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Abstract

Fourier analysis methods and data sampling techniques are introduced in two laboratory
courses in the Mechanical Engineering Technology curriculum. Data acquisition with personal
computer hardware permits high speed sampling and analysis of large quantities of data obtained
from various transducers, strain gages, and accelerometers. Data sampling methodology
determines the efficacy of the results. Sampling frequency and the number of data points
acquired strongly influence the resolution of frequencies and their amplitudes in the spectra
calculated for a signal. The use of simple laboratory structures for which experimental and
analytical frequencies are readily obtained enhances the understanding of vibrations, data
sampling, and interpretation of Fourier analysis results. Since structural vibrations may produce
closely spaced harmonics, an understanding of the presented method is critical for a priori
determination of frequency resolution.

Introduction

Much can be learned about the characteristics of a vibrating structure by experimental
determination of dynamic strains or kinematics. Often, extremely high loads can exist due to
impact loading or excitation of a structure near one of its resonant frequencies. High speed data
acquisition with personal computer hardware permits sampling and analysis of large quantities of
data from strain gages or accelerometers for comparison to an appropriate model or verification
of a finite element analysis. Fourier analysis provides a powerful tool for obtaining both a
gualitative and quantitative understanding the dynamic behavior of a structure.

In the Mechanical Engineering Technology program at the University of Pittsburgh at
Johnstown (UPJ), the techniques and application of data acquisition and analysis are taught in a
sequence of courses intended to produce a student capable of acquiring and manipulating
appropriate, useable, quantities of high-speed data from a transducer. There are pitfalls in data
taking and interpretation that can be identified, and the methodology can be tailored to provide
optimum results. In the course sequence, the basic techniques of Fourier analysis are introduced,
and a methodology for data acquisition suited to optimizing the usefulness of the resulting
frequency spectrum is presented. Classroom examples from the authors’ laboratory and
professional experiences illustrate the methods, problems, and outcomes.

Background

Data acquisition of experimental measurements results in a set of sampled data at
regularly spaced times as illustrated in Figure 1. The continuous analog signal x(t) from a
transducer is fed through an analog to digital converter to give discrete vak(Esabfdiscrete
timest=i A, whereA is the sampling interval (generally dependent on the data acquisition
hardware), and= 1,2,...,NwhereN is the total number of samples. Analysis can now be
conducted on the sampled data to determine its characteristics. In many mechanical and
structural applications, the primary interest is the frequency content of the signal and the
magnitude and location of the system resonances. To accomplish this, the signal is converted
from the time domain to the frequency domain.
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Figure 1: Sampling a Continuous Function of Time at Regular Intervals

An estimate of the frequency spectra from the measured data can be obtained using a

discrete Fourier series approach. The advantage of this approach is that it is conceptually simple,

yet yields usable results. The classical Fourier series of a periodic functions gives the
approximation of the continuous functig(t) in terms of an infinite series given by
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wherek = 1 to « are the number of terms in the series @mglthe period. The coefficientg

andby, are found by formal integration if an analytic function for the signal is known. For a
sampled data signal(t) is known only by its discrete time series approximation, and the period
of the signal is not known. To calculate the coefficients for a sampled data set, the total sample
time is assumed to be the period so T4, and the integrals are replaced by finite sums.

This means that integration is replaced by a summation over the sample. Using the principle of
orthogonality, the coefficients can be determined by summations over the data in the form
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The coefficientsy andby are the components of the signal in a frequency bin centered at the
frequencyfcent= k/T. In a typical presentation, the magnitwgend phasex are plotted as a

function of frequency to provide the spectra of the given signal. For any sampling interval, there
is a special frequency called the Nyquist critical frequency which occkirdN&2. The Nyquist
frequency determines the maximum frequency component that can be extracted from a given
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signal, because it takes a minimum of two samples to define a cycle. If frequency information is
presented above the Nyquist frequency, aliasing of the signal will occur.

Practical determination of the frequency spectra from a signal is not accomplished with
the discrete Fourier series calculations defined above. It is instructive to teach the method above
and require students to write a program to generate the coefficients and spectral plots for small
data sets with limited frequency range. Alternately, a spreadsheet technigue communicates
discrete transform concepts effectivelyHowever, it is imperative to teach that there are more
efficient methods called Fast Fourier Transforms or FFT’s. The detail of the FFT and its
implementation in software are not emphasized, but a literature search will locate various
published FFT computer programs which have been assigned and effectively demonstrate the
computational efficiency of the FFT over the discrete transformhe FFT is implemented in a
wide variety of analysis, plotting, and spreadsheet programs. Versions of the FFT algorithm
most typically used by the Technology students at UPJ are MatHda#drLAB >, or from a
spreadsheet such as Microsoft Excel.

