
AC 2009-2349: BALANCING VIRTUAL AND PHYSICAL PROTOTYPING
ACROSS A MULTICOURSE VLSI/EMBEDDED-SYSTEMS/SOC DESIGN
CURRICULUM

Mark McDermott, University of Texas, Austin

Jacob Abraham, University of Texas, Austin

Mihir Ravel, Franklin W. Olin College of Engineering

© American Society for Engineering Education, 2009

P
age 14.270.1

Balancing virtual and physical prototyping across a multi-course

VLSI/Embedded-Systems/SoC Design curriculum

Introduction

With the advent of high performance computing platforms and design automation tools there has

been a migration from physical prototyping of VLSI systems to virtual prototyping in both the

industrial and educational environments. This move is attractive for many educational

institutions as it is possible to have a “virtual” lab environment for a wide range of the

curriculum that requires only computers and EDA software. This shift to virtual prototyping as

the preferred method for teaching the design of integrated circuits and systems offers quicker

iteration and exploration, but it leaves significant gaps in the intuitive and systematic design

competencies gained from physically implementing and testing a complex electronic system. We

have attempted to strike a balance between the two approaches, and this paper analyzes the

lessons learned from our use of a common set of virtual and physical prototyping platforms for a

four course graduate sequence in integrated circuit design and embedded system-on-chip (SoC)

design.

Background and Motivation

A sequence of four graduate level courses was chosen for this analysis for three reasons: 1) the

dependencies the courses have on laboratory based instruction, 2) applicability to the

semiconductor industry and 3) each course builds upon the previous course culminating in a

capstone course that unifies the systematic design competencies that are needed to build complex

silicon systems. These silicon systems are composed of both hardware and software components

that implement complex algorithms and functions, and these functions determine the

competencies required by the student.

The four courses in the sequence are described in detail in the next section and include:

1) Basic VLSI Design

2) Advanced VLSI Design

3) Embedded Systems Architecture

4) System-on-Chip (SoC) Design

These courses were co-developed and are currently co-taught by full-time faculty and adjunct

faculty from industry. There are a number of key benefits associated with using both full-time

and adjunct faculty including timely access to state of the art teaching material, feedback on

future directions in the design of complex silicon systems, support in developing new curriculum

material and immediate feedback on the capabilities of the students. The course sequence has

been taught in this format for a number of years. To support this approach with a maximum of

efficiency yet allow teaching adaptability, the course sequence is being optimized to provide an

“active learning” approach using a common set of platforms for both virtual and physical

prototyping.

P
age 14.270.2

Course Sequence Organization

Course 1 - Basic VLSI Design

This course focuses on teaching the student the building blocks of VLSI systems. The students

use the Weste & Harris book “CMOS VLSI Design: A Circuits and Systems Perspective” as

reading material to support the lecture material. There are three laboratory assignments that

provide the student with the necessary capabilities to design and layout CMOS integrated circuits

using a virtual prototyping platform from Cadence Design Systems. There is a class project

which requires the student to apply the knowledge of the three laboratory assignments to a real

world application. These applications include generating functional elements and libraries that

can be used as building blocks in a larger VLSI implementation. The project is reviewed by the

course instructor(s).

Course 2 - Advanced VLSI Design

The second course focuses on the “Early Design Planning” of complex SoC platforms and

feasibility analysis of critical circuits in the design. The students are required to do a class project

in lieu of individual lab assignments. The class project is designed to be as “real-world” as

possible utilizing a synthesizable open source Verilog model of a SoC as the design platform.

The design platform undergoes detailed power and performance analysis, floorplanning and logic

synthesis. The class project culminates in a full blown design review by the industry based

adjunct faculty. In addition to providing excellent feedback for the students, it also provides the

instructors feedback on how to augment the course material for subsequent semesters. This

course recently received a Community Innovation Award from SUN Microsystems for “Best

University level Computer Architecture and/or VLSI course”.

