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Abstract 

 
In conjunction with Creative Pultrusions, Inc., a fiberglass reinforced polymer composites 

manufacturer in Alum Bank, PA, a senior project was designed to convert the machine operation 

code for their pultruders from the Rockwell Automation’s RSLogix500 software to the 

RSLogix5000 software.  This project was a capstone design for the Electro-Mechanical 

Engineering Technology program at Penn State Altoona.  The specific aim was to show the 

benefits of RSLogix5000 while improving the pultruding system at Creative Pultrusions, Inc. By 

streamlining the existing code, troubleshooting could become more efficient.  In order to convert 

the code, a complete understanding of the pultrusion process was necessary along with that of 

both the RSLogix500 software and RSLogix5000 software.  This document will discuss 

background information pertaining to Creative Pultrusions, Inc., RSLogix500 software and 

RSLogix5000 software in addition to the machine code conversion and testing processes. 

 

Introduction 

 

In the vast world of automated manufacturing, programmable logic controllers (PLCs) are one of 

the most reliable and effective means of controlling any electro-mechanical process. Creative 

Pultrusions, Inc. is a company, which implements the use of PLCs throughout their 

manufacturing process. Creative Pultrusions, Inc., a high strength pultruded fiberglass reinforced 

polymer composites manufacturer, was the foundation of the project research. The project was to 

convert the existing program, which is in RSLogix500, to the latest Rockwell PLC software, the 

RSLogix5000. 

 

Pultrusion Process 
Pultrusion is one of the many processes of producing fiberglass reinforced polymer composites. 

The pultrusion process starts by feeding fiberglass, woven fabrics, continuous strand mat, or 

carbon material through a series of creels
1
. This aligns and guides the material for entry into the 

die. As the material enters the die, it is impregnated with resin. Polyester, vinyl ester, and 

epoxies are typical resins that are used
1
. Excess resin is recycled back through the process. Once 

in the die, the heating process begins. The die has multiple heat zones to cure the material. 

Depending on the product, the set point for these zones will vary. The material is cured by an 

exothermic chemical reaction. There are catalysts in the resin that react once a certain 

temperature is reached. Heat will continue to be released by this process and allow the internal 

temperature of the product to exceed that of the die walls. After curing, the product is extracted 

from the die. The material is pulled through the pultruding machine by two hydraulic clamps. An 

encoder is used to monitor the length of material pultruded. When a desired length has been 

pulled through the machine, a saw cuts the product to length and resets the encoder. The saw can 
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also be activated manually. Manual activation will reset the encoder back to zero. In order for 

continuation of the process, a flying cutoff saw is used. The product can then be unloaded.  

 

RSLogix500 

The pultrusion machine is controlled by the use of PLCs. The SLC 505 platform utilizing 

RSLogix500 software is used in the current machines at Creative Pultrusions, Inc. The 

RSLogix500 uses basic ladder logic to control a process. The commands used are set up through 

data files. The data files are arranged by memory storage with specific names/numbers for each 

bit. The language is easy to use for those who know it. The learning curve is also relatively easy. 

However the programs created can be lengthy. Simple logic is often used such as comparison 

statements, timers, and move commands. There are more complicated actions to be used in 

RSLogix500. Up to this point, the project research has turned up little use of these. The number 

span is limited depending on the command used, due to the number of bits allowable. For 

example a counter can only count up to 9999. Therefore, multiple counters need to be used for 

applications that require a count higher than this. Other commands are limited to ± 32,767 for 

integers. For scaling purposes, this could limit the tolerance on some processes. However, the 

float values offer a much larger range of numbers. RSLogix500 has been implemented with 

success for many years at Creative Pultrusions, Inc. There has been a common problem though: 

troubleshooting any dilemma is a complicated task. People who are knowledgeable in the 

RSLogix500 programming may have difficulty deciphering the code. This could be due to the 

fact that several programmers have made changes to this code over the years; each one 

possessing a different programming style. With well over 900 rungs of ladder logic and 200 

pages of code, finding a problem can be cumbersome. Even though there has been success with 

the SLC505 and RSLogix500, improvements can still be made to the control of the machine. 

