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Abstract 

In this study we tested a novel cognitive validation strategy that yoked participants’ verbal 
protocols with their clickstream data using a problem solving assessment (IMMEX—Interactive 
MultiMedia EXercises). Participants were presented with a scenario and provided with relevant 
and irrelevant information to solve the task. Participants could access the information in any 
order and attempt to solve the problem at any time. The most frequently occurring cognitive 
processes were paraphrasing text, making accurate cause-effect inferences, and monitoring of 
problem solving behavior. Productive processes were related to success and consistent with 
scientific reasoning behavior on the task and unproductive processes were related to unsuccessful 
performance and consistent with poor reasoning. We found strong evidence of the cognitive 
validity of the IMMEX task. Components of an online process-based assessment testbed are 
identified. 

Embedded Assessment of Complex Skills 

Engineering education has been a leader in the novel use of computer-based instruction. The 
intended use of many of the applications is to increase students’ understanding of the content and 
to develop their problem solving skills in a particular content area. This is consistent with recent 
calls for engineering schools to increase students’ problem solving skills1-10. However, assessing 
cognitively complex skills such as problem solving requires use of modern assessment methods; 
typical course evaluations, anecdotal instructor evaluations, and surveys of student attitude are 
inadequate1-4.  

One method being explored is the use of computer-based instructional applications as assessment 
platforms. Essentially, the idea is to provide students with instructional tools and embed 
assessments of complex learning and problem solving in the tool. From the students’ perspective, 
the task appears instructional; however, embedded within the software are assessments of student 
performance11-15. This is a departure from most computer-based assessments, which are usually 
stand-alone assessments16-24. 
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While this approach appears intuitively obvious, using instructional applications for assessment 
purposes requires that the application meet validity criteria25-31. Further, the stringency of the 
validity criteria varies depending on the stakes involved in the assessment results. Some 
examples of how assessment results are used include diagnostics, course credit, certification, and 
selection. For the purposes of assessing students’ complex learning and problem solving, one of 
the most important validity criteria is that the task demand of participants the intended cognitive 
processes. That is, if claims are made that instruction using a particular computer-based task will 
improve students’ problem solving, then evidence of students using the intended problem solving 
processes is essential. 

Computer-Based Performance Assessments 

Computer-based performance assessments designed to measure the skills and competencies of 
examinees on complex tasks can potentially broaden the range of skills assessed while 
simultaneously increasing the precision of measurement11, 27-29, 31-34. One direction computer-
based assessments have taken is the use of complex open-ended constructed-response tasks. 
Examples include tasks that measure conceptual understanding12, 21, 35, writing17, 24, mathematical 
reasoning16, Web search skills14, 15, teamwork skills18, 22, 23, patient diagnosis20, and problem 
solving skills36-38.  

Much of the work on computer-based performance assessments has focused on feasibility issues; 
much less work has been done on exploring the cognitive demands of such tasks. By cognitive 
demands, we mean the set of cognitive processes that are required of examinees by the task. 
Cognitive complexity is a key validity requirement and underlies modern conceptions of validity, 
assessment design, and assessment validation25, 30, 31, 33, 34.  

The current study attempted to address this issue by testing a cognitive validation methodology. 
Our strategy was to focus on an existing, well-understood, and tested task. We used IMMEX 
(Interactive MultiMedia EXercises), which is a sophisticated computer-based assessment that has 
been used for instructional and assessment purposes37, 44.  