Data Sampling Primer

There are some data sampling techniques that will optimize the usefulness of the
spectrum resulting from an FFT of a set of sampled data. The critical factors that determine the
range, frequency resolution, and accuracy of an FFT are the number of data points taken and the
speed at which the data is taken. There are also different applications of the Fourier analysis
techniques that may determine how it is used. Some applications in vibration analysis may only
require that the natural frequencies of a structure are known, yet some applications, such as
machinery monitoring, require accurate values of the signal amplitude for selected frequencies
for trend following. The selection of sampling parameters greatly influences the accuracy and
repeatability of these measurements. The objectives of a particular sample must be clearly
understood before the sampling methodology is selected. Structural vibrations applications are at
extremely low frequency when compared to electronics, and encompass a large part of the
mechanical engineering practice.

A convenient guide for data acquisition to be used for Fourier analysis is shown in
Figure 2. This graph shows the relationship between the data sampling rate, the size of the data
sample, the frequency resolution, and the Nyquist cut-off frequency. It is important to note that
all FFT algorithms require a number of data points equdl, tth@s giving samples sizes of 512,
1024, 2048, 4096, etc. The graph dispels the notion that faster data acquisition is always better.
If no change is made in sample size, a faster sampling rate increases the size of the frequency
bins and reduces the discrimination of frequency content. Larger sample sizes are always better,
but some data acquisition or spectral analysis hardware is sample size limited to a 1024 or 4096
point sample. Typically, for most mechanical systems with relatively low resonant frequencies,
the Nyquist limit is not a severe constraint.

Conventional wisdom in the form of a rule-of-thumb used by many numerical and
experimental analysts is to record a minimum of ten data points per cycle of the desired signal.
Selection of sampling frequency ten times the highest expected frequency contained in the object
signal results. Application of the guideline yields the same results as the “faster is always better”
philosophy: either huge sample sizes become necessary or the frequency resolution is severely
compromised. Unquestionably, a rule-of-thumb based sampling rate is required if an accurate
curve-fit of the transient history of the signal is desired. However, better frequency resolution
and manageable data files will result if the sample is acquired at a significantly reduced sampling
frequency.

Frequency Resolution: The FFT finds coefficients of the harmonic signal at an
incremental frequenc)f, which is determined by the data sampling rate divided by the number

€21 ¢ abed



of points acquired. Thidf can be interpreted as the width of a frequency bin that is centered on
feent The smaller the width of the bin, the higher the resolution of frequency. It is important to
note that changing the sample size or sampling rate will change the resolution, and that changing
sampling rate alone modifies both the Nyquist cut-off frequency and the center frequency.
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Figure 2: Frequency Resolution for a Sampled Data Set

Amplitude Resolution: The interpretation of the amplitude of a signal at a given
frequency is not as clear. This is due to the smearing of a signal over adjacent frequency bins.
How much smearing occurs depends on the width of the frequency bin and how well centered the
bin is on the natural frequency in question. Typically, multiple samples of data are averaged to
achieve the best accuracy on both frequency and amplitude. Another complicating factor
concerning the amplitude of the results is that some of the Fast Fourier Transform routines
contain multipliers oN, N, or sometimes a multiple @f depending on the derivation of the
specific transform pair. Because of this, extreme caution must be exercised when using an
unfamiliar software package. Students are encouraged to perform an FFT of a known signal to
determine any multiplying factors before application to an unknown signal.

An illustrative example of the effects of sampling parameters is shown in Figures 3 and 4.
A time domain signal was acquired from a vibrating shear structure using an accelerometer as
described below in the applications. To show the effects of sample rate and size on the
resolution of the spectrum, a discrete Fourier series was obtained using an FFT algorithm from
Newland. The two curves shown in Figure 3 represent the magnitude of the Fourier coefficients
of the same signal sampled at two different rates of 200 samples /second and 10,000
samples/second with the same sample size of 4096 points. Figure 4 shows two samples at the
same rate of 1000 samples/second with the sample sizes of 512 points and 4096 points. As
discussed, both high sample rates and small sample sizes smear the spectrum over a broad range
of frequency making the determination of resonant frequency difficult. Another obvious
discrepancy between the plots in each figure is the magnitude of Fourier coefficient.
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Figure 3: Spectrum Comparison for Two Sampling Rates at a Fixed Sample Size
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Figure 4: Spectrum Comparison for Two Sample Sizes at the Same Sampling Rate
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Applications

