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I. Abstract 
 

A heat transfer problem can be analytically described by setting up a differential 
equation. However, in most circumstances, an analytical solution for the differential 
equations cannot be obtained. The differential equations can be solved by computerized 
numerical techniques, or another computer based method such as the finite difference 
technique can be used. The finite difference method is based on replacing a differential 
equation by a set of n algebraic equations for the unknown temperatures at n selected 
points in the medium and the simultaneous solution for these equations. 
 
The most commonly used technique for solving static and dynamic structural analysis 
problems is the finite element method. In the finite element method, the structural 
behavior is mathematically formulated using matrices.  
 
A lack of understanding of fundamental theories and mathematical formulation methods 
behind the computerized techniques such as the finite difference and the finite element  
modeling can lead to incorrect uses of these tools, and consequently leading to wrong 
answers. Therefore, from an educational point of view, it is helpful to manually setup 
problems the way computers do and to manually solve them. However, the manual 
approach can become very time consuming. The MATLAB software has the capability to 
speed up the manual process. 
 
The theme of this paper is to describe the theoretical approach behind the computer 
modeling techniques and discuss the use of MATLAB as an educational tool to be used 
in helping students understand the theory behind computerized techniques used for heat 
transfer and structure analysis. Examples and discussions of correct and incorrect uses of 
the finite difference and finite element techniques are presented. Suggestions for 
modifications to an engineering and/or engineering technology curriculum for achieving 
the outlined goals are also made. 
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II. Introduction 
 

Simple heat transfer problems involving simple geometries and simple boundary 
conditions can be solved by analytical techniques. Analytical solution techniques involve 
setting up the governing differential equations for the heat transfer problem, and then 
solving the equation for the given boundary conditions. However, most problems 
encountered in engineering practice involve complicated geometries with complex 
boundary conditions and cannot be solved analytically. In such cases, approximate 
solutions can be obtained by computers using numerical methods. Numerical methods as 
related to the finite difference formulation of heat transfer problems, are based on 
replacing a differential equation by a set of n algebraic equations for the unknown 
temperatures at n selected nodes. The n simultaneous equations are then solved providing 
the temperature for the n nodes. 
 
A static structural problem can be setup in matrix form using the finite element 
technique. The dynamic behavior of a structure can also be written in matrix form. The 
solution of the matrices provide stress levels for the static condition, and provide dynamic 
properties such as the natural frequencies, and forced response levels. 
 
Commercially available software packages contain finite difference and finite element 
capabilities. However, the user of a commercial finite difference and/or a finite element 
software product must have a fair understanding of the theory behind the development of 
the software in order to correctly use the software.  
 
In order to gain an adequate understanding of the techniques, one has to set up and solve 
a fair number of problems manually before attempting to use the commercial product. 
However, the manual solution of the problems can be very time consuming. This article 
discusses using MATLAB as an aid in solving the manual problems. 
 
The article presents examples of correct and incorrect uses of the finite difference and 
finite element techniques. The article also discusses possible curriculum modifications 
for accomplishing the outlined goals. 
 

III. Finite Difference approach for formulation of heat transfer 
problems 

 
The finite difference method is based on replacing derivatives by differences. A heat 
transfer formula consists of a differential equation. In the finite difference method, the 
derivatives in the differential equations are replaced by differences. For example, it can 
be shown that the finite difference formulation for a one-dimensional steady heat 
conduction is as shown in equations (1) and (2). Figure 1 is a schematic that clarifies the 
notations used in equations (1) and (2). Equations (1) and (2) are derived assuming the 
temperature variation between the nodes is linear.1 
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Figure 1: Illustration of the finite difference technique1 

 
Manipulating equations (1) and (2) result in equation (3). Equation (3) is the finite 
difference formulation for an interior node, as shown in figure 1.1
 

 
 
In equations (1), (2) and (3) k represents the thermal conductivity of the material, and ġm 
represents the rate of internal heat generation. 
 
The relationship shown in equation (3) requires the presence of nodes on both sides of the 
node under consideration. Therefore, equation (3) is not applicable to the nodes on 
boundaries. 
 