Problem solving in IMMEX. The general problem solving framework of an IMMEX task is to 
first present students with a problem scenario and then to provide students access to information 
that may or may not be useful to solving the problem. One problem solving strategy required by 
some IMMEX tasks is elimination37. Successful participants need to use data to eliminate 
candidate solutions to a problem. Effective use of this strategy is dependent presumably on 
scientific reasoning. Key cognitive processes underlying the use of the elimination strategy are 
(a) the interpretation of the available information in the context of other information and the 
problem scenario, (b) the identification of relevant information, and (c) the use of data to draw 
appropriate causal inferences and conclusions. We define problem solving as the process 
participants use to solve a problem when the solution is not immediately apparent to the problem 
solver48. Further, the elimination strategies and their underlying cognitive processes make up the 
domain-independent strategies. The domain-dependent strategies, which are not the focus of this 
research, would be the particular strategies used by participants due to the peculiarities of the 
content. 
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In the particular IMMEX problem we examined, True Roots, the scenario for the examinee is to 
use a variety of medical tests (e.g., blood typing) to determine the birth parents of Leucine (a 
character in the task). True Roots was developed by a team of biology teachers and its content 
was validated by UCLA genetics professors. Our research questions were: 

1. What are the kinds of cognitive processing participants engage in while solving the 
True Roots IMMEX problem? 

2. What is the relationship among participants’ cognitive processes and their online 
behaviors and task performance? 

METHOD 

Participants 

Eighty-nine incoming freshman participants were recruited from a major public university in 
southern California. Participants were first quarter freshmen and were paid for completing the 
study. We were interested in students closest to the high school population as the IMMEX task 
was designed for high school students. 

Of the original 89 participants, six were dropped from the analyses because of equipment failure. 
There were 33 males and 49 females overall, and the ethnic distribution was as follows: 34 Asian 
American, 26 White, 8 Latino, 6 Biracial, 1 African American, and 7 unreported. In terms of 
achievement, self-reported high school mean GPA was 4.01 (SD = 0.31), mean SAT I Math was 
669 (SD = 78) and Verbal was 631 (SD = 77). Participants reported moderate familiarity with the 
task content (M = 2.96, SD = 1.07, n = 79; 1 = not familiar, 5 = very familiar) and some 
background in the content (M = 2.43, SD = 1.01, n = 79; 1 = little or no experience, 5 = very 
experienced). 

Design 

Our focus on cognitive processing led us to use the think-aloud methodology49. We established 
two conditions, a think-aloud condition and a non-think-aloud (control) condition. We were 
concerned about potential reactive effects of talking aloud during the task. Fifty-four participants 
were randomly assigned to the experimental condition and 29 participants to the control 
condition.  

Online Tasks 

IMMEX training and assessment task. Participants practiced for five minutes on an IMMEX 
task to familiarize themselves with the user interface and task structure. The training task was 
identical in problem structure but much simpler. The assessment task, True Roots, required 
participants to apply their knowledge of genetics to solve a problem. True Roots involved a main 
character, Leucine, who suspected that she may have been switched at birth at the hospital; thus, 
she was in search of her biological parents. Participants were asked to assume the role of her 
friend and to help Leucine determine among five sets of parents the identity of her true parents. 
Participants had access to a variety of lab test procedures and information resources (i.e., non-
data information). Each lab test would, if understood and applied properly, eliminate one or two 
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sets of parents from the pool of potential parents. The students also had access to worksheets to 
record their data. If participants solved the problem correctly, they proceeded to the next problem 
(which contained the same scenario with different data and a different solution) until all five 
problems were completed. 

Measures 

Because we assumed that successful IMMEX performance required reasoning with content, we 
administered a set of measures intended to gather information on participants’ prior knowledge 
of the content and their reasoning skills. To measure prior knowledge, we developed a measure 
based on the major concepts covered in True Roots. To measure reasoning, we selected validated 
measures of scientific reasoning, inferential reasoning, and syllogistic reasoning. 

Prior knowledge. A 20-item prior knowledge short-answer measure was developed based on the 
content of the True Roots task. The format and instructions of the task were based on the 
National Center for Research on Evaluation, Standards, and Student Testing (CRESST) 
assessment development model45. All major topics in the True Roots task were covered by at 
least one item. Participants were required to provide a definition or state the significance of the 
term. Each item was scored on a 4-point scale, where 0 was awarded for no answer or for a 
response that indicated the participant missed the point and a 3 was awarded for a response that 
indicated high understanding of the term. 

