
AC 2012-4934: AUTOMATIC HANDWRITTEN STATICS SOLUTION CLAS-
SIFICATION AND ITS APPLICATIONS IN PREDICTING STUDENT PER-
FORMANCE

Mr. Han-lung Lin, University of California, Riverside

Han-lung Lin has received his master’s degree at the University of Electro-communications in Japan. He
is currently a Ph.D. student in computer science at University of California, Riverside.

Dr. Thomas Stahovich, University of California, Riverside

Thomas Stahovich received a B.S. in mechanical engineering from the University of California, Berke-
ley in 1988. He received a S.M. and Ph.D. in mechanical engineering from the Massachusetts Institute
of Technology in 1990 and 1995, respectively. He is currently Chair and professor in the mechanical
engineering Department at the University of California, Riverside.

James Herold, University of California, Riverside

James Herold earned his B.S. in computer science at California Polytechnic State University, Pomona in
2004. He is currently a Ph.D. student in computer science at the University of California, Riverside.

c©American Society for Engineering Education, 2012

P
age 25.243.1



Automatic Handwritten Statics Solution Classification and its Applications in 
Predicting Student Performance 

 

1. Abstract 

In previous research, we found that the spatial and temporal organization of students’ solutions 
to engineering Statics problems correlates with the correctness of their work. Our technique 
utilized LivescribeTM Smartpens to capture digital records of students’ handwritten solutions.  
Analysis of the temporal and spatial organization of a solution can, for example, enable an 
instructor to inexpensively identify students who may be struggling in the course and need extra 
assistance. This requires, however, that the pen strokes be labeled according to the type of 
content they represent: free body diagrams, equations, or cross-outs of incorrect work (the ink of 
the Smartpens cannot be erased). For our initial analyses, we manually labeled the pen strokes, 
but it is too time consuming to do this for the entire data set. This led to our current work on a 
technique for automatically determining the content type of the pen stoke in a solution. Our 
approach correctly classified 93.30% of pen strokes in one experiment. We have used these 
labeled sketches to detect potentially poor-performing students by comparing the equation 
drawing time and total length of strokes for each student to the mean from all students.  

2. Introduction 

In previous research, we found that the spatial and temporal organization of students’ solutions 
to engineering Statics problems correlates with the correctness of their work. Our technique 
utilized LivescribeTM Smartpens to capture handwritten student solutions as pen strokes with 
time-stamped coordinates.  Analysis of the temporal and spatial organization of a solution can, 
for example, enable an instructor to inexpensively identify students who may be struggling in the 
course and need extra assistance. This requires, however, that the pen strokes be labeled 
according to the type of content they represent: free body diagrams, equations, or cross-outs of 
incorrect work (the ink of the Smartpens cannot be erased). For our initial analyses, we manually 
labeled the pen strokes, but it is too time consuming to do this for the entire data set.   

In this paper, we present a four-stage classification algorithm for automatically labeling pen 
strokes.  First, we identify common symbols and letters using a shape recognizer. Second, we 
classify pen strokes using a machine learning technique. Third, we group pen strokes into larger 
stroke groups based on the distance and elapsed time between the strokes. Then, in the last stage 
of our classification algorithm, we correct intra-grouping classification errors. 
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Figure 1: A typical handwritten statics solution comprising equations (green strokes), free body 
diagrams (cyan strokes), and cross-outs (black strokes). 

A number of techniques have been developed to classify strokes. Peterson et al.3, Patel et al. 4, 
and Bhat et al. 5 each use a feature-based technique to classify pen strokes. They all characterize 
each pen stroke using several features. Patel et al. used a set of features describing the temporal 
and spatial organization of the work while Bhat used the zero-order entropy as a feature to 
identify shape and text strokes. Bishop et al.6 trained and evaluated a classification algorithm 
using a Hidden Markov Model. Wang et al.7 extend Bishop's approach by integrating a neural 
network. Gennari et al. 8 segmented pen strokes and then used properties of the pen stroke 
segments to interpret hand-drawn diagrams. Such approaches have typically been tested and 
developed using neatly-written pen strokes data, and can be less robust when applied to real 
world data. In our research, we extend the technique presented by Peterson et al.3 by adding 13 
new domain-dependent features to characterize statics solutions.  
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We have evaluated our technique on 810 manually labeled problem solutions containing nearly 
300,000 strokes drawn by 90 students. Our approach correctly classified 93.30% of the pen 
strokes. As we show, this accuracy is sufficient for automatically predicting student performance.  