Equation (4) is the finite difference formulation for a left node for a one dimensional 
steady conduction heat transfer. Figure 2 is the schematic diagram for the finite 
difference formulation of the left boundary defined by equation (4). In equation (4), ġ0 is 
the rate of internal heat generation.  
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Figure 2: Schematic diagram for a finite difference formulation for the left 

boundary for a one dimensional steady-state conduction heat transfer1

 
The finite difference formulation for convection and radiation can be obtained by 
including their effect in the boundary condition. Equation (5) is the finite difference 
formulation involving convection on the left end, and equation (6) is the finite difference 
formulation involving radiation on the left end. Figure 3 shows the notations used in 
equations (5) and (6).1
 

 
 
 

 
 
 
 

 
Figure 3: Inclusion of convection heat transfer and radiation heat transfer 

as boundary conditions on the left node of a 
finite difference formulation1 
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The finite difference formulation of interior nodes generates M-1 equations for the 
determination of temperatures at M+1 nodes. The additional two equations are obtained 
by using two boundary conditions. Therefore, M+1 equations are obtained for M+1 
nodes.1
 
The finite difference formulation can also be used for two and three dimensional heat 
transfer scenarios. Figures 4 and 5 illustrate the concept. 

 
Figure 4 

The nodal network for the finite difference formulation of 
two-dimensional conduction in rectangular coordinates1 

 
 

 
Figure 5 

The volume element of a general interior node for 
two-dimensional conduction in rectangular coordinates1 

 
IV. Finite Element approach for formulation of static stress analysis 

problems 
 

In its simplest form of explanation, the finite element technique can be described as 
breaking a structure up into smaller elements, finding the stiffness properties of the 
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smaller elements, and writing deflection equations for the resulting equivalent springs 
producing the same deflections and rotations under the same loading conditions.  
As an example, consider the spring assembly shown in figure 6. 

 
Figure 6 

Spring assemblage used for demonstrating the  
finite element technique2 

 
In the example of figure 6, node 1 is fixed, and axial force F3x and F2x are applied as 
shown. The deflection equation for element 1 is shown in equation 7, and for element 2 in 
equation 8.2 

 

 
 

 
 
Equations 7 and 8 can be combined to form equation 9 which represents the whole 
system shown in figure 6.2
 

 
 
A solution of equation 9 provides the displacements at the nodes, and from the 
displacements, the stresses can be determined. 
 
As it is demonstrated in this section, the finite element technique will ultimately involve 
the solution of an nxn matrix.  
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V: Finite Element approach for formulation of vibration analysis 
problems 

 
The general equation of motion for a single degree of freedom vibrating system with 
viscous damping can be expressed as shown in equation (10).3

 
)(tpkuucum =++                        (10) 

 
In equation (10), m is the mass, c is the damping coefficient and k is the stiffness for the 
single degree of freedom vibrating system. p(t) is the excitation force applied to the 
system as a function of time. u, and  are the displacement, velocity and acceleration 
of the single degree of freedom system respectively. Figure 7 is an illustration of a 
generalized single degree of a freedom system.

u u

3

 

 
Figure 7: (a) Single Degree of Freedom (SDOF) system with viscous damping 

(b) Partial free-body diagram of the SDOF system3 

 
The general equation of motion for a multi degree of freedom system can be expressed in 
matrix form as shown in equation 11.3 

 
)}({}]{[}]{[}]{[ TPUKUCUM =++                  (11) 

 
In equation (11), [M] is the mass matrix, [C] is the damping matrix and [K] is the 
stiffness matrix. {P(T)} is the excitation force matrix as a function of time. {U}, {U } 
and {U } are the displacement, velocity and acceleration matrices respectively. Assuming 
“n” defines the number of degrees of freedom of the vibrating system, the size for 
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matrices [M], [C] and [K] are (n x n), and the size for matrices {U}, {U }, {U } and 
{P(T)} are (n x 1). 
By using the principle of virtual work, one can model a vibrating system in terms of finite 
elements and develop equations of motion for the finite elements in the format of 
equation (11).3

The degrees of freedom for the finite element formulation can be either displacement or 
rotation at the finite element nodes.3

The finite element equations include energy-equivalent mass, damping, stiffness and 
nodal forces for a typical finite element.3

 
VI. Using MATLAB as an aid in solving finite difference and finite 

element formulations manually 
 

As it has been shown in sections III, IV and V of this article, a solution for a finite 
difference and/or a finite element formulation involves solving n equations for n 
unknowns. The solution of n equations for n unknowns lends itself to formulation by 
linear algebra in matrix format. 
 
