
AC 2009-779: BIT-MAPPED GRAPHICS ON A BUDGET USING THE FREESCALE
S10 MICROCONTROLLER

Christopher Carroll, University of Minnesota, Duluth
CHRISTOPHER R. CARROLL earned academic degrees at Georgia Tech and Caltech. He is
Associate Professor of Electrical and Computer Engineering at the University of Minnesota
Duluth. His interests are digital systems and microprocessor applications, especially as they relate
to educational environments.

© American Society for Engineering Education, 2009

P
age 14.282.1

Bit-mapped Graphics on a Budget

Using the Freescale S10 Microcontroller

Abstract

Graphics displays are handy output devices in microcontroller systems. This paper describes a
simple and efficient graphics display using a bit-mapped approach, generated by the Freescale
S12 microcontroller, implemented on Wytec’s Dragon development board. The display uses an
inexpensive CRT monitor or standard television monitor for output, and requires only a few
passive components added to the Dragon development board.

This graphics display uses hardware that has been developed earlier, and that has been disclosed
and discussed in earlier ASEE papers1,2. This paper describes software that implements the bit-
mapped graphics output, and presents some lab experiments that use this graphics display,
appropriate for assignments in introductory microcontroller classes.

The critical task in generating a bit-mapped graphics display is getting the bits out of memory to
the display’s video signal fast enough to produce adequate resolution on the display. The Serial
Peripheral Interface (SPI) unit on the S12 microcontroller is especially suited to high-speed bit
stream output. With the bus clock on the Dragon development board at 24 MHz, the SPI can
emit streams of bits from memory at up to 12 megabits per second, resulting in a resolution along
a scanline of the display of approximately 600 pixels. The resolution along the axis of the
display perpendicular to the scanlines is limited to the number of scanlines in the image, which is
239 scanlines in this design using an inexpensive television-type CRT display. In order to
reduce the memory demands on the limited resources of the Dragon board, the bit rate emitted by
the SPI is reduced to a quarter of the maximum rate, resulting in a display resolution of 239 x
128 pixels. Although this does not compare well with commercial high-resolution graphics
displays, it is certainly useful in an educational environment, and is entirely adequate for
teaching students how to use bit-mapped graphics.

This paper describes required software and its interaction with the S12 microcontroller SPI unit
to produce a bit-mapped graphics display on a standard television or inexpensive CRT display.
The paper also investigates several experiments using this graphics display that are possible in an
introductory microcontroller course lab setting.

Lab Station

The lab station on which this bit-mapped graphics display is based has been described in earlier
ASEE papers1,2. It consists of a Wytec Dragon development board for the Freescale S12
microcontroller3,4, plus some additional hardware and software to implement an alphanumeric
matrix keyboard input device and interface to a standard low-cost CRT monochrome display for
output. As described in those earlier papers, the CRT display was used originally just to provide
character output for display of alphanumeric characters. Figure 1 shows a typical display
produced by the CRT output in the original lab station design. P

age 14.282.2

The lab station as originally implemented allowed each
station to function independently, without the need for a
dedicated personal computer at each lab station. Instead,
the stations emulated alphanumeric terminals and were
networked via RS-232 terminal lines to one central multi-
user personal computer running Linux. Students
developed programs and assembled them on this multi-
user computer using the alphanumeric input/output on the
lab stations provided by the additions to the Dragon
development board, and then downloaded the resulting
code into the lab stations for execution and testing on the
individual lab stations. This same environment supports
new capabilities with the addition of the bit-mapped
graphics feature.

In this paper, additional software expands the output
capabilities of the CRT display to include bit-mapped
graphics. No additional hardware beyond that employed
in the original lab station is required. The graphics display
provided by this expansion supplies additional features that can be used in lab assignments, and
enables students to gain experience working with a bit-mapped graphics display.

Bit-Mapped Graphics

Bit-mapped graphics displays are characterized by a one-to-one correspondence between bits in
the microcontroller memory and pixels displayed on the screen. In this case, just one bit of
memory is associated with each pixel, providing just a simple on/off control of pixels on the
screen by toggling the values of bits in memory. Some bit-mapped displays associate several
bits of memory with each pixel, allowing color and/or intensity variation on a pixel-by-pixel
basis, but the goal here is low cost and simplicity. Bit-mapped displays require allocation of a
block of bits in memory corresponding to the number of pixels on the screen. For large displays,
this can be a significant amount of memory, sometimes leading display designers to choose other
graphics techniques. However, at the screen resolution described here, the amount of memory
required is manageable.

The CRT display in the lab station is oriented with the long dimension vertically. This means
that the scanlines composing the image run vertically, with the electron beam starting at the
bottom of the screen and sweeping upwards for each scanline. Standard analog-television-type
timing is approximated here, with scanlines generated at 15.3 KHz, and 256 scanlines per frame,
or full image. A small fraction of the scanlines are “wasted” during the retrace time involved in
returning the electron beam to the left side of the screen, leaving in this case 239 scanlines
available for producing an image. The screen is refreshed 60 times per second, to match the
power line frequency, thus minimizing graphic effects on the display caused by ripple in the
CRT power supply. Of the 65 microseconds spent tracing out each scanline, a small fraction is
wasted returning the electron beam to the bottom of the screen to prepare for the next scanline,

Figure 1. Original alphanumeric display

P
age 14.282.3

resulting in about 50 microseconds of usable image time per scanline when overscan of the
screen is accommodated. Thus, the horizontal (short dimension) resolution of the graphics
screen here is limited to 239 pixels, i.e. the number of scanlines in the image. The vertical (long
dimension) resolution depends upon how quickly the electron beam can be toggled during each
scanline.

