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Abstract
The use of user-friendly interactive regression software enables undergraduate engineering
students to reach a high level of sophistication in regression, correlation and analysis of data.  In
order to interpret correctly the results, the students must be familiar with potential causes for
poor fits in correlations, should be able to recognize a poor correlation and improve it if possible.
They should also be aware of the practical consequences of using a correlation which has no
statistical validity.

In this paper, the harmful effects of numerical error propagation (resulting from collinearity
among the independent variables) are explained and demonstrated.  Simple methods for
minimizing such error propagation in polynomial regression are introduced.  This material can be
presented, for example, as part of 3rd year undergraduate mathematical modeling and numerical
methods course.

Introduction

Realistic modeling and accurate correlation of experimental data are essential to sound
engineering design.  Many of the statistical techniques for analyzing the accuracy of the
correlations have been known for several decades (see, for example, Draper and Smith, 1981,
Himmelblau, 1970, Bates and Watts, 1988 and Noggle, 1993).  But, until recently, those
techniques have not been utilized in a significant level in undergraduate engineering education.
One of the main reasons for not utilizing those techniques was that statistical tests usually yield
numbers (variance, standard deviation, correlation coefficient, etc.).  The meaning of these
numbers can be easily misinterpreted if the statistical theory and the assumptions made in
developing the tests are not well understood.

The emergence of software packages with interactive regression and statistical analysis
capabilities (such as POLYMATH, MATLAB, MATHEMATICA, EXCEL) which provides both
numerical and graphical output changes the situation.  These software packages enable
undergraduate engineering students, with moderate statistical background, to carry out rigorous
regression and statistical analysis of data.  They are able to select the most appropriate correlation
 model and test its statistical validity using residual and confidence region plots.  They can
analyze the quality and precision of the laboratory data by plotting one independent variable
versus the others to detect hidden collinearity that may exist among the variables.
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Shacham et al (1996) had described a set of lectures and exercises that  is used to introduce
freshman engineering students to the basics of data modeling and analysis using interactive
software packages.  This material is included in an introductory computing course or as part of an
introductory engineering course.  The introduction to data modeling and analysis (described by
Shacham et al, 1996) includes the following subjects:

 1. Basic statistical concepts.
 2. Discrimination between real experimental data and smoothed interpolated data.
 3. Using residual plots and confidence intervals for selecting the most appropriate model.
 4. The dangers of extrapolation, in particular, when a non-theory based model is used.

This introductory material is very helpful to the students for modeling and analyzing their own
data.  However, they may need more advanced material when dealing with, for example, models
containing large numbers of parameters.

In this paper, more advanced material related to regression is presented.  The discussion includes
models which are comprised of a sum of functions of the same independent variable (as in
polynomial regression).  Various effects of the interdependency between these functions are
described and demonstrated.

The material presented is taught to third year, undergraduate Chemical Engineering students at
the Ben Gurion University as part of a mathematical modeling and numerical methods’ course.

The calculations involved in solving the examples presented have been carried out using the
POLYMATH 4.0 (Shacham and Cutlip, 1996) and MATLAB (MathWorks, 1992) packages, but
other similar packages can be used for this purpose.

Linear Regression with Models Comprising of Functions of One Independent Variable

Let us assume that there is a set of N data points of a dependent variable (measured variable,
such as vapor pressure, viscosity, heat capacity, etc.), yi versus an independent variable

(controlled variable, such as temperature,. concentration, pressure) xi, i = 1, 2,… N. A regression
model comprised of a linear combination of n different functions of the independent variable is
considered.  Thus, the regressors are x1 = f1 (x), x2 = f2(x)… xn = fn (x).  For instance, in

polynomials  x1 = x0, x2 = x,… xn = xn–1.