 

Machine Control 

There are several areas of interest with respect to the operational control of the pultrusion 

machine that were analyzed in this project.  As far as the PLC is concerned, these areas of main 

interest are broken down as follows:  heat zones, puller, saw, and hydraulics.  Hydraulics is a 

topic that will be interwoven throughout the machine functionality.  Currently, the Allen-Bradley 

SLC505 is being used in conjunction with Rockwell Automation’s RSLogix500 programming 

software and RSView for HMI Display.  

 

The main control of the heat zones in RSLogix500 is through PID (Proportional, Integral, 

Derivative) control.  The set point, the desired temperature, for this system is initiated through 

the HMI. Depending on the product being pultruded, the set point will vary. Feedback needed for 

the PID operation comes from a thermocouple input. This is entered into the process variable, the 

current temperature, for the system. The controller output, CVEU, then determines the pulse 

sequence that will be implemented through the silicon-controlled rectifier (SCR). The SCR is 

used for pulse width modulation (PWM). The SCR pulses power to the heating elements in the 

product die.  The PWM is currently controlled through the use of timers. The timers will set the 

pulse period depending on the controller output from the PID.   

 

Two cooling systems have been implemented, one at both the entrance and the exit of the die. 

These are controlled by simple open/close valve control that depends on the temperature of the 

cooling zone. In the current ladder logic, simple comparison statements are used. Because of the 
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simplicity, this portion is lengthier than it need be. Cooling has been set to have a tolerance of 

±3ºF.  If the temperature goes above the upper limit, the valve opens.  If the temperature goes 

below the lower limit, the valve closes.  The cooling portion of the die is not needed for all 

products.  

 

With the web of control that is used for the heat zones, alarms are a must. Fault alarms sense if 

there are any connection problems, over or under heating situations, or disallowable user inputs 

from the HMI. The alarms appear on an alarm screen on the HMI, accompanied by the sounding 

of an audible alarm and flashing light. In order for the process to resume, the alarms must be 

cleared and reset.  There are also certain conditions that must exist in order for the heating to 

initialize. These conditions can vary, but a few examples are:  a push button on or no alarms 

activated.  

 

The most difficult routine in this system is by far the pulling arrangement. An extremely 

complex program that is half the length of the total code controls the puller system. This 

complexity is partially due to the five different styles of pulling that can be implemented. 

Portions of the programmed code are repetitive.  For example, the puller speed utilizes the same 

programming approach only differing by the style of pulling.   Hydraulic cylinders power the 

pullers. A hydraulics card, available for the SLC 505, is used to control many of the settings for 

the hydraulic operations. This card uses two axes to control motion of the pullers. The third axis 

is used in the saw control, which will be discussed later. This card controls the speed, drift, 

acceleration, and deceleration of the pullers. Puller accuracy is determined by the tuning 

software and the quality of the servo valves. The pullers can be programmed to have purge 

modes. These modes stop the pulling cycle and help in keeping the die clear of debris. This task 

is very important for control purposes. Most of the puller code is implemented by using simple 

commands such as latches, moves, comparison statements, timers, and counters. These deal 

greatly with the position and force of the pullers. The hydraulics card plays a huge roll in this 

positioning; it keeps track of the exact location of the pullers at all times through feedback from 

the linear transducers and servo valving.  

 

The cutoff saw is the last major step of the pultrusion machine. The saw movement is 

accomplished utilizing hydraulics and pneumatics. Vertical movement is performed through 

hydraulic cylinders. This is a discrete output to the hydraulic directional valve. The clamping and 

forward/reverse movements are done through pneumatics. The saw itself is a hydraulic 

controlled proportional valve. The PLC operates the saw through a sequential ladder logic 

program. The activation of the saw is performed through an encoder. The encoder monitors the 

amount of product pultruded. As with the other sections of this code, great care has been taken in 

setting up alarms. There is alarm code for any part of this process that could fault. This is 

possibly the easiest area to troubleshoot only because it has recently been rewritten. However, it 

is still a tedious job with over 70 rungs of ladder logic. 