The biggest challenge in producing a bit-mapped display
on a raster-scanned CRT device is emitting the bits
representing pixels from memory to the electron gun in the
CRT fast enough to achieve adequate resolution along the
scanline. Fortunately, in the S12 microcontroller the
Serial Peripheral Interface (SPI) is particularly well-suited
to spewing a stream of bits out of the microcontroller at
high speed. With a 24 MHz clock running the S12
processor on the Dragon board, the SPI can emit bits at a
rate of up to 12 Mbits per second, resulting in about 600
pixels produced during the 50 microsecond image time
along a scanline. In order to stay within the constraints of
memory size on the Dragon board (12K bytes RAM,
minus memory needed for user programs, stack, and data)
a design decision was made to limit the bit rate of the SPI
to 3 Mbits per second, resulting in a resolution along the
scanline of 128 pixels. Thus, the bitmap image produced

by the display in this application is composed of an array
of 239 x 128 pixels. Figure 2 shows a photograph of a
graphics image produced using this system.

Software

The software for producing the 239 x 128 pixel bit-mapped graphics image on a standard CRT
screen is built around two interrupt routines, each caused by an event generated by an output
compare unit in the timing section of the S12 microcontroller. The S12 timer/counter is scaled
down to count at 3 MHz rather than the full-speed 24 MHz in order to generate interrupts slowly
enough to match the required 60 Hz rate of the frame synchronization.

Figure 3 shows the S12 assembly code for the
interrupt routine responding to 60 Hz interrupts
from output compare 0. This code first estab-
lishes the time of the next output compare 0
interrupt (lines 1-3), clears the flag bit for this
output compare (line 4), initializes some
variables for beginning the display of the bit-
map part of memory (lines 5-6), and returns.

Figure 3: 60 Hz interrupt routine

IntOC0: ldd $0050

 addd #$c400

 std $0050

 bclr $004e,$fe

 clr SLines

 movw #$2800,DspPtr

 rti

Figure 2. Bit-mapped graphics display

P
age 14.282.4

Figure 4 shows the S12 assembly code for the
more interesting interrupt generated by output
compare 1, which emits 128 bits of memory
through the SPI for every scanline on the bit-
map display. This interrupt occurs at a rate of
15.3 KHz, creating a scanline on each interrupt.
The “nop” instructions throughout the code are
present to adjust detailed timing of the
routine’s execution, and have no functional
effect otherwise. The routine begins by
establishing the time for the next output
compare 1 interrupt and clearing the interrupt
flag for the device, just as in Figure 3. The
code then counts scanlines, and turns off the
CRT’s synchronization signals produced by
output compares 0 and 1 at appropriate times to
generate the scanline sync and frame sync
pulses needed by the CRT display. After the
11th (base sixteen) scanline, image generation
begins in the OC1all loop, which extends to the
end of the interrupt service routine. In that
loop, bytes are extracted from memory
(identified by DspPtr) and emitted through the
SPI by storing to address $00dd. The “bitb”
instruction is there just to touch the SPI flag
register so that the SPI flag gets cleared before
storing the next byte for display. Time is
wasted before and after this image generation
in order to center the image on the displayed
scanlines.

Three signals connect from the Dragon board
to the CRT display. One is the video signal,
conveying bits from the SPI that control the
electron beam in the CRT, eventually
producing the pixels of the image. A second
signal is the “frame sync” signal produced by
the output compare 0 unit at 60 Hz, to cause the
side-to-side retrace of the screen in preparation
for the next frame. The third signal is the
“scanline sync” signal produced by the output
compare 1 unit at 15.3 KHz, to cause the

vertical retrace of the screen in preparation for the next scanline. These three signals keep the
CRT scanning and image generation synchronized with the information being emitted by the SPI
through the software in the interrupt service routines.

Figure 4. 15.3KHz interrupt routine.

IntOc1: nop

 nop

 ldd $0052

 addd #$0c4

 std $0052

 bclr $004e,$fd

 inc SLines

 ldab SLines

 cmpb #$10

 tpa

 lsra

 lsra

anda #$01

staa $0041

ldaa #$10

Waste: dbne a,Waste

 bset $0041,$02

 cmpb #$11

 blo OC1out

 ldaa #$48

OC1X: dbne a,OC1X

 ldx #$10

OC1all: ldy DspPtr

 ldab 0,y

 iny

 sty DspPtr

 bitb $00db

 stab $00dd

 ldab #$0e

OC1w3: dbne b,OC1w3

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 dbne x,OC1all

OC1out: rti

P
age 14.282.5

One defect in the graphics display presented here is caused by the operation of the SPI unit in the
S12 microcontroller. After emitting each byte of information serially to the video CRT signal,
the SPI needs a short “recovery” time before the next byte begins emerging. This short time is
visible as a very short light spot every eight pixels along the scanlines. This spot is smaller than
a pixel, and is not too objectionable, but it is visible, especially in a block of pixels that are all
turned dark. This small imperfection in the display is the price paid for the overall simplicity of
the design.