A linear model fitted to the data is of the form:

yi = β0+β1x1i + β2x2i  
… +  βn xni +∈i (1)

where β0, β1, …βn  are the parameters of the model and ∈i is a measurement error in  yi.  It is
assumed that ∈i is independently and identically (i.i.d.) distributed. The vector of estimated

parameters )ˆˆ,ˆ(ˆ
10 n

T βββ= Κβ  is usually calculated using the least squares error approach, by

minimizing the following function:
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If the parameters appear in a linear expression (as in eq. (1)), the minimization can be carried out
by solving a set of simultaneous linear algebraic equations (the normal equation):

yXXX TT =β̂ (3)

The columns of  X are: x0 = 1, x1, x2 … x n  and XT X = A is the normal matrix.

To check the goodness of the fit between the observed yi and estimated iŷ  values of the

dependent variable, they can be plotted versus xi (when there is a single independent variable) or
versus i, the point number (when there are several independent variables). The distance between
the observed and estimated values can serve as an indication for the quality of the fit.   These
distances can be amplified using a “residual plot”. In the residual plot, the model error (residual)

iε̂  is plotted usually versus yi, where:

iii yy ˆˆ −=ε (4)

A random distribution of the residuals around zero indicates that the model correctly represent
the particular set of data. A definite trend or pattern in the residual plot may indicate either a lack
of fit of the model, or that the assumption of random error distribution for the dependent variable
is incorrect. In some cases (for example, in cases where the value of the dependent variable
changes by several orders of magnitude over the range of interest) the relative error is distributed
normally. The relative error is defined as:

i

i
ir y

ε=ε
ˆ

ˆ (5)

The appropriate transformation, which results in minimization of the relative error in a
regression, is taking the logarithm of both sides of the model equation.  It should be emphasized,
however, that when the variables are transformed, the residual plot must be constructed using the
transformed form of the dependent variable, in order to account for the change in the error
distribution introduced by the transformation.

A numerical indicator for the quality of the fit which is used most frequently is the square of
standard error of the estimate, which represents the sample variance, and is given by:
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Thus, the sample variance is the sum of squares of errors divided by the degrees of freedom
(where the number of parameters, n+1, is subtracted from the number of data points, N) and is a
measure for the variability of the actual y values from the predicted ŷ  values. Smaller variance
indicates a better fit of the model to the data.

Confidence intervals (in particular the 95% confidence interval) on the parameter values can be
very useful indicators of the fit between the model and the data. A better fit and more precise
data lead to narrow confidence intervals, while a poor model fit and/or imprecise data result in
wide confidence intervals. Furthermore, confidence intervals which are larger (in absolute value)
than the respective parameters themoften indicate that the model contains too many parameters.
Confidence interval is defined by:

( ) ( ) jjjjjjj astast αν+β<β≤αν−β ,ˆ,ˆ (7)

where t (ν, α) is the statistical t distribution corresponding to ν degrees of freedom
(ν=N−(n+1)) and a desired confidence level, α and s is the standard error of the estimate.  If the
number of data points is large enough, the value of t approaches a constant value (for ν > 15, t ∼
2 for the 95% confidence interval). Therefore, t (ν, α) is often omitted.  The term jjas  is called

the standard error of the estimate of parameter β.

One of the assumptions of the least squares error approach is that there is no error in the
independent variables.  This is rarely true, however.  Most reports on experimental measurements
include estimated error in the independent variable.  If such an estimate is not included, a lower
limit on the error can be estimated from the number of decimal digits in which the data are
reported. (For example if the temperature is reported with one digit after the decimal point in
degrees K, then the error is at least ± 0.05K).  Thus, the true value of an independent variable can
be represented by:

iii xxx δ+= ~ (8)

where ix~  is the expected measured value and δ xi is the error (or uncertainty) in its value. The

error in the independent variable is, of course, carried over to its functions.  The error in the
different functions can be estimated from:
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where δxji is the estimated error in the jth function of  xi.