Course 3 - Embedded Systems Architecture

The third course focuses on the HW/SW architectures of typical SoC platforms. These platforms

are composed of hardware and software components which must be seamlessly integrated

together to produce a working SoC. The course topics include: embedded processor architecture,

hardware acceleration, embedded operating systems, driver development, power aware

programming and testing of embedded systems. The classes are taught by both industry adjuncts

and full-time faculty. There are three laboratory assignments and one class project assignment.

The laboratory assignments focus on developing an understanding of the physical prototyping

platform (FPGA plus 32-bit processor) that the students will use to complete the class project.

The TLL2020 platform (Figure 1) allows reconfiguration and interconnection of multiple

processing fabrics for prototyping embedded digital logic machines (FPGA) and embedded

software (ARM9 processor)
[1]

. The ARM9 based processor and large gate count FPGA

communicate through a base system-board that also contains numerous multimedia and

communications peripherals, interfaces, and system clocking/timing. The Freescale

Semiconductor i.MX21 ARM9 processor was selected for its educational values of having 1) an

easily understandable instruction set architecture, 2) broadly available Linux and GCC software,

3) an externally accessible 32-bit address and 32-bit data bus, and 4) a project relevant peripheral

set including Ethernet, USB, serial communications and GPIO/LCD interfaces. The Xilinx

Spartan-3 FPGA was selected for the educational values of 1) having a relatively lower P
age 14.270.3

architectural complexity coupled with reasonably large logic prototyping space, 2) freely

downloadable design tools, 3) and a large community of open source IP cores and developers.

The students decide which project to implement on the platform and are responsible for both the

hardware and software design. The projects undergo both peer and instructor review at the end of

the semester.

ARM9

i.MX21

(Freescale)

B
IU

 S
ta
te

 M
a
ch
in
e

Addr/Data Bus

Flash

Peripherals

Addr/Data Bus

FPGA (Xilinx Spartanど3)

Uses a hybrid of Open (GCC/GNU) and Commercial Tools

Physical Design Prototyping Platform

SDRAM Audio Video FlashSDRAMUSB

Hardware

Acceleration

Block

Soft

Processor

Core

GPIO/ENET/USB

G
P
IO

Figure 1.0 Physical Prototyping Platform

Course 4 - System-on-Chip (SoC) Design

The final course in the sequence is designed to give the student working knowledge of how to

map a complex algorithm to a SoC implementation. The student analyzes hardware/software

tradeoffs, algorithms, and architectures to optimize the SoC based on requirements and

implementation constraints. The course material focuses on algorithmic mapping, transaction

level modeling, performance analysis of HW/SW and hardware-software co-design and co-

verification. There are three laboratory assignments that focus on a combination of virtual and

physical prototyping techniques for building SoCs. The virtual prototyping environment consist

of two distinct design methodologies: 1) algorithmic modeling in MATLAB/SPW and 2) virtual

system prototyping using COMET from Vast Systems Technology (Figure 2.0). Both design

methodologies require a fair amount of time to become proficient and special effort is taken to

limit the amount of valuable class time relegated to “teaching the tools”. This is accomplished by

providing critical starting points for each lab exercise and limiting the amount of tool

experimentation that the student can do while meeting the pedagogical goals of the courses.

C/C++

Algorithm

Profiling
&

Partitioning

ARM ADS
Tools

CPP2SC

SW Simulation
(VaST)

SC2Verilog

Virtual Platform
Model

(VaST)

Physical Platform
Model

TLL2020

Figure 2.0 Virtual Prototyping Platform

P
age 14.270.4

Competencies

The course sequence described above has been designed to give the graduate student a number of

competencies. These competencies are analyzed below according to the type of coursework and

the optimal laboratory/project environment (virtual vs. physical). The list of competencies

analyzed includes:

• Requirements gathering, design planning, cost modeling, energy modeling, robustness

modeling, complexity analysis and reusability

• System partitioning, algorithmic mapping & transformation

• Models of Computation, Communication and Abstraction

• Software Architecture and Design including: Assembly Language Programming and

High Level Language Programming

• Hardware Architecture and Design including: Register Transfer Level, Block Level and

Component Level

• Physical planning and design

• Performance modeling and analysis

• System Integration

• System Verification and Validation

The type of coursework is determined depending on whether the student is required to have a

conceptual understanding and/or a practicing knowledge of the subject material. The optimal

balance across virtual and physical prototyping is determined by the desired competencies.