Reasoning measures. We administered three reasoning measures. Lawson’s Classroom Test of 
Scientific Reasoning50 (revised 24-item multiple choice edition) was used to measure scientific 
reasoning, Part I of the nonsense syllogisms test of reasoning51 was used to measure participants’ 
ability to tell whether correct conclusions were drawn from given statements, and Part I of the 
inference test of reasoning51 was used to measure participants’ ability to tell which conclusion 
could be inferred from given statements. All items for all reasoning measures were multiple 
choice. 

Background information. A 24-item student survey was used to gather demographic 
information, high school biology course-taking history, SAT I verbal and math scores, self-
reported familiarity with the content and ease of the task, and ease and completeness of the 
think-aloud for participants in the experimental condition.  

IMMEX online measures. Online outcome and process measures were gathered from the 
IMMEX task. Table 1 lists the measures and their operationalization. The IMMEX online 
measures were computed as proportions. We reasoned that given the open-ended nature of the 
task, a proportion measure would best account for variation across individuals with respect to the 
distribution of a participant’s behavioral processing.  

Cognitive processing measures. We identified 18 indicators of cognitive processing which we 
believed distinguished high performers from low performers. However, due to low usage, only 
12 indicators were retained.  

Participants’ verbal protocols were segmented by event and coded by two raters for the 
presence/absence of any of the processes shown in Table 2. Disagreements were resolved by 
consensus.  
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Table 1. IMMEX Online Measures 
Measure Definition 

Outcome  
Percent solved The percent of cases solved. There was a maximum of five cases. The 

percent solved varied depending on the number of cases attempted. Percent 
solved = (no. solved / no. attempted).  

No. of successful solve attempts Number of times a solve attempt was successful.  
No. of unsuccessful solve 
attempts 

Number of times a solve attempt was unsuccessful. 

Processa,b:  
redundant Proportion of tests that were redundant with respect to ruling out a parent. A 

redundant test was defined as the participant accessing a test that (a) provides 
sufficient information to eliminate a particular parent, AND (b) the particular 
parent could have been eliminated by a prior test.  

data/lab tests Proportion of tests that provided data (e.g., blood typing).  
expert Proportion of tests that provided “expert” opinion. In the True Roots 

problem, experts provided conjecture or opinion. 
dictionary Proportion of tests that were from the dictionary. The dictionary provided 

definitions of terms encountered in the text. 
library Proportion of tests that were from the library. The library provided 

explanations of the different tests. 
aAll proportion measures were computed with respect to the total number of events or pages accessed. bThe term 
test refers to accessing a page in the IMMEX program. A page could contain data from a test, or it could be 
information (e.g., library). We retain the term test for convenience. 

Table 2. Categories for Event Scoring 
Cognitive process Definition 

Paraphrasing or echoing text Participant states information only, not a cause-effect relationship. Little 
or no reason or explanation is given. 

Accurate cause-effect inferences Participant attempts to explain what is going on rather than merely state 
what is happening and arrives at a correct conclusion. 

Inaccurate cause-effect inferences Participant attempts to explain what is going on rather than merely state 
what is happening but arrives at an incorrect conclusion. 

Evaluating information Participant evaluates the validity of a relation or the content without 
making inferences. Can be correct, incorrect, or indeterminate. 

Clarifying gaps in knowledge Participant attempts to find answers to questions. This usually involves 
library or dictionary referencing. 

Judgments of information relevancy Participant differentiates between relevant and non-relevant 
information. Selective in the steps taken to solve the problem and 
accesses information that is most useful. 

Confusion Participant asks questions or makes statements which reflect confusion 
about the content. 

Awareness of failure to understand Awareness of failure to understand individual meaning of content. 
Verifying information Participant double checks understanding of conclusion. 
Monitoring problem solving Participant is aware of task goals and one’s progress toward the goals. 

 

An event was defined as an uninterrupted clickstream within the same family of tests, as shown 
in Table 3. Table 3 shows the clickstream that would result in three different events—fingerprint, 
pedigree, and birth certificates. Synchronizing the clickstream with verbal protocols allowed us P
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to yoke participants’ online behavior to their cognitive processing. As with the online measures, 
the cognitive processing measures were computed as proportions.  