 

RSLogix5000 

RSLogix5000 is the latest in the Allen-Bradley series of PLC software.  RSLogix5000 uses one 

software package consisting of four styles of programming languages: ladder logic, structured 

text, function block diagrams, and sequential function charts. These programming languages can 

be used for control process, drives, sequential, and motion control
1
. This system lets the user 
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create command labels through a tag-based platform. This allows the user to use a description of 

his/her choice for that command. The parameters for that command can then be specified to be a 

bit, integer, etc. Rockwell Software has stated the following about the RSLogix5000 platform
2
: 

• Intuitive and simple to use 

• Compliant IEC1131-3 interface 

• Structured programming by way of symbols and arrays 

• Instruction set supplying multiple applications 

• Integrates DCS systems or single-loop controllers and dedicated servo or drive systems 

into one environment 

• Online troubleshooting capabilities 

• Ability to create new tags while online 

Other capabilities are included but are beyond the scope of this document.   

 

Code Conversion Process 

 

It was decided that to fully assess the benefits and/or downfalls of applying RSLogix5000 to a 

real-world manufacturing process, some, if not all, of the code must be transcribed from its 

RSLogix500 form into the RSLogix5000 format.  This was done in two steps.  The first step was 

to decide which part of the pultrusion machine code would demonstrate the greatest contrast 

between the two software platforms.  And the second step was the actual implementation of the 

new programming language. 

 

Learning the RSLogix5000 System 

The first step took considerable thought due to the vast possibilities of RSLogix5000’s four 

programming languages that are available.  Each language is best suited, but not limited to, 

specific electro-mechanical functionality.  For example, ladder logic, which was the sole 

programming option with the RSLogix500 software, is bested suited for
2
: 

• Execution of continuous or parallel operations 

• Binary operations 

• Logical operations that are complex 

• Processing of messages and other communications 

The function block diagram programming language can be used for: 

• Drive control and continuous processes 

• Control loops 

• Circuit flow calculations 

The sequential function chart (SFC) programming language works well in the following 

situations: 

• Managing multiple operations at a high level 

• Processes that are batched 

• Motion control 

• Sequential machine operations 

Finally, the structured text programming language can be used in combination with some of the 

other RSLogix5000 programming languages. Rockwell Automation states in the Logix5000 

Controllers Common Procedures Programming Manual that it is best suited for: 

• “Complex mathematical operations 
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• Specialized array or table loop processing 

• ASCII string handling or protocol processing” 

For the scope of this paper, the function block diagram and sequential function chart 

programming languages will be used to accomplish our comparison between the RSLogix500 

and the RSLogix5000.   

 

The first step in converting the code was to set up the RSLogix5000 platform. This included 

installing the controller and modules needed for this project. Upon opening the software, a 

continuous task, program, and ladder logic routine have already been set up. The names of these 

can be changed to suit the application.  Only one continuous task may be used in the project. A 

continuous task is one that will operate on a continual basis as long as the project is running. 

However, many periodic tasks can be used. The periodic tasks need to be set up for a time 

period. For example, this task could run every 500 milliseconds. Each task will have a 

corresponding program. The program will contain any created routines. Each program must have 

a main routine specified that will execute first. Within the routines, tags can be added. These tags 

may be program scoped (only available for use within the given program) or controller scoped 

(available for use throughout the project). 

 

Heating Zones 

 

One of the main objectives of the project was to condense the RSLogix500-based code utilizing 

one of the available languages in RSLogix5000.  The heat zone code proved to be a prime 

candidate for this conversion.  It was decided that function block diagram programming would 

be very effective in this situation.  The main reason for this decision was that the pultrusion 

process utilizes a PID command for temperature control.  The RSLogix5000 provides a PID 

command in the ladder logic and the function block diagram programming languages only.  It 

was decided that function block diagram programming could demonstrate the best approach for 

controlling the heating zones.   

Also, the heat zones are a continuous process which Rockwell software recommends function 

block programming for this type of control.   

 

The first obstacle was the implementation of the PIDE (Enhanced PID). The PIDE was created in 

a periodic task
2
 due to suggestion from the Logix5000 Controllers Process Control and Drives 

Instructions manual from Allen-Bradley. All tags were created as controller tags, giving access 

to these tags from any routine. The most difficulty came from deciding which inputs and outputs 

to use. There are over 140 inputs and outputs to choose from. Some of these parameters are 

shown in figure 1. The PIDE can be used for a vast amount of control. In this project, basic PID 

control was sought. The input used for the process variable was to signify that of a thermocouple. 