Based on the goal of encouraging systematic engineering competencies, we analyzed the list

above and generated an importance scorecard that is summarized in the table below.

Competencies
Coursework Prototyping Model

Concepts Practice Virtual Physical

Requirements Definition 8 6 8 1

System Partitioning & Tradeoffs 8 5 8 3

Complexity Analysis 7 6 8 1

Mapping & Transformation 8 6 7 7

Algorithmic Design 5 1 3 1

SW Architecture and Design 6 6 7 7

HW Architecture and Design 8 4 8 8

IC Layout Design 2 6 8 1

HW/SW Co-Verification 8 5 8 6

Multi-metric Modeling 8 4 9 2

Performance Modeling and Analysis 8 8 6 8

System Debug 4 8 7 5

System Integration 8 8 3 8

System Validation 5 8 3 8

SCALE: From 1 – minimal importance to 10 – very important

P
age 14.270.5

The coursework scoring is based on input from faculty members who teach the four course

sequence while the prototyping model scoring is based on feedback from industry, students and

faculty. To interpret the results of the scoring one needs to consider the two adjacent columns

under each category. In general when both columns have similar values the relative importance

is the same. A comparison between two rows is somewhat subjective. Feedback from students on

the relative importance of each competency is dependent on their individual interests and course

of studies. Some of this feedback is highlighted in the next section.

Analysis

The analysis of the coursework scoring shows a balance between learning concepts and gaining

practical knowledge for those areas which are easy to accomplish in a single semester. There are

often proposals to add “practical classes” to the curriculum in order to provide more active

learning and augment the conceptual learning. This is in large part a response to a feedback from

industrial managers who argue that students should know a particular tool or technique to be

rapidly productive upon joining the work force. Balancing coursework between conceptual and

practical knowledge is a topic for another paper and will be not discussed here. In this paper we

would like to focus on whether there is particular merit between using a virtual prototype or a

physical prototype for reinforcing practical knowledge of the competencies listed above.

The analysis of the scoring of the prototyping model indicates that “frontend” activities such as

requirements, system partitioning and architecture design are best done using virtual models of

the system. The opposite is true for “backend” activities like system integration, system

verification, where physical prototypes are most useful. This is not a surprising outcome for a

number of reasons:

• Virtual prototyping allows rapid exploration of complex scenarios while allowing

“viewing” of internal design parameters that are difficult or impossible to access in

physical prototyping.

• The economics of doing multiple physical prototypes as part of frontend tradeoff

activities is expensive for industrial applications and even more so in the educational

environment.

• As you would expect his is exactly what industry does from a methodological perspective

and what it looks for when it hires new students. Frontend design teams look for skills in

architectural modeling and partitioning, whereas backend teams look for students with

practical hands-on knowledge.

• Virtual prototyping is an abstraction process and will inherently miss many physical

realities such as system noise, nonlinearities, loading, power distribution errors, and

interference that physical prototyping readily highlights. This is a powerful reminder to

students that simulation and modeling are only preliminary steps to successful

engineering systems.

The following diagram illustrates a typical prototyping environment as it transitions from virtual

to physical as a function of the design abstraction level. The rate of the transition is a function of

the available design automation tools and applicable prototyping hardware.
[2] [3]

P
age 14.270.6

HW/SW

Partitioning

Functional

Design

System

Def.

HW

DESIGN

SW

DESIGN

HW

FAB

SW

CODING

INTEG.