The labeled sketches were used to detect potentially poor-performing students. To account for 
inherent differences between problems, we averaged equation drawing time across all students. 
Each student’s equation drawing time was then compared to this mean, enabling automatic 
identification of students who performed poorly. Low effort on equations is an indicator of poor 
performance.  Additionally, we identified strokes which were crossed-out and repeated our 
analysis excluding those strokes. Since students solved their problems with a pen, they were 
unable to erase strokes and were instructed to cross out undesired work with horizontal strokes. 
Removing the crossed-out work from our analysis allowed for more accurate identification of 
poor student performance. Using this method, we are able to efficiently and automatically 
identify students who might perform poorly on the final exam. These results demonstrate the 
feasibility of future systems which can provide rapid feedback and targeted support to poorly 
performing students and which can inform instructors of the need to adapt their teaching 
strategies to match students' deficiencies. 

The next section presents a detailed description of our classification algorithm. Section 4 
introduces the dataset used to train and test our approach. Results are presented in Section 5 and 
future work and conclusions in Section 6. 

3. Approach 

Our classification algorithm comprises four stages: (1) recognizing letters, mathematical symbols, 
arrows, and boxes (2) classifying single strokes into one of three semantic classes, (3) grouping 
classified strokes (4) and correcting errors within each group.  

3.1 Character Recognition 

We have found that features computed using automatic character recognition are the most 
important features for semantically classifying strokes. We have used an image-based 
recognizer2 and several domain-specific, single-character recognizers. The image-based 
recognizer was chosen because of its ability to recognize multi-stroke characters and its tolerance 
for over-stroking, which is common in handwritten solutions. We also developed four special-
purpose single-character recognizers which identify "plus signs", "equal signs", "answer boxes" 
and "arrows". 

3.2 Single-Stroke Classification 

This stage of our algorithm maps each of the recognized characters from the previous step to one 
of three semantic classes: free body diagram, equation, and cross-out. We deployed the feature-
based classification algorithm presented by Peterson et al.3 and extended it by adding a number 
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of features which leverage domain-specific heuristics. These features both greatly boost 
recognition accuracy and provide novel and valuable insight into students' solution processes. 
These features characterize various aspects of students' handwritten solution style, such as 
typical stroke size, location on the page, presence of mathematical symbols, and total ink used. 

The homework solutions presented here typically contain few cross-outs. Machine learning 
approaches such as the one presented by Peterson et al.3 have difficulty accurately classifying 
such rarely occurring cases. For that reason, we have trained an Adaboosted C4.5 decision tree 
using 13 features to identify whether a stroke is a cross-out or not. The 13 features characterize 
the underlying ink density and straightness of each stroke. Cross-out strokes typically have high 
underlying ink density and students frequently cross-out strokes with a single straight line. 
Strokes are first processed by the cross-out recognizer. Strokes not positively identified as a 
cross-out are then classified using our extension of Peterson et al.’s method. 

3.3 Stroke Grouping 

We have found that there are two types of errors that can be made in classifying strokes: actual 
errors and contextual errors. Actual errors are straightforward, incorrect classifications, such as 
part of a beam in a free body diagram that was mislabeled as an equation stroke. Contextual 
errors are more subtle and depend on the situation in which a stroke appears. Consider the letter 
“F”, which appears frequently in both free body diagrams and equations, depending on whether 
the letter is used as a force label or as a variable in an equation. In both cases, the geometry of 
the letter will be the same; it is the context that determines the semantic class of the stroke.  

In the third phase of our technique, classified strokes that are both temporally and spatially close 
are grouped together. These groupings provide context for each stroke which is used later to 
correct errors.  

Our stroke grouping algorithm comprises three steps. In the first step, stroke pairs that both occur 
within three seconds of each other and are within a specified Euclidean distance are grouped 
together. We have used a Euclidean distance that is twice the average width of all characters in a 
sketch. In the second step, stroke pairs whose bounding boxes overlap horizontally with each 
other are grouped together. Lastly, groups containing too few strokes are merged with the 
spatially nearest group. 

 

3.4 Error Correction 

Intuition tells us that strokes which are spatially and temporally close to one another typically 
correspond to the same semantic class. Students typically solve an equation one step after the 
next and draw free body diagrams within one region of a page. It follows then, that the strokes 
within each group resulting from the previous step likely belong to the same semantic class. For 
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that reason, classification errors within each stroke grouping are corrected using a majority vote 
and two simple heuristics. If the percentage of arrow strokes within a group is above a threshold, 
all strokes within the group are classified as free body diagram strokes as free body diagrams 
typically contain a large number of arrows. If the percentage of mathematical symbol strokes 
within a group is above a threshold, all strokes within the group are classified as equation strokes, 
as equations typically contain more mathematical symbols than free body diagrams. Lastly, if 
neither of the previous two thresholds is satisfied, all strokes are classified as the majority class 
occurring within that group. 