The reading of the input was controlled through an RSView generated testing screen. The set 

point came from a randomly chosen number, in this case 350°F. The control variable output was 

to control the heat pulsing. Tags were created for the thermocouple and set point inputs. As will 

be shown later, the control variable has a direct connection to another function block so a tag was 

not created. 
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Figure 1 (PIDE Function Block) 

Initial runs of the PIDE loop failed. Troubleshooting 

began with changes to the operational mode settings. 

There are many setting types, which can be used to 

control the PIDE. The major ones of concern to this 

project include auto or manual, program-auto, program-

manual, operator-auto, operator-manual, program-

program, program-operator, operator-program, operator-

operator. Difficulty was had in determining the type of 

control needed to make the PIDE functional. It was 

important for the PIDE to run continuously without any 

user inputs. Therefore, program-auto request was used in 

conjunction with auto and program-program request. 

With this combination of controls the program will 

request the PIDE to run in automatic mode. There will be 

no operator control of this function.  

 

After changing the above modes, no progress was made 

in running the PIDE loop. Through the online help menu 

of RSLogix5000, sample programs can be found. By 

comparing these programs with that of the project, certain 

differences were taken into consideration. One of these 

was the timing mode. The timing mode previously set 

was found in the RSLogix500 programming code. 

However in the conversion, it was found that a timing 

mode of 0, periodic mode, had to be used. This needs to be used due to the fact that the PIDE is 

in a period task.  After these modes were changed, the PIDE was in working order. The values 

for P, I, and D were chosen to exemplify the functionality of the heat zone process loop.  P, I, 

and D values will be adjusted according to individual processes.   

 

The control variable output (CVEU) of the PIDE function block was used as an input to the 

heating element pulsing.  The pulsing element used was a Split Range Time Proportional (SRTP) 

function block, shown in figure 2. This instruction converts 

the CVEU output from the PIDE into a digital pulse.  This 

digital pulse output will be used to control the SCR.  

Problems were encountered during implementation of the 

SRTP.  The SRTP is designed to control heating and 

cooling in one loop.  The die for the pultrusion machine 

consisted of two separate loops governing the heating and 

cooling zones.  An alternate method of heating element 

control was found utilizing the Position Proportional 

(POSP) function block.  This instruction uses a cycle time 

based on the percentage of control variable output to pulse 

the SCR on and off.   

 

In order for the POSP to control the SCR, shown in figure 

3, the CVEU (PIDE) was wired to the set point input (POSP).  The POSP has OpenOut and 

PIDE_02

PIDE ...

Enhanced PID

PV

SPProg

SPCascade

RatioProg

CVProg

FF

HandFB

ProgProgReq

ProgOperReq

ProgCasRatReq

ProgAutoReq

ProgManualReq

ProgOverrideReq

ProgHandReq

CVEU
0.0

SP
0.0

PVHHAlarm
0

PVHAlarm
0

PVLAlarm
0

PVLLAlarm
0

PVROCPosAlarm
0

PVROCNegAlarm
0

DevHHAlarm
0

DevHAlarm
0

DevLAlarm
0

DevLLAlarm
0

ProgOper
0

CasRat
0

Auto
0

Manual
0

Override
0

Hand
0

AutotuneTag ?

SRTP_03

SRTP ...

Spli t Range T ime Proportional

In

CycleT ime

MaxHeatIn

MinHeatIn

HeatOut
0

CoolOut
0

HeatT imePercent
0.0

CoolT imePercent
0.0

Figure 2 (Split Range Time 

                        Proportional) 
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CloseOut as outputs.  Ideally, both of these outputs needed to be wired 

to the SCR, but the RSLogix5000 protocol would not permit this.  The 

OpenOut was wired to the SCR input and appeared to be functioning 

correctly at first.  After closer examination, it was found that the POSP 

output pulse was not proportional to the PIDE CVEU output.  Further 

experimentation with the SRTP command demonstrated the possibility 

of effective operation within the heating zone code.  The SRTP was 

made useful in the “heating only” code application by, in essence, 

eliminating the cooling output.  This was obtained by entering a small 

value in the MinCoolIn parameter of the SRTP.  With the newly programmed SRTP, the PID 

heating zone code appeared to be functioning correctly.  Again, final adjustment of the SRTP 

parameters would be attained during actual application commissioning.   