MATLAB has extensive matrix manipulation capabilities. These capabilities consist of 
the following list:4

 
1. Creation of any size matrix (limited by computer memory) 
2. Performing addition, subtraction, multiplication and division operations for 

matrices. 
3. Finding inverse of a matrix. 
4. Solving equations described in matrix forms. 
5. Finding eigen values and eigen vectors for a matrix. 

 
The capabilities listed in items 1 through 5 allow for a more efficient manual solution to 
any manually setup finite difference and/or finite element formulation. 
 

VII. Using MATLAB as an aid in solving heat transfer problems 
involving differential and/or partial differential equation formulations. 

 
MATLAB also has extensive capabilities for providing a numerical solution for almost 
any type of differential and/or partial differential equation regardless of the level of 
complexity.4
 

VIII. Discussions of correct and incorrect uses of finite difference and 
finite element techniques 

 
This section contains examples of some of the more common areas of potential misuse of 
the finite difference and finite element techniques resulting in inaccurate solutions. 
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Example 1: A semi-infinite solid is initially at temperature T0. The solid is then suddenly 
exposed to an environment having a temperature Te and a surface convection coefficient 
h. Determine the temperature distribution through the solid after 2 seconds. Figure 8 is a 
sketch of this problem. 

 
Figure 8: Sketch of Problem of Example 15 

 
This is a combined conduction and convection transient heat transfer condition. Figure 
9 shows the finite difference model for this problem. In order to obtain an accurate 
solution, the density of nodes at the top of the model has to be higher than the bottom of 
the model. The reason for the higher density for the nodes at the top is the fact that the 
majority of the initial temperature change is taking place at the top of the infinite 
medium. The physics and the mathematics behind the necessity of needing nodes closer 
to one another in the areas of rapid heat transfer activity can be explored quickly by 
using MATLAB. Using MATLAB eliminates the need for engineering students to 
develop their own computer programs in order to explore such concepts. Not choosing 
the proper node density in a finite difference formulation is a common cause of getting 
numerically inaccurate results. 
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Figure 9: Finite Difference Model of Problem of Example 15 

 
Example 2: Figure 10 is the model for a static stress analysis of a die.6 As shown in 
figure 10, a high  element density at areas of sudden geometric irregularities (such as 
the .25 in. radius) is required in order to get accurate stress values due to static 
loading conditions. However, a choice of high element density will be an incorrect 
choice for a dynamic analysis of the geometry shown in figure 10. A high element 
density in dynamic analysis will not lead to more accurate results and will waste a fair 
amount of computational resources. Using MATLAB eliminates the need for an 
engineering student to develop his/her own computer program for exploring and 
understanding the consequences of different finite element modeling techniques.
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Figure 10: Finite Element model of a high-strength steel die6 

 
IX: Recommended curriculum changes 

 
In order to properly teach the concepts described in this article, the students need to have 
certain background knowledge.  
 
The required mathematical knowledge are differential equations, partial differential 
equations, linear algebra covering the concepts of eigen values and eigen vectors, and 
computerized numerical techniques. These topics can be taught and/or reinforced in an 
applied engineering mathematics course at the junior level. The prerequisite for such a 
course should be the standard freshman and sophomore level mathematics and 
introductory computer programming courses that are commonly taught in most 
engineering and/or engineering technology curriculums. 
 
The concepts of finite difference and finite element modeling techniques can be taught in 
a senior level course. The prerequisite for such a course should be the standard heat 
transfer, strength of materials and vibration analysis courses that are commonly taught in 
most mechanical engineering and/or mechanical engineering technology curriculums 
along with the applied engineering mathematics course suggested by the author.  
     

X: Summary and conclusion 
 

This article describes the setting up of heat transfer problems in their differential equation 
forms and then using the finite difference technique for obtaining approximate numerical 
heat transfer formulations in matrix form. 
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This article also describes the process of obtaining matrix formulations for both static and 
dynamic analysis of structures. These matrix formulations are known as the finite 
element analysis technique.  
 
There are commercial finite difference and finite element packages. However, a lack of 
understanding of the theory behind these techniques often times lead to incorrect uses of 
the software. This article discusses some of the correct and incorrect approaches to 
selected finite difference and finite element scenarios. 
 
In order to learn the theory behind using the software, a fair number of problems must be 
manually setup in the finite difference and finite element formats and solved manually. 
However, the manual process can become very time consuming. This article summarizes 
the capabilities of the commercially available MATLAB software as they relate to 
solving heat transfer and structural problems. 
 
The article also discusses suggested curriculum changes that may be necessary for 
accomplishing the outlined goals. 
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