4. Data set 

In the winter quarter of 2010, we conducted a study in which 132 students enrolled in an 
undergraduate mechanical engineering course on statics were given LiveScribe™ digital pens 
which they used to complete their homework, quizzes, and exams. These pens serve the purpose 
of a traditional ink pen, but additionally digitize the ink. This provides a digital record of the 
students’ coursework in the form time stamped (x,y) coordinates of every pen stroke. In total, 
6,562 sketches were collected from 12 exam, 30 homework, and 7 quiz problems. We manually 
labeled 5 exam and 8 homework problems resulting in a total of 293 exam and 810 homework 
sketches. Our image-based recognizer was trained on a separate set of 374 symbols comprising 
digits, letters, and several mathematical symbols.  

5. Results 

In the Section 5.1, we present the accuracy of our stroke classification algorithm. Next, in 
Section 5.2 we present results demonstrating how the automatically classified strokes may be 
used to accurately predict student performance.  

5.1 Stroke Classification Accuracy 

We trained our stroke classifier using sketches from the midterm and tested its accuracy on 
homework data. We compare the performance of our labeling technique to that of Peterson et al.3. 
Our method achieved an overall recognition accuracy of 93.30% while Peterson's method has an 
accuracy of 78.56%. Table 2 shows the per-class accuracy of both Peterson’s method and ours. 
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   FBD  Equation Cross out  Overall  

Frequency of each type 29.23%  69.75%  1.02%  100.00% 

Peterson's method 45.55%  92.71% 57.34% 78.56% 

Our method  92.64% 94.50% 64.26%  93.30%  

Table 2: Per-class stroke classification accuracy for Peterson’s and our technique. 

5.2 Student Performance Prediction Accuracy 

In this section, we use the automatically classified pen strokes from homework assignments to 
predict a student’s final exam performance. Our intuition is that students who spend less than 
some threshold of time or effort working on their homework assignments are likely to perform 
poorly on the final exam.  

We begin by considering thresholds based on the total amount of ink drawn in an assignment, 
which is measured by summing the path length of every pen stroke within the assignment. This 
value is then normalized by the largest amount of ink found in any single assignment. We then 
group students into bins according to the normalized ink total. The first bin represents students 
whose normalized ink length is less than 10%, the second represents student between 10% and 
20%, and so forth. Figure 2 shows the average final exam grade for each bin. We repeated this 
analysis disregarding strokes that had been crossed out. Figure 3 shows those results. This figure 
demonstrates that the students who wrote the least on homework do indeed perform worst. 

This first analysis considers only the total amount of ink drawn and does not consider the 
semantic content of the ink. In our second analysis, we examine the fraction of ink used for 
equations. We normalize the ink fraction using the mean and standard deviation computed across 
all students, producing a t-statistic. We plot the average final exam grade of students as a 
function of the normalized ink length in Figure 4. Figure 5 presents a similar analysis that 
considers equation time rather than the amount of ink. Figures 4 and 5 show that a student with a 
normalized equation ink length or equation time greater than 0.9 (i.e., 0.9 standard deviations 
greater than the mean) is likely to perform poorly on the final exam. 

These findings illustrate an early application of our automatic stroke labeling technique. Without 
considering the meaning of a student’s writing, we are able to automatically identify students 
who may need additional support. This provides strong evidence that students' writing style is a 
reliable indicator of their performance and additionally, demonstrates the value of automatic 
analysis of students' digital coursework.  P
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Figure 2:  Average grade as a function of the normalized total ink length.  

  

Figure 3:  Average grade as a function of the normalized total ink length. 
 Cross-out pen stokes are disregarded.  
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Figure 4:  Average grade as a function of normalized equation ink length (t-statistic).  
Cross-out pen strokes are disregarded. 

. 

Figure 5:  Average grade as a function of normalized drawing time (t-statistic). 
 Cross-out pen strokes are disregarded. 
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6. Conclusions and Future work 

In this paper, we have presented an automatic stroke labeling technique and demonstrated an 
early application. Our technique builds upon prior stroke grouping work by introducing domain-
specific heuristics and machine learning techniques. Our technique comprises four steps: 
recognizing arrows, boxes, and mathematical symbols; classifying single strokes into one of 
three semantic classes; grouping classified strokes; and lastly, correcting contextual errors within 
groups. The end result is a semantic class label for every stroke in a handwritten solution. 

Our technique is a key enabling technology for large-scale, real-time educational informatics 
software. As a preliminary demonstration, we have shown in this paper that our technique 
enables automatic identification of students who might be struggling with their coursework. To 
do this, we used our classification technique to semantically label a large dataset of students’ 
homework. From those labels, features were computed which characterized the amount of time 
and effort students spent on their homework and on equations relative to the other students in the 
class. Using these features, we were able to predict whether or not a student would perform 
poorly on the final exam. 

These results have important implications for future educational systems. With our automatic 
classification technique, software can monitor the amount of effort students spend on various 
solution activities. Using this data, the system can determine which students may be at risk of 
performing badly on the final exam, for example. This will in turn enable software to send 
targeted instructional materials to struggling students. Additionally, this may help an instructor to 
adapt lecture materials based on the classes’ needs. 
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