 

Some of the lower level programming involved in the heating zone routine consisted of the 

utilization of the Scale (SCL) command.  This command is nothing new to Rockwell Software.  

It is found in both the ladder logic programming and the function block diagram programming 

formats.  The SCL was used to scale the actual inputs from either the operator HMI or the 

thermocouples.  The main idea being that the level of temperature control resolution needed to be 

maintained, if not exceeded, by the conversion from the RSLogix500 programming to the 

RSLogix5000 programming with respect to the die heating process. 

 

With the above ideas several sheets were created for the heating zones. These sheets were 

identical except for the zone activated. It was found the length of code was cut down. This will 

be a benefit that will aid in troubleshooting if any problems were to occur. The conversion of the 

heating process code encompasses the major portions of the RSLogix500 code. The 

RSLogix5000 function block diagram does not cover every aspect of the original code. The 

complete programmed code is shown figure 4.  

 

Cooling Zones 
 

Initially, it was planned to include the heating and cooling control loops together in one central 

command FBD program routine.  But, after more consulting with Creative Pultrusion’s 

manufacturing engineers, it was found that these two processes needed to be controlled under 

very different circumstances.  If the heating and cooling processes were aimed at attaining one 

temperature throughout, then the utilization of the SRTP heating and cooling output pulses 

would be very effective.  This was not the case. The original RSLogix500 code consisted of a 

temperature low limit and a temperature high limit that are continuously compared to a 

thermocouple input.  The conversion of the cooling zone was simple to implement Using nothing 

more than a Greater Than or Equal To (GEQ), a Less Than or Equal To (LEQ), and a Discrete 2-

State Device (D2SD) command, the cooling valve was commanded full open or full closed.  

Refer to figure 5 for the D2SD command. It is worth noting that this process could be regulated 

POSP_01

POSP ...

Position Proportional

SP

Posi tion

OpenedFB

ClosedFB

OpenOut
0

CloseOut
0

Figure 3 (Position Proportional) 
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Heat_Zone_1_PID

PIDE ...

Enhanced PID

EnableIn

PV

PVFaul t

PVEUMax

PVEUMin

SPProg

SPOper

SPHLim it

SPLLim i t

CVFaul t

CVEUMax

CVEUMin

DependIndepend

PGain

IGain

ProgProgReq

ProgAutoReq

T im ingMode

CVEU
4.926621

Auto
1

Manual
0

AutotuneTag ?

Heat_Zone_1_On_Condition

BAND ...

Boolean And

In1

In2

In3

In4

Out
1

Input_Power
1

Heat_Zone_1_PB
1

TC_Not_Faul ted[1]
1

Heat_Zone_1_Scale

SCL ...

Scale

EnableIn

In

InRawMax

InRawMin

InEUMax

InEUMin

Out
600.0

TC_Input[1]
300.0

SP_Output_For_Heat_Zones
700.0

1-E4

SCR_Faul t[1]
0

Heat_Zone_1_PB
1

SRTP_Heat_Zone_1

SRTP ...

Spli t Range T ime Proportional

EnableIn

In

CycleT ime

HeatOut
0

HeatT imePercent
4.8843656

SRTP_Heat_Out_Heat_Zone_1

Set_Point_Scaled

SCL ...

Scale

In

InRawMax

InRawMin

InEUMax

InEUMin

Out
700.0

Set_Point_for_Heat_Zones
350.0

SP_Output_For_Heat_Zones

1-B3

3-B3

5-B3

7-B3

2-B3

4-B3

6-B3

8-B3

 
Figure 4 (New Heating Zone Code in Function Block Diagram as Programmed in RSLogix5000) 

 

utilizing a PIDE function block loop, but the current pultrusion process does not warrant this 

magnitude of precision temperature control. The 

implementation of the D2SD was much simpler than 

trying to utilize a PIDE function block. To show the 

functionality of the D2SD an example will be given.  