The errors in x and its functions are carried over to the normal matrix and to the XT y term in eq.
(3).  These errors can propagate during the solution process of eq. (3) yielding inaccurate and
unstable parameter estimates.  Denoting b = XT y, the errors in the calculated parameter values,

β̂δ  are bounded by (p. 176 in Dahlquist et al,  1974):
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where κ (A) is the condition number of the normal matrix and δA is the matrix of errors in A.  A

similar equation relates the error in b, δb, to the error βδ ˆ :
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(11)

The condition number is the ratio of the largest to the smallest eigenvalue of A.  If the condition

number is large, the δA and δb are amplified considerably in the calculation of β̂ , yielding very
poor estimate of the true parameter values.  Large condition numbers result from linear
dependency (collinearity) between the various (supposedly) independent variables.  The normal
matrix which has large condition number is called “ill-conditioned”.

The problems of collinearity has been extensively discussed in the literature (see, for example,
Shacham and Brauner (1997), Brauner and Shacham (1998)).  In the next three sections, the
practical results of collinearity, ill-conditioning and numerical error propagation will be
demonstrated using a vapor pressure correlation example.

Vapor Pressure Models and Data

There are several models which are being extensively used for correlating vapor pressure versus
temperature data.  Three types of equations will be used in this work.  The first is a polynomial:

 n
n TTTP 1

2
210ln +ββ+β+β= Λ (12)

where T is temperature (K), P is pressure (k Pa) and n is the order of the polynomial.

The precision and stability of polynomial regression can often be increased by transforming the
data.  The following transformations (which were investigated by Shacham and Brauner (1997))
will be used.  Normalization of the temperature:

ιi = T i /Tmax (13)

where Tmax  is the largest temperature value in the data set.  The w transformation defined by:

wi = (T i − Tmin)/( Tmax  − Tmin) (14)

which yields values in the rage 0 ≤ wi ≤ 1, and the z transformation
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which yields variable distribution in the range of -1 ≤ zi ≤1.

The Riedel equation is a four parameter equation, which is used in several slightly different
forms.  The following definition is used in this work

 2
32

1
0 lnln τβ+τβ+

τ
β+β=π (16)

where π is the normalized pressure πi = Pi /Pmax.  When only the first two terms of the equation
are used, the model reduces to what is known as Clapeyron’s equation.

The Wagner (1973) equation is considered the most accurate equation, with the smallest number
of constants, for correlating vapor pressure data in a wide range of temperatures (between the
triple point and the critical temperatures). While the number of terms and the exponents of the
different terms in Wagner’s equation may change, the most widely used form of this equation is:

 ( ) ( ) ( ) ( )[ ]6
3

3
2

5.1
10 1111

1
ln RRRR

R
R TTTT

P
P −β+−β+−β+−β= (17)

where TR = T/Tc is the reduced temperature, PR = P/Pc is the reduced pressure, Tc is the critical
temperature (K) and Pc is the critical pressure (k Pa).

To enable discrimination between possible different sources of inaccuracy in a. regression model,
‘exact’ data generated by Wagner’s equation will be used rather than real experimental data.
This way, the precision of the data can be controlled by introducing randomly distributed error
(noise) to the variables.

Table 1 shows the critical constants and the Wagner equation coefficients for Toluene, the
substance which is used in this study.  Three different data sets were generated using the Wagner
equation with the constants given in Table 1.  In each set, 21 data points were generated in the
vicinity of the normal boiling point.  The three sets are covering temperature ranges of 100K,
50K and 20K. Minimal and maximal values of T, P, ι and π for the three data sets are also shown
in Table 2.  In Figure 1, the vapor pressure of Toluene in the range of 310K-590K as calculated
from Wagner’s equation is displayed.  It can be seen that the vapor pressure changes by more
than four orders of magnitude over this temperature range.  The temperature ranges
corresponding to the three data sets are also marked on the figure.  These data sets will be
regressed using the various vapor pressure models.
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Table 1: Critical Properties and the Wagner Equation Constants for Toluene (McGarry (1983)).

Melting point temperature1  178.15K

Normal boiling point temperature1  383.75K

Critical temperature  591.72K

Critical pressure  4106.45kPa

Wagner constants  β0  -7.28607

 β1  1.38091

 β2  -2.83433

 β3  -2.79168

1 Reference: Weast (1978)

Table 2: Minimal and Maximal Values for the Vapor Pressure Data Sets.