Lab Experiments

With a bit-mapped graphics display available, a variety of lab experiments comes to mind as
possible lab assignments in a typical microcontroller class. These range in complexity from very
straightforward tasks to sophisticated designs that exceed the capabilities of most students just
learning to program microcontrollers. Graphics applications are a rewarding technique for
improving students’ programming skills because errors in programming are immediately visible
as errors in the graphics produced by the software. This quality of bit-mapped graphics displays
makes them particularly instructive to students learning to write software, as the effects of their
programming statements are visible in the image produced by the display, providing valuable
feedback to the novice programmer. A program’s interaction with data in memory is a
fundamental part of any program, and a bit-mapped display makes that interaction visible.

Perhaps the easiest application is a simple “etch-a-sketch” program. This program starts with a
blank screen, and then just draws a line from a starting point in a direction indicated by a
keypress on the alphanumeric keyboard. The image in Figure 2 above was created with such a
program. This type of application acquaints students with the one-to-one correspondence
between pixels on the screen and bits in memory, and provides a great example that requires
dexterity in manipulating individual bits in memory. Debugging such a program is
straightforward, as in most graphics programs, because the effect of program behavior (correct or
incorrect) is immediately visible on the displayed image. This is an excellent place to start when
introducing bit-mapped graphics displays.

Games are another great source of applications for graphics displays. An easy game that is easy
to describe to students is the original “pong” game found in arcades years ago. All that is
required is the creation of a “ball” (one pixel) and some paddles that can be moved via keyboard
input. More interesting games are possible, using some sort of fixed graphic “playfield” and
some simple graphic symbols that interact in interesting ways. The sky’s the limit in creativity
here. The nice thing about bit-mapped graphics is that there is no restriction on what images are
presented. It’s just a matter of turning on the right bits in memory.

More sophisticated applications might involve positioning text on the display, or even moving
text around on the display. Character generator tables are already present in the EPROM
software used to create the alphanumeric displays of the lab station (Figure 1) so all that’s
needed is a way to access those tables, extract the information, and store it into the right bits of
memory to make characters appear on the screen. This takes a bit of effort in assembly code, but
again, debugging is easy because errors in the code are very visible on the graphics display.

P
age 14.282.6

Graphics on the level of complexity with which students are familiar on their personal computers
are beyond the reach of this low-resolution display. However, techniques for composing those
more advanced graphic images can be explored even within the simplicity of the design
described here. Extension to more marketable applications is left to the student!

Pedagogical Impact

A bit-mapped graphics display not only produces a handy output device for application
programs, but also provides a tool that enhances the pedagogical effectiveness of laboratory
exercises in a microcontroller class. The bit-mapped nature of the display physically shows the
programmer the status of bits in memory in the block of memory that is being presented on the
screen. Thus, the effect of various programming errors is immediately visible when the
application is run. Even when properly constructed, the effect of different algorithms used to
access the data can be visible in the displayed image as variations in speed of image generation
or through other characteristics of the image. Using a bit-mapped graphics display in an
application is appealing because of the glamorous result produced by the student programmer,
and students respond by spending more time optimizing their algorithmic approach rather than
being satisfied with the first solution that works. From an instructor’s point of view it also
provides feedback to the programmer that can be instructive in unanticipated ways.

Summary

Described here is a simple but workable bit-mapped graphics display using the commercial
Wytec development board and its S12 microcontroller, expanded as described in earlier ASEE
papers to include an alphanumeric keyboard and CRT display. The design requires no special
hardware beyond that required in the original alphanumeric-based lab station. Only revised
software is needed to implement the bit-mapped graphics feature. Having the bit-mapped
graphics capability opens the door to a wide variety of possible graphic-based applications that
can form the basis for lab experiments of varying complexity. Adding this graphics capability to
the lab station expands the options available to lab designers, and provides a rich environment
for educating students.

References

1. Carroll, C. R. (2008). Innovative ‘HCS12 microcontroller lab station using limited lab resources.

Proceedings of the 2008 North Midwest Section Meeting of ASEE. Platteville, WI.
2. Carroll, C. R. (2008). Innovative lab station using the Freescale ‘HCS12 microcontroller and Dragon

development board. 2008 ASEE Annual Conference Proceedings. Pittsburgh, PA.
3. Cady, F. M. (2008). Software and hardware engineering: Assembly and C programming for the

Freescale HCS12 microcontroller. Oxford University Press. New York, NY.
4. Pack, D.J. and S.F. Barrett. (2008). Microcontroller theory and applications: HC12 and S12.

Pearson/Prentice Hall. Upper Saddle River, NJ.

P
age 14.282.7