 

A cooling zone has an ideal temperature of 40°F ±3°. 

The high limit in this situation is 43°F and the low limit 

is 37°F. A comparison will be made between the 

thermocouple input and the limits. As shown in figure 

6, the high limit is connected to the ProgCommand; the 

low limit controls the State0Perm (State 0 Permissive). 

The D2SD looks at the ProgCommand to set the input 

high or low. If the temperature is 50°F, the valve will be 

open; Out will be high. If the temperature drops to 40°F, 

Out will still be a high. The State0Perm prohibits the 

output from going low until this input becomes high. 

Once the temperature drops below 37°F, Out will 

become a low. The cooling could also be set up in 

several other ways. For example,  the State 1 

Permissive (State1Perm) could be used to control the high limit.  

 

D2SD_01

D2SD ...

Discrete 2-State Device

ProgCommand

State0Perm

State1Perm

FB0

FB1

HandFB

ProgProgReq

ProgOperReq

ProgOverrideReq

ProgHandReq

Out
0

Device0State
0

Device1State
0

CommandStatus
0

Faul tAlarm
0

ModeAlarm
0

ProgOper
0

Override
0

Hand
0

Figure 5 (Discrete 2-State Device) 
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The cooling zones are much easier to decipher with the conversion. In this case, the code was not 

condensed. However, it is felt that troubleshooting will be easier. The complete program for the 

cooling can be seen in figure 6. 

 

Cool_TC1_Input
140.0

Low_Limit_1
122.0

Cool_1_PB
1

Water_Valve_1

High_Lim it_1
128.0

Cooling_Temp_Leq_1

LEQ ...

Less Than or Eql  (A<=B)

SourceA

SourceB

Dest
0

Cool ing_Temp_Geq_1

GEQ ...

Grtr Than or Eql  (A>=B)

SourceA

SourceB

Dest
1

On_Off_Valve_Control_1

D2SD ...

Discrete 2-State Device

ProgCommand

State0Perm

State1Perm

ProgProgReq

Out
1

Device0State
0

Device1State
1

CommandStatus
1

Faul tAlarm
0

ModeAlarm
0

 
Figure 6 (New Cooling Zone Code in Function Block Diagram as Programmed in RSLogix5000) 

 

Saw 

 

Exploration into the realm of RSLogix5000’s sequential function chart programming language 

was addressed utilizing Creative Pultrusion’s flying cutoff saw code.  After careful review of the 

existing RSLogix500-based program, it was found that the saw control could be accomplished 

with a handful of steps and transitions as compared to more than 70 rungs of ladder logic.  An 

initial ladder routine was used to establish a starting point for the saw.  Basically, once all start 

conditions are met, along with the encoder output reaching the HMI input desired part length, the 

program will jump to a SFC subroutine.  This is where each step of the saw operation transpires. 

The SFC routine has the saw cycling through 5 steps, which each consist of one or more actions 

that are commanded.  These 5 steps consist of the following operations:  (1) part clamp down, 

blade motor on, dust gate on: (2) Saw head down, encoder output set to zero; (3) saw cross cut; 

(4) saw head up, blade motor off, dust gate off; (5) saw clamp up, saw to home position.  Each 

step transitions by way of sensor inputs indicating the end of travel, or by the completion of an 

individual process in the overall makeup of the saw operation. This program can also be seen in 

figures 7 and 8. 