In the Mechanical Engineering Technology Department at the University of Pittsburgh at
Johnstown, the Fourier analysis method and data acquisition techniques are introduced in the
Junior year in a survey course on mechanical measurements, and are followed up in an
application in a Senior course in mechanical vibrations. At the introductory level, the method
and its uses are introduced in conjunction with computer data acquisition. At this level, the
emphasis is on acquiring the signal and manipulating the data into a useful spectral plot. The
details of file manipulation, frequency resolution, and scaling are addressed and practiced. For
example, data for known, pure signals are collected using data acquisition boards and the basic
packaged software that accompanies them. The resulting files are imported into Mathcad or
Excel and compared with student written or commercial software. Scaling problems between
software packages are resolved. Plotting of amplitude and phase results is practiced with
verification to known frequency. A complex signal is also collected and analyzed to illustrate the
full capability of the methods and its application in determining fundamental frequencies of a
structure, the frequency content of engine noise, human speech, or other available sources.
Demonstration of white noise and its result is also appropriate.

At the advanced level, the student is expected to be able to analyze the behavior of a
vibrating structure, predict its natural frequencies and corresponding mode shapes, and correlate
the predicted to the experimental natural frequencies. To accomplish this, the Mechanical
vibrations laboratory at UPJ has designed a four story shear structure consisting of flat square
steel plates mounted on four threaded steel rods. The four plates are moveable allowing
modification of the natural frequencies of the structure from one term to the next. Since the
plates are square and uniform, there are only four horizontal, translational degrees-of-freedom,
and four rotational degrees of freedom. The simple symmetrical geometry with the limited
number of degrees-ofreedom make the structure very simple to analyze. The translational
motion is essentially decoupled from the rotational motion, so an analysis of two separate four-
degree-of-freedom models yields very good results. Some of the students who are also enrolled
in the Finite Element course have also completed finite element analysis of the same structure for
comparison of the methods and results.

The modeling in the vibrations class begins with the assumption of lumped mass and
elasticity for the structural elements. The equations of motion are extracted, either from the free
body diagram by direct application of Newton’s law, or, more typically, from influence
coefficients. For small displacements, linear system behavior permits expression of the structural
displacements as harmonic functiafg, t) = Q(x)sin(wt). This represents the matrix problem
in the familiar eigenvalue form. At this point, the student is required to find and use an
eigenvalue program to obtain the analytical predictions of natural frequency and corresponding
mode shape. The natural frequencies are the specific valugthefeigenvalues, that solve the
equation set, and for each frequency, there is a corresponding eigenvector or mo@)ghape
Typically, the students have used either canned software, student generated programs in
FORTRAN or QuickBASIC, or even the eigenvalue solving capability of the Hewlett-Packard
calculators. The software available in the student labs that is capable of performing eigenvalue
analysis includes both MATLAB and Mathcad. These analysis predictions of resonant
frequencies from simple rigid body-lumped elasticity models are compared to the experimental
data acquired from accelerometers attached to the structure. This data is acquired using the
techniques described above and converted to the frequency domain. The students then draw
comparisons between the experimental and analytical values of resonant frequency, which
typically agree within a few cycles per second. Direct comparisons of the magnitudes of the
components are not made due to the inability of the existing laboratory equipment to provide
accurately controlled excitation of the structure. It is being planned as a future improvement to
extract mode shape data from four channel data for comparison to the analytical predictions.
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Conclusions

The total experience requires the use of the computer, both as an experimental tool, to
acquire and manipulate data, and as an analytical tool to analyze large quantities of data and to

conduct sophisticated matrix analysis of structures. Some conclusions to be made concerning the

outcome of the effort.

1. The usefulness of a frequency spectrum obtained from Fourier analysis of data is
highly sensitive to the data acquisition methodology. Desired characteristics of the spectrum
such as frequency resolution, amplitude resolution, or signal replication may dictate sampling
rate, sample size, number of averages, frequency cutoff, etc.

2. A simple graphical representation of the important variables related to frequency
resolution has been described. Unfortunately, no such concise representation yet exists for
amplitude resolution.

3. The interweaving of experimental data acquisition, analysis and interpretation with a

course based on simple theoretical mechanical modeling concepts significantly adds to a students

understanding of the physics of dynamic systems. This combination of Measurements and
Vibrations courses produces a clearer picture of how the engineering methods works.
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