Data Set 1 Data Set 2 Data Set 3
Range = 100K Range = 50K  Range = 20K

Tmax (K)  433.75  408.75  393.75

Tmin (K)  333.75 358.75 373.75

ι max  1.0 1.0  1.0

ι min  0.769452  0.877676  0.949206

P max (kPa)  347.812 195.922 133.381

Pmin (kPa)  18.9721  46.9463  75.5311

π max  1.0  1.0  1.0

π min  0.0545471  0.239617  0.566279
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Figure 1:Vapor pressure of toluene in the 310K - 590K temperature range.

Fitting Polynomials to the Data

An equation in the form of polynomial is often used for representing the relationship between an
independent variable and a dependent variable.  The resulting correlation is an empirical model,
which often lacks a theoretical basis.  Some of the pitfalls of using such a model for correlating
vapor pressure data were discussed by Shacham et al (1996).  Recently, theoretical aspects of the
stability of parameters estimation as function of range and precision of the data and the number
of terms in the polynomial have been extensively studied (Shacham and Brauner, 1997).  The
vapor pressure data can be used to demonstrate the practical results predicted by these theoretical
studies.

The model of eq. (2) with data set 1 (range of 100K) were used in all polynomial regression
studies.  The calculations were carried out using MATLAB (double precision computation with

approximately 16 decimal digits accuracy) where eq. (3) is explicitly solved for β̂ .  Table 3
shows the coefficients, variance and condition numbers of the XTX matrix for polynomials up to
the 6th orders when the regression is done on T and P without any normalization or
transformation.  It can be seen that the variance decreases from 5.746 ×10−3 for a linear
dependency to 1.6522 ×10−9 for 4th order polynomial of T. Increasing the order of the polynomial
further causes a sharp increase of the variance to 2.2565 ×10−2 for the 6th order polynomial.  The
standard errors of the parameters (not shown) indicate a similar trend.  They are smaller by about
two orders of magnitude then the parameter values for polynomials up to the 4th order.  For the
5th order polynomial (and higher orders), the standard errors become larger then the parameter
values.
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Table 3: Coefficients, Variance and Condition Number in Polynomial Regression of the Vapor
Pressure Data

Order
cons 1 2 3 4 5 6

β0 -6.53471E+00 -1.94056E+01 -3.46712E+01 -5.12182E+01 -6.85307E+01 -5.60273E+01
β1  2.88523E-2  9.63520E-02  2.16591E-01  3.90455E-01  6.17904E-01  4.19561E-01
β2 -8.79474E-05 -4.02445E-04 -1.08567E-03 -2.27844E-03 -9.77902E-04
β3  2.73179E-07  1.46326E-06  4.58435E-06  2.31157E-08
β4 -7.75297E-10 -4.85019E-09  4.15379E-09
β5  2.12358E-12 -7.32026E-12
β6  4.14629E-15
s2  5.74600E-03  4.05780E-05  2.33390E-07  1.65220E-09  4.21080E-06  2.25650E-02

κ(A)  2.39540E+07  7.25390E+14  2.84320E+22  5.82150E+25  3.35990E+31  3.09540E+34

The practical significance of such variations in the variances and the standard errors can be seen
in Figures 2 and 3.  Figure 2 shows the relative error in the calculated pressure values for 1st, 2nd
and 6th order polynomials versus the “experimental” pressure.  For the 1st order polynomial,
there is a clear trend of the error and it reaches a maximum value of about 16%.  For the 2nd
order polynomial, the error is much smaller and it hardly reaches 1%. Errors in the 3rd and 4th
order polynomials cannot even be observed in the scale of Figure 2.  For the 6th order
polynomial, there is again a clear trend in the error and the maximal error reaches 30%.  The
same trend is even more pronounced when looking at the errors in the calculated derivative
values (Figure 3).  The maximal error in the derivative values using the straight line correlation
reaches only about 50%, it reduces to 0.1% for the 4th order polynomial, whereas with the 6th
order polynomial it increases up to 65% error.  Thus, using a too high order polynomial (often
called overcorrelation) yields even poorer results in the dependent variable values and its
derivative values then using a polynomial of a too low order.