Table 3. Example of an Event, Clickstream, and Protocol 
Event Clickstream Participant’s verbal protocol 

1 fingerprint/leucine 
1 fingerprint/watson 
1 fingerprint/cayetano  

 ... Fingerprints. Leucine. Arch... Watsons... The mom has a loop, the dad 
has an arch... Fingerprints. Leucine, Leucine... R times r. This is all...  

2 pedigree/ikeda Ikeda’s family... Ikeda’s family.  
3 birth certificate/leucine ... Boy, girl, girl.  

 

Procedure 

Participants were assigned randomly to conditions. Participants in the think-aloud condition were 
tested one at a time, and participants in the control condition were tested two at a time. 
Participants were first introduced to the study, signed consent forms, and were administered 
three reasoning measures and the prior knowledge measure. Participants in the think-aloud 
condition were then trained in talking aloud while participants in the control condition advanced 
to the training task. The training task was followed by the assessment task. After the assessment 
task, participants were administered the background survey. The entire session lasted up to 105 
minutes. 

RESULTS 

The first set of analyses examined the kinds of cognitive processing participants used while 
engaged in the True Roots task, and the second set of analyses examined the relationship among 
the cognitive processes, behavioral online measures, and the task outcome measures. 

Manipulation check. Prior to conducting analyses, we examined the IMMEX performance data 
for condition differences between the think-aloud and control conditions. We were concerned 
about potential reactive effects of the think-aloud procedure. Participants in the think-aloud 
condition were asked of their perception of the ease of talking aloud (M = 3.75, SD = 1.29, 1 = 
not easy, 5 = very easy) and completeness of talking aloud (M = 3.73, SD = 0.94, 1 = not 
complete, 5 = very complete). Participants in the think-aloud condition reported slightly higher 
perception of task difficulty (M = 2.25, SD = 1.08, n = 52; 1 = not difficult, 5 = very difficult) 
compared to the control condition (M = 1.89, SD = 0.70, n = 27), although this difference was 
not significant. With respect to other variables, there was significant difference on the online 
process variable (number of successful solve attempts) favoring the control condition, t(79.83) = 
3.53, p < .001, and a difference approaching significance on the proportion of tests that accessed 
the prolog, t(1.87), p < .07. Separate analyses using neural network classification showed gender 
effects within each condition. Thus, in subsequent analyses we include data only from the think-
aloud condition and acknowledge that the data may not generalize to a non-think-aloud setting. 

What are the kinds of cognitive processing students engage in while solving IMMEX 
problems? To answer this question, we conducted several analyses of participants’ cognitive 
processing as they engaged in the IMMEX task, their online behaviors, and their post -task self-
reports. 
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Analyses were conducted on participants’ think-aloud protocols to determine the specific kinds 
of processing participants used while they engaged in the task. Table 4 shows descriptive 
statistics and correlations among the 12 cognitive processing variables. As shown in Table 4, 
94% of participants’ cognitive processing was accounted for by the 12 processes. The three most 
frequently occurring processes were paraphrasing or echoing text, making accurate cause-effect 
inferences, and monitoring problem solving behavior.  

Table 4. Descriptive Statistics and Intercorrelations (Spearman) of Participants’ Cognitive Processes (n = 46) 
Cognitive processa M SD 1 2 3 4 5 6 7 8 9 10 11 

