gradescope system from the company Turnitin. [5] Gradescope provides a highly configurable

and flexible platform for auto-grading programming assignments that is integrated into its

popular grading system (www.gradescope.com).

http://www.gradescope.com/

Before describing the architecture for integrating our automated dataset generation capability

into the Gradescope platform, we first present at a very high level the architecture of the

Gradescope platform when used to auto-grade Python programming assignments in Figure 1 and

described below:

• The teaching staff creates the assessment with three components: the assignment in the

form of a Jupyter Notebook template that includes instructions for the student on the

naming of the gradable result objects (can be a simple numeric variable or a complex

object such as an Sklearn predictive model object), a dataset to use for the assignment,

and an “assignment autograder”.

• The assignment autograder is a zip file that includes three files: a file that specifies the

Python libraries that must be loaded (assignment.txt), a data folder containing all required

datasets, and a Jupyter notebook file that contains the Python code that implements the

autograding algorithms (assignment.ipynb).

• The student completes the assignment and submits the solutions as a completed version

of the Jupyter notebook in accordance with the assignment template.

• When ready to grade, the autograder is executed by the Gradescope platform and

evaluates each submission in accordance with the logic programmed by the teaching

staff. The grading results are passed to the Gradescope grading database via a JSON file

named results.json and in the format specified at https://gradescope-

autograders.readthedocs.io/en/latest/specs/#output-format.

https://gradescope-autograders.readthedocs.io/en/latest/specs/#output-format
https://gradescope-autograders.readthedocs.io/en/latest/specs/#output-format

Figure 4: Gradescope Auto-grading Architecture (Python)

The architecture of the integration of our automated dataset generation objects into the

Gradescope auto-grading platform is depicted in Figure 2 and described below:

• As with basic Gradescope functionality, the teaching staff creates the assessment with

three components, but instead of a dataset the assessment package consists of a dataset

specification that is coded using the Analyticsdf dataset specification system.

• The analytic dataset specification is encrypted and inserted into the assignment template

along with code the prompts the student to enter their student ID number which then

generates the dataset for use on the problem by making the appropriate calls to the

Analyticsdf dataset specification system.

• The autograder then queries the Gradescope submission metadata to retrieve the student

ID for the submission being graded by importing and reading the JSON file (see

https://gradescope-autograders.readthedocs.io/en/latest/submission_metadata/ for

documentation of the JSON format).

• The autograder re-generates the dataset that was used by each specific student and

completes the built-in Gradescope auto-grading process described above.

Figure 5: Auto-Grading Architecture with Individualized Datasets

Next Steps

The primary near-term objective of the team is to complete the functionality to provide

autograding of individualized datasets and test it with a beta test team consisting of student

volunteers. Assuming successful completion of that testing, we plan to implement it “live” with

a predictive analytics class in the fall semester of 2023 and then make it broadly available for use

by other instructors.

https://gradescope-autograders.readthedocs.io/en/latest/submission_metadata/

A major planned enhancement to the generation of individualized datasets involves expanding

the randomization beyond the residuals term to the randomization of the generative model

coefficients.

Also planned is expanded dataset functionality to include categorical response vectors,

generalized linear models (primarily Poisson regression), and the incorporation of additional

correlated predictor matrices (beyond the current multivariate normal) utilizing copula functions.

Finally, we would like to make the use of this functionality more accessible to other instructors.

The current Gradescope autograding architecture allows complete flexibility in structuring

autograding rubrics, but with that flexibility comes a fair amount of complexity that may be

daunting for many potential users. We have ideas for GUI-based dataset specification and

autograding rubric setup that we hope to explore in the coming months.

References

[1] G. James, D. Witten, T. Hastie, and R. Tibshirani, “An Introduction to Statistical Learning with

Applications in R Second Edition,” 2021.

[2] Khaled El Emam, Richard Hoptroff, and Lucy Mosquera, Practical Synthetic Data Generation.

O’Reilly Media, Inc, 2020.

[3] N. Gürsakal, S. Çelik, and E. Birişçi, Synthetic Data for Deep Learning. Berkeley, CA: Apress L. P,

2022.

[4] N. Patki, R. Wedge, and K. Veeramachaneni, “The Synthetic Data Vault,” in 2016 IEEE

International Conference on Data Science and Advanced Analytics (DSAA), 2016, pp. 399–410.

doi: 10.1109/DSAA.2016.49.

[5] A. Singh, S. Karayev, K. Gutowski, and P. Abbeel, “Gradescope: A fast, flexible, and fair system for

scalable assessment of handwritten work,” in L@S 2017 - Proceedings of the 4th (2017) ACM

Conference on Learning at Scale, 2017. doi: 10.1145/3051457.3051466.