Figure 2: Relative error in the calculated pressure values (polynomial regression).
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Figure 3: Relative error in calculated pressure derivatives (polynomial regression).

In trying to determine what causes the poor results obtained with high order polynomials, the
condition number of the normal matrix (shown in Table 3) can provide valuable information.
The value of the condition number is 2.3954 × 107 for the 1st order polynomial and it increases to
3.0854 ×1034 for the 6th order polynomial.  The MATLAB program, which relies on the
condition number in determining the conditioning of the normal matrix, starts issuing warning
messages “Matrix is close to singular or badly scaled. Results may be inaccurate” already for the
3rd order polynomial.

Does the 4th order polynomial represent the limit of precision for this correlation?  To answer
this question, regressions have been carried out using the various transformations of the
temperature as defined in eqs. (13), (14) and (15).  The results of these regressions are
summarized in Fig. 4, which shows the variance as function of the polynomial order for the
various transformations.  With no-transformation or with a simple normalization, a. steady
decrease of the variance up to the 4th order polynomial is obtained, whereby each additional term
in the polynomial reduces the variance by about two orders of magnitude.  Starting at the 5th
order polynomial, the normal matrix becomes ill-conditioned, which causes a sharp increase in
the variance.  With the w and z  transformations, however, the same rate of decrease of the
variance extends to the 6th order polynomial.  For the w transformation, the variance increase
starts using a 7th order polynomial, while for the z transformation, the variance reaches a steady
minimal level at the 8th order polynomial. Thus, using the z-transformation enables reducing the
variance of the best fit to 5.0107 ×10−16 using the 8th order polynomial from the minimal value
of 1.6522 × 10−9 obtained with the 4th order polynomial and the untransformed original data.
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Figure 4: Variance in polynomial regression using various transformations of the temperature
data.

Figure 5: Condition numbers in polynomial regression using various transformations of the
temperature data.

Figure 5 shows the logarithm of the condition number as function of the polynomial order for the
various transformation.  The logarithm of the condition number increases linearly as the
polynomial order increases.  (The only exception is the case of “no transformation” where
numerical error propagation prevents obtaining accurate values for the condition numbers for
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high order polynomials).  The condition numbers are minimal for the z-transformation and
increase in the following order: w-transformation, normalization and no transformation.  The
reduction of the condition number corresponding to a particular polynomial order when using the
w and z transformation (instead of normalization) is reflected in the lower variance values
achieved with these transformations.  It is to be noted, however, that the reduction in the
condition number when using normalized data instead of the original data, has no significant
effect on the order of the best-fit polynomial and its variance.

Fitting Clapeyron’s and Riedel’s Equations to the Data

Clapeyron’s equation (the first two terms in eq. (5)) and Riedel’s equation are both frequently
used for modeling of vapor pressure data.  To investigate the effects of the range and precision of
the independent variable data, both equations were fitted using the three data sets shown in Table
2.  The data was generated using Wagner’s equation, but for this study, a random and
normally.distributed error was introduced into the temperature data.  Three cases were tested
with the following error levels: δ T = 0.0005, 0.05 and 0.5K.  Using the highest precision (δT
= 0.0005K) and the widest temperature range (100K) data with Riedel’s model yields a very
accurate correlation.  The parameter values obtained are β0 = 14.848, β1 = -15.994, β2 = -8.9698,
β4 = 1.1456, the variance is 3.04 ×10−10 and the standard errors of the parameters are smaller by
three orders of magnitude than the parameter values.  The resultant maximal error in the
calculated pressure value is 0.00487 kPa. For the same data set, Clapeyron’s equation yields a
much worse fit.  The resultant parameter values are β0 = 9.7118, β1 = -9.6941, the variance is
1.1589 × 10−4 and the maximal error in the calculated pressure is 6.2335 kPa. Thus, the use of
the four parameter Riedel’s equations adds approximately three more decimal digits to the
accuracy of the correlation.