1. Paraphrasing or 
echoing text .18 .07 –           

2. Accurate cause-effect 
inferences .13 .06 -.38* –          

3. Inaccurate cause-
effect inferences .03 .02 -.05 .14 –         

4. Accurate evaluation 
of information .09 .06 -.19 .71** -.01 –        

5. Indeterminate 
evaluation of 
information .04 .03 -.15 .44** .15 -.10 –       

6. Inaccurate evaluation 
of information .04 .03 -.11 -.01 .44** -.39** .29 –      

7. Clarifying gaps in 
knowledge .06 .05 .36* -.50** -.38* -.30* -.34* -.21 –     

8. Judgments of 
information relevancy .07 .04 -.43** -.19 .00 -.21 -.08 .08 -.22 –    

9. Confusion with 
content .09 .06 .10 -.56** -.22 -.45** -.20 -.08 .47** -.02 –   

10. Awareness of failure 
to understand .04 .03 .00 -.37* -.38** -.33* -.16 -.03 .29 .17 .17 –  

11. Verifying information .06 .04 -.11 -.07 .09 -.02 -.07 .16 -.24 .06 -.29* -.19 – 
12. Monitoring problem 

solving behavior .11 .05 -.26 .20 .19 .02 .20 .12 -.37* .14 -.42** -.12 .12 
aProportion measure. 
*p < .05 (two-tailed). **p < .01 (two-tailed). 
 

An interesting set of relationships was observed between the cognitive processing and 
background and reasoning measures. Positive relationships were found between cognitive 
processes that suggest understanding and measures of prior knowledge and reasoning. For 
example, participants’ use of accurate cause-effect inferences and accurate evaluation of 
information were positively and significantly related to prior knowledge (rsp = .39, p < .01; rsp = 
.35, p < .05), scientific reasoning (rsp = .38, p < .05; rsp = .36, p < .05), and inferential reasoning 
(rsp = .31, p < .05; rsp = .33, p < .05). The mean score of the scientific reasoning measure was 
16.02 (SD = 3.47, max. = 22) and the mean score of the inferential reasoning measure was 6.46 
(SD = 1.82, max. = 10). 
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Conversely, negative relationships were found between cognitive processes that suggest shallow 
processing or lack of understanding and measures of prior knowledge and reasoning. For 
example, paraphrasing or echoing text were negatively related to scientific reasoning (rsp = -.31, 
p < .05) and inferential reasoning (rsp = -.29, p < .05). Clarifying gaps in knowledge was 
negatively related to scientific reasoning (rsp = -.32, p < .05) and confusion with content was 
negatively correlated with the SAT I verbal measure (rsp = -.47, p < .01) and syllogistic 
reasoning (rsp = -.35, p < .05). The mean score for syllogistic reasoning measure was 8.72 (SD = 
2.54, max. = 10). These relationships are consistent with the interpretation that our coding 
scheme captured processing related to reasoning. 

As shown in Table 5, 87% of participants’ online processing was accounted for by the five 
online processes. The most frequent test participants conducted was lab tests, accounting for 
72% of participants’ online behavior. Also shown in Table 5 is the percent solved. In general, 
participants were successful on the IMMEX task, solving four out of five cases. Interestingly, the 
number of successful solve attempts was negatively and significantly related to participants’ use 
of the experts, library, and dictionary. 

Table 5. Descriptive Statistics and Intercorrelations (Spearman) for IMMEX Online Measures (n = 46) 
Measure M SD 1 2 3 4 5 6 7 

1. Percent solved .79 .29 –       
2. No. of successful solve attempts 3.80 1.56 .86** –      
3. No. of unsuccessful solve attempts 2.91 2.46 -.47** -.45** –     
4. Prop. of tests that were redundant .09 .07 -.20 -.27 .36* –    
5. Prop. of tests that were lab/data 

related .72 .08 .28 .42** -.24 -.00 –   
6. Prop. of tests that were experts .08 .04 -.21 -.31* .01 .08 -.65** –  
7. Prop. of tests that were library .05 .04 -.17 -.37* -.08 .14 -.58** .24 – 
8. Prop. of tests that were dictionary .02 .02 -.04 -.16 -.04 .09 -.54** .19 .51** 
*p < .05 (two-tailed). **p < .01 (two-tailed). 