 

Additional Program Upgrades 
 

As time permitted throughout this project, different portions of the pultrusion machine 

programming were experimented with using the available languages contained within 

RSLogix5000.  The basis for these experiments was to try to simplify not only the efficiency of 

operation, but also the opportunity for effective future troubleshooting of the code.  One such 

area looked at was the Die Set-Up programming code.  It was found that some repetitiveness was 
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Figure 7 (New Saw Code in Ladder Logic as Programmed in RSLogix5000) 

 

 

... -

Saw_Step_3

N ... Action_008

Saw_Cross_Cut:=1;   

... Saw_Cross_Cut_Complete

Saw_Cross_Cut_Finished_Proximity_Sensor    

... -

Saw_Step_4

N ... Action_013

Saw_Head_Down:=0; 

N ... Action_005

Blade_Motor_On:=0;   

N ... Action_006

Dust_Gate_On:=0;   

... Saw_Head_Up

Saw_Head_Up_Sensor 

... -

Saw_Step_5

N ... Action_004

Saw_Clamp_Solenoid_Down:=0;  

N ... Action_009

Saw_Cross_Cut:=0;   

... Saw_Start_Conditions_Met

Encoder_Output = Desired_Part_Length           

& Saw_Start_Conditions & not Saw_Cycle_Stop    

                                               

... -

Saw_Step_1

N ... Action_000

Saw_Clamp_Solenoid_Down:=1;  

N ... Action_001

Blade_Motor_On:=1; 

N ... Action_003

Dust_Gate_On:=1; 

... Saw_Ready_To_Cut

Saw_Clamp_Down & Blade_Motor_At_Speed  

... -

Saw_Step_2

N ... Action_002

Saw_Head_Down:=1; 

N ... Action_007

Encoder_Output:= 0; 

... Saw_Head_In_Place

Saw_Head_Down_Sensor   ... Saw_Home

Saw_Cross_Cut_Home_Sensor  

...

Wai t_State

 
Figure 8 (New Saw Code in Sequential Function Chart as Programmed in RSLogix5000) 

 

involved when looking at the prerequisites to obtain die table lift and lower output commands.  

The idea was to have one XIC input command the activation of the table up and the table down 

movements.  This was done using a small FBD program.  This routine can be seen in figures 8 

and 9. This program consisted of all the potential prerequisites flowing through a Boolean Or 

(BOR) and a Boolean And (BAND) function block combination.  This combination had a single 

output, which was given the same tag name as the XIC input in the ladder routine.  With further 

research, it is conceivable that the whole Die Set-Up program could be accomplished with one 

simple FBD routine.  
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            Figure 8 (New Die Set-Up Code in Ladder Logic as Programmed in RSLogix5000) 

 

 

Hydrual ic_Power_HMI_PB_On
1

BOR_02

BOR ...

Boolean Or

In1

In2

Out
0

Set_Up_Mode_Selected_HMI
0

Table_Move_OK

Input_Power
1

Manual_Pause_Active
1

BAND_03

BAND ...

Boolean And

In1

In2

In3

Out
0

 
Figure 9 (New Die Set-Up Code in Function Block Diagram as Programmed in RSLogix5000) 

 

Conclusion 
 

The partial conversion of the pultrusion machine programming from RSLogix500 to 

RSLogix5000 has made clear that there are benefits to be attained.  It can be seen that the 

programming versatility alone could make the conversion from the RSLogix500 platform to the 

RSLogix5000 platform a worthwhile venture.  With four different programming languages at 

your disposal, almost every electro-mechanical control application conceivable can be 

accomplished through the implementation of Rockwell Software’s RSLogix5000 software. Due 

to the multiple programming languages, the code was able to be shortened. Each programming 

language has a topic that it has been designed for. With this in mind, the ladder logic pertaining 

to the heating zones was more suitable for function block diagrams than ladder logic. The 

commands are more suitable to particular applications and, therefore, shortened the code. 

 

Another benefit is having the ability to program all inputs and outputs using descriptive tags.  It 

was obvious through the project code writing processes that a program with tags would make a 

program not only easier to follow, but easier to troubleshoot.  Additionally, the ability to monitor 

and change tag values, while the program is online, has been a benefit.  For example, gain values 

for a PIDE function block can be changed online to optimize your PID curve.  The result of this 

tuning can be seen almost instantaneously and will not disrupt the other program functions.   

 

This project has found one main disadvantage to the conversion.  Creative Pultrusions, Inc. is an 

example where it might not be beneficial to convert to RSLogix5000. Their pultrusion machines 

function well with their present RSLogix500 platform.  Therefore, the cost for the platform 

upgrade and the accompanied learning curve for RSLogix5000  are not justifiable at this time. 
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