To observe the effects of the range and precision of the temperature data on the accuracy of the
correlation, the various data sets were regressed using Clapeyron’s and Riedel’s models. Figure 6
shows the variance of the fit obtained with Clapeyron’s equation as function of the range with the
error level δT as parameter.  It can be seen that for the high precision temperature data (δT  =
0.0005K), the variance is 1.1589 ×10−4 for the 100K range.  It reduces to 6.8956 ×10−6 for the
50K temperature range and further to 1.7399 ×10−7 for the 20K range.  This is the trend that could
have been expected in case the variance results from a lack of fit of a model (due to a limited
number of parameters). In such a case, the model can better represent the data in a narrower
range of temperature and the variance is expected to decrease accordingly. However, the trend is
different for the low precision data (δT = 0.5K). For the 100K range, the variance is 3.0519  ×
10−4, it reduces to 1.29  × 10−4 for the 50K range and increases to 2.256 ×10−4 for the 20K range.
For this low precision data, numerical error propagation (resulting from collinearity) is
intensified with reducing the range and for the range of 20K, it dominates over a better model fit
which could have been achieved in a narrower range.

Figure 7 shows the variance of the Riedel correlation as function of the temperature range  with
the error level δT as parameter.  It can be seen that for all the δT’s studied, reducing the range
from 50K to 20K affects an of the variance.  For the low precision data, Riedel’s model yields
even a larger variance than that of Clapeyron’s equation.
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Figure 6: Change of the variance as function of range for Clapeyron’s equation.

Figure 7: Change of the variance as function of range for Riedel’s equation.

This study clearly demonstrates that the optimal number of terms/parameters in a model is a
function of the range and precision of the independent variable data.  When reducing the range
improves the accuracy of the correlation considerably, the use of a different model (consists of
more terms/parameters) should be considered.  But, when range reduction does not improve the
accuracy, adding more terms to the model will probably lead to over-correlation.  The harmful
effects of over-correlation have been demonstrated in the previous section with reference to the
polynomial regression. P
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Conclusions

Numerical error propagation, resulting from collinearity between various functions of the same
independent variable, can severely limit the accuracy of a correlation. Because of the complex
theory involved, demonstrating to undergraduate students the causes and practical significance of
such inaccuracies and identifying methods to improve the accuracy can represent a great
challenge.  In this paper, the graphical and interactive capabilities of two numerical computation
packages (MATLAB and POLYMATH) have been used to demonstrate these topics.

It was shown that in polynomial regression, the highest order of polynomial to be used is often
limited by numerical error propagation.  Disregarding this limit can yield large errors in the
calculated values of the dependent variable and even more severe errors in its derivatives.  The
condition number of the normal matrix provides information regarding the rate of the error
propagation, but this information can be inaccurate and sometimes even misleading.

Collinearity in polynomial regression can be significantly reduced by using data transformations,
in particular the z-transformation, which transform the independent variable data to the [-1, +1]
range. To determine whether it is collinearity that limits the highest order polynominal and the
accuracy of the fit, it is advisable to repeat the regression using z-transformation of the
independent variable data.  If the transformed data allows fitting by a higher order polynomial,
collinearity is a limiting factor, otherwise other reasons for the low accuracy must be sought.

Using the two-parameter Clapeyron equation and the four-parameter Riedel equation, it was
shown that there is not a single model which is superior in representing a particular type of data.
For correlating low precision and/or narrow range data of vapor pressure, the Clapeyron equation
is more appropriate than the Riedel equation.  Whereas, for high precision and wide range data,
Riedel’s equation is more appropriate.  If reducing the range results in a significant reduction of
the variance, adding more terms/parameters to the model can improve the accuracy of the
correlation.  But, adding more terms when range reduction does not lead to a better fit can result
in over-correlation.
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