What is the relationship among students’ cognitive processes, online behaviors, and task 
performance?  Table 6 presents correlations between participants’ cognitive and online 
processes. The most striking finding of these analyses is the degree of internal consistency and 
the magnitude of the correlations between what participants were doing and their thinking 
processes. That is, success on the True Roots task, as measured by percent solved or the number 
of successful solve attempts, was correlated significantly with substantive cognitive processes 
(accurate cause-effect inferences, accurate evaluation of information). This finding is consistent 
with the idea that the IMMEX task evokes causal (i.e., scientific) thinking from learners. Poorer 
performance (but not necessarily lack of success) on True Roots, as measured by the number of 
unsuccessful solve attempts, was related significantly and negatively with substantive cognitive 
processing (accurate cause-effect inferences, accurate evaluation of information), and positively 
with confusion and inaccurate evaluation of information. 
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Table 6. Spearman Correlations Between Cognitive Processes and IMMEX Online Measures (n = 46) 

   
Number of solve 

attempts  Type of testa 

Cognitive processa 
% 

solved  
Suc-

cessful 
Unsuc-
cessful   

Redun-
dant 

Lab/ 
data 

related 
Ex-

perts 
Lib-
rary 

Dictio-
nary 

1. Paraphrasing or echoing text -.13 -.23 -.01 .29 -.44** .46** .43** .21 
2. Accurate cause-effect 

inferences .52** .68** -.45** -.32* .58** -.29 -.51** -.37* 
3. Inaccurate cause-effect 

inferences -.10 -.05 .21 .08 .17 -.12 -.41** -.31* 
4. Accurate evaluation of 

information .40** .52** -.52** -.27 .42** -.16 -.13 -.29* 
5. Indeterminate evaluation of 

information .36* .34* -.08 -.18 .34* -.27 -.45** -.24 
6. Inaccurate evaluation of 

information -.15 -.02 .48** .02 .03 -.14 -.49** -.09 
7. Clarifying gaps in 

knowledge -.23 -.37* .09 .11 -.52** .13 .68** .60** 
8. Judgments of information 

relevancy -.17 -.16 .10 -.10 -.05 -.03 .04 .00 
9. Confusion with content -.23 -.32* .32* .28 -.19 -.14 .29 .35* 
10. Awareness of failure to 

understand -.20 -.20 .10 .23 -.18 .01 .23 .29 
11. Verifying information .02 -.01 .15 -.09 .01 .07 -.21 -.23 
12. Monitoring problem solving 

behavior .21 .25 -.03 -.06 .13 .03 -.25 -.19 
aProportion measure. 
*p < .05 (two-tailed). **p < .01 (two-tailed). 
 

A second set of relationships that offer strong support for the cognitive validity of True Roots is 
seen in the relationships between cognitive processing and the behavioral online measures. These 
relationships were consistent with prior studies37. Participants’ use of data/lab tests was 
positively related to successful solve attempts, and accurate cause-effect inferences and 
evaluations of information, and negatively related to the use of paraphrasing or echoing text and 
clarifying gaps in knowledge. Interestingly, the use of the library and dictionary resources were 
negatively related to the use of scientific reasoning processes and positively related to the 
proportion of statements reflecting simple processing, confusion, or clarification of gaps in 
knowledge. 

Summary. The set of cognitive processes identified as being evoked by True Roots provide 
compelling evidence for the efficacy of True Roots as a complex task demanding substantive 
cognitive processing from participants. Further, our findings that accurate cause-effect inferences 
and accurate evaluations of information (i.e., tests) were positively and significantly related to 
the number of successful solve attempts and negatively and significantly related to the number of 
unsuccessful solve attempts support the idea that scientific reasoning was an important factor in 
being successful on the task.  
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In addition, the set of relationships between cognitive processing and online process measures 
suggest a potential profile of participants. Successful participants engaged in proportionally more 
scientific reasoning than less successful participants. In general, successful participants relied on 
more laboratory/data tests and less on resource materials (i.e., experts, library, dictionary). 
Further, successful participants exhibited less confusion and had less of a need to fill gaps in 
their knowledge. In contrast, less successful participants misinterpreted information, were 
confused, and were unsuccessful at eliminating parents even though the tests they were using 
could have eliminated a parent.  