& TEST

PROTOTYPING ENVIRONMENTPrimarily

Virtual

Primarily

Physical

HW & SW

CODESIGN

Multiどmetric Models

Derived from: SCRA/RASSP

Figure 3.0 Typical Prototyping Platform

It should be noted that the embedded systems ecosystem is in the process of migrating from

developing application specific integrated circuits to platform based design.
[4]

 The availability of

these architecture specific platforms for physically prototyping an embedded system will provide

more opportunity to balance the mix between virtual and physical prototyping.
[5]

Student Feedback

As with most academic institutions feedback is routinely solicited from the students at the end of

each semester in the ongoing attempt to improve the curriculum. This feedback has been

summarized below:

• Virtual prototyping is effective if the learning curve to use the design automation tools is

limited to less than half a semester. The “models” used by the tools must also be error

free.

• More students prefer virtual prototyping as it provides the ability to work from anywhere

in the “world”. Immediate access to the physical platforms is the number one complaint

of most student teams.

• Debugging problems in the virtual environment is preferred.

• The design automation tools for physical prototyping are considerably behind in overall

capability. Many students prefer “Visual” tools to command line and “makefile” based

tools.

• Software development is much easier on a physical platform. Booting an OS on a virtual

platform can take hours or even days.

• Physical prototyping is effective if the “bugs” that are detected are real world and not a

side effect of the platform, i.e., many FPGAs have artifacts which are not seen in actual

SoC implementations.

P
age 14.270.7

Industry Feedback

Industry feedback was obtained from two sources: 1) the adjunct faculty who in many cases will

hire students taking their classes and 2) hiring managers who contact the faculty looking for

specific competencies. Their feedback is summarized below:

• Students need to know the basics first. Lab assignments are good but team oriented

projects are essential. The most important aspect of the student design experience is the

practice of reflection which occurs when the class projects are reviewed by peers and

industry based faculty.

• “Pre-silicon” hiring managers look for students with more virtual prototyping

competencies specifically the area of RTL and ESL languages, synthesis and formal

verification techniques.

• “Post silicon” hiring managers look for students with hands-on experience with logic

analyzers, hardware bread-boarding, hardware/software co-design and co-verification.

Summary

The motivation for this analysis was in direct response to a report from The National Academy

of Engineering "Training the Engineer of 2020" which calls for the engineer of the future to

exhibit “practical ingenuity”. This will require an approach to learning in an engineering

educational environment where the student learns a systematic approach to engineering design.

This approach includes: establishing metric-based objectives, structure, planning, designing,

prototyping, performance evaluation, and aligning outcomes to a desired objective. Sensible use

of virtual prototyping allows rapid exploration of the design space while physical prototyping

exposes the students to uncertainties of real world systems that are missing in abstracted virtual

modeling. The balance of virtual and prototyping tools in a systematic learning environment has

been found to be valuable in meeting the objective of “practical ingenuity” in graduating

engineers.

References

[1] Mihir Ravel, Mark McDermott, "An Electronic System Design Platform for SYSTEMatic Learning in ECE and

ICT Curriculum," MSE07, pp.145-146, 2007 IEEE International Conference on Microelectronic Systems Education

(MSE'07), 2007

[2] Mark A. Richards, Anthony J. Gadient, Geoffrey A. Frank, “Rapid Prototyping of Application Specific Signal

Processors”, Springer; 1st edition (February 28, 1997) ISBN-10: 0792398718

[3] Vijay K. Madisetti, Thomas W. Egolf, “Virtual Prototyping of Microcontroller-Based Embedded DSP Systems”,

IEEE Micro, Volume 15, Issue 5 (October 1995), Pages 9-21

[4] Alberto Sangiovanni-Vincentelli, "Defining Platform-based Design". EEDesign of EETimes, February 2002.

[5] Alberto Sangiovanni-Vincentelli, et al, “Benefits and challenges for platform-based design”, Proceedings of the

41st annual conference on Design automation, (2004), San Diego, CA, USA Pages: 409 - 414 P
age 14.270.8