DISCUSSION 

In this study we gathered evidence of the types of cognitive processing participants evoked while 
engaged in the IMMEX True Roots task and examined the relationship among cognitive 
processes, online behaviors, and task performance.  

Limitation of this study. The main limitation of this study is in the finding of a possible reactive 
effect of the think-aloud procedure. Participants’ self-reports of the ease (M = 3.73, SD = 0.94, 1 
= not easy, 5 = very easy) and completeness (M = 3.75, SD = 12.9, 1 = not complete, 5 = very 
complete) of the think-aloud procedure indicate a possible perceived effect. In addition, some 
differences were found between the control and think-aloud conditions, particularly in a gender 
by condition effect in the sequence of steps participants used in the task. Thus, caution is 
warranted when interpreting our findings—the findings may not generalize to a non-think-aloud 
condition.  

Cognitive validation of IMMEX True Roots. In general, our findings provide strong support 
for the cognitive validity of the IMMEX True Roots task. We found strong evidence that the task 
evoked scientific reasoning from successful participants—that is, successful performance was 
associated with accurate causal inferences, accurate evaluation of information, and use of 
data/lab tests. Just as interesting are the relationships found with respect to less successful 
performance: Less successful performance was associated with inaccurate causal inferences, 
inaccurate evaluation of information, confusion, and expressing the need to clarify gaps in 
knowledge. Furthermore, these processes were strongly related to the use of resources—library, 
dictionary, or experts.  

Towards a cognitive process validation methodology for online assessments.  This study 
tested a method to validate assessments using think-aloud and clickstream data. As our findings 
suggest, participants’ clickstream were strongly related to their cognitive processes. This is an 
important finding because to date, most online assessments rely only on aggregated clickstream 
data if used at all. In contrast, this study synchronized examinee’s moment-to-moment online 
behavior with their moment-to-moment cognitive processing.  

However, not all clickstream data may be equally useful. We think the structure of the IMMEX 
task and user interface have several important characteristics that enabled the clickstream data to 
be useful. First, the general architecture of the IMMEX task provided opportunities for 
participants to demonstrate understanding and opportunities to demonstrate lack of 
understanding. That is, accessing the data/lab test is a necessary condition for solving the 
problem, and material in the library and dictionary provide necessary background information 
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for someone unfamiliar with the content. Accessing ancillary material (e.g., experts) is 
unproductive. Systematic access of all three types of information over time yields different 
information about the examinee.  

The second key feature is that the IMMEX architecture unambiguously captures intentional acts. 
That is, how to access the data/lab tests is visible and obvious to the examinee, and thus its use 
can be inferred as an intentional act. This is a critical feature because presumably, the act of 
clicking reflects the result of the examinee’s reasoning and judgment. Finally, the grain-size of 
the information presented to the user is unambiguous. Each screen presents a single topic to the 
learner (vs. multiple topics); thus, there is little doubt about the content the examinee is viewing. 

The important point is that judicious design of the user interface provides unique measurement 
opportunities, particularly in measuring intentional acts and the subsequent confidence in 
inferences drawn about processes underlying those acts. To the extent that the solution of the 
problem is tied directly to the information in the resource and less to prior knowledge or other 
individual difference variables, we think participants’ ongoing use of the resources coupled with 
their ongoing measures of performance can be used as proxies for scientific reasoning, poor 
reasoning, and learning of content.  

CONCLUSION 

As the use of computer-based instruction increases, we expect assessment functions to be 
embedded into the instructional application. As engineering schools move toward 
ABET/EC2000 compliance, we anticipate a movement toward gathering a variety of evidence 
(vs. a single grade or survey), increasingly from on-line performance-oriented tasks, to better 
uncover what students are learning, the depth of their learning, and the process they are using to 
learn. One potential method to simultaneously satisfy instructional and assessment goals is to 
embed assessments within the instruction. Our findings demonstrate that students’ online 
behavior are systematically related to their cognitions, offering a promising approach to 
measuring the cognitive processes underlying complex performance. 
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