
Session 2532

Design of Control Systems as a Learning Activity

Ilya Levin
School of Education, Tel Aviv University

Abstract

Logical control design provides an excellent project-based learning activity in
engineering education. It opens a way to teach the fundamentals of synthesis, analysis
and decision-making using one and the same environment.

In the Computer Engineering curricula, there is a chain of courses dealing with the
logical control design. These courses are “Switching Theory and Logic Design“,
“Advanced Switching Theory”, “Digital Systems”, “Computer Architecture”, “VLSI
Design”, “Computer Aided Design”. In the Electrical Engineering curricula, such
courses as “Automation” and “Process Control” also include a logic control design
oriented subject matter.

Actually, the logic control design weaves together the Computer and the
Engineering Curriculums, forming one of the key issues in both of them.

The modern requirements to the logic control design course are:
• formal methods of design on each stage thereof, from initial specification of a

controller up to its final implementation and verification,
• a computer-based environment for supporting the students’ practical work.
This paper proposes: a) a universal formal notation, including concepts of ASM

(Algorithmic State Machine) and FSM (Finite State Machine), as a methodological
fundamental of the logical control design, b) an Interactive Learning Environment
developed on the base of the formal notation.

 The proposed approach enables transforming, uniting, minimizing, and
decomposing both ASMs and FSMs. On one hand, transformation on a set of the
formally defined ASMs and FSMs provides a rich variety of learning activities in the
problem solving and the design. On the other hand, the use of the proposed Interactive
Learning Environment enables students to design and explore complex control
systems.

The proposed approach drastically increases a plurality of possible tasks and
projects in a class and, consequently, opens an opportunity to enrich both the teaching
and the learning processes.

1. Introduction

It is a widely known phenomenon, that students experience difficulties while
establishing a comprehensive interconnection between theoretical knowledge of a
complex subject and a practical knowledge of the same subject. In particular, there is
a gap between a theoretical university courses of logical design on one hand, and
engineering (practical) courses of circuits’ design. This gap is natural and
fundamental, since the theoretical courses are focussed on the methodological and

P
age 4.170.1

optimization problems, while the practical courses are oriented to development of an
ability to find technical solutions.

It goes without saying that bridging such a gap would be a desired purpose for a
teacher and a fruitful achievement for a student during the educational process. An
educational approach to the above problem is proposed in this paper with reference to
the above-captioned case. It has become possible owing to modern technological
computer means.

 Any controlled system can be described in a form of interaction of the two
following parts: an operation part and a control part. The control part of the controlled
system can be described by using a concept of Controlware, first proposed in work
[2]. Controlware was defined as a special toolkit specially created for designing the
control part of any controlled system.

The Controlware differs from traditional software in the following significant
ways:

1. While software is universal means, Controlware is means oriented to
programming of control units.

2. All traditional programs manipulate data flows while Controlware employs
control flows.

3. Controlware exhibits a high degree of transparency; for instance, a student can
immediately see the influence of the control part on behavior of the operational
part.

4. While traditional software is usually oriented on a standard sequential
computer architecture, Controlware is based on a parallel architecture, which is
characteristic for control units.

In the frame of the novel educational approach, we propose to use the Controlware
as a specialized toolkit for designing control systems. Blocks of this toolkit, when
being presented and given to students for designing a control system in a class, enable
construction of the system, while synchronously displaying it both as a state diagram
of FSM and as a flow-chart of ASM. The simultaneous constructing and displaying of
the control system in the two above-mentioned representations demonstrate unity of
the theoretical and practical approaches to the logical design. The teacher is therefore
able to give and the student is invited to acquire both the theoretical optimization
knowledge and the practical design skills concerning the subject.

The main idea will be discussed in the following parts of the paper.
Section 1 explains two logical paradigms forming a cognitive basis of the proposed

approach, namely – a programming and a design paradigm.
Section 2 presents two educational directions in teaching the logical control design,

which are: teaching the design per se, and teaching the design automation.
Section 3 describes an educational software environment SMILE implementing the

proposed approach.

1. Design of Control versus Programming of Control

In works [3, 4] two main paradigms were suggested as conveyors of very different
cognitive approaches to control: the programming and the design paradigms.

By the programming paradigm, a person (e.g., student, user, technician, and
designer) assumes the existence of a control performer (e.g., a microprocessor), in
charge of running the control specifications. This kind of a logical control unit can be
defined as a programmable controller. By this paradigm, the creating of control
means will be creating of an appropriate program.

P
age 4.170.2

The key formal construct for the algorithmic paradigm is the Algorithmic State
Machine (ASM) [1]. An ASM is a directed connected graph, which includes an initial
vertex, a final vertex and a finite set of operator and conditional vertices. The final,
operator and conditional vertices have only one input, and the initial vertex has no
input. Initial and operator vertices have only one output, and conditional vertices
have two outputs marked as "1" and "0". The final vertex has no outputs.

Defining characteristics for an ASM are also the following:
(a) Output vertices are connected by arcs to input vertices. Every output is

connected only to one input, every input is connected from at least one output.
(b) Every vertex is part of at least one path leading from the initial vertex to the

final vertex.
(c) A logical condition from set X of input variables of the control unit appears in

each conditional vertex. A given logical condition may appear in different conditional
vertices.

(d) A microinstruction or operator Yi appears in every operator vertex.
By following the design paradigm, the person (e.g., student, user, technician,

designer) focuses on the logical scheme inside the controller, implemented by means
of logical elements of varied nature (e.g., logical gates, contacts, programmable
logical devices). Contrary to the previous programming paradigm, where the
controller was defined as a programmable controller, it is called a designable
controller within the design paradigm.

A key idea within the design paradigm is that the control unit is presented as a
finite state machine (FSM). The control unit can be characterized by its state and may
perform different functions (i.e., changing to other states) depending upon its current
state. A formal construct, which we consider the most appropriate for the formal-
model definition, is the state diagram. The state diagram is a representation of the
system’s possible states and possible transitions between them. Nodes in the diagram
indicate states, and arrows indicate transitions between the states coused by specific
input values. Also, the FSM can be represented in the form of a state table (i.e. a
tabular form of the state diagram). Columns of the table indicate consequently: a
current state, an input value, a corresponding output, and a corresponding next state.

The concept of FSM is very close to the concept of an ASM. We will say that FSM
implements a corresponding ASM. Any ASM can be transformed to the FSM form.
To perform this transformation the following steps have to be taken. First of all, the
ASM has to be marked, by marks reflecting states of FSM. The second step is the
searching for paths between the marks within the ASM. Every such path has to
include one operator vertex. Each path can be interpreted as a transition within the
FSM. We will represent the FSM as a list of transitions, which are paths of the initial
ASM.

An example, taken from [1], of the marked ASM with logical conditions X = {x1,
…, x4}, micro-operations Y = {y1, …, y6}, microinstructions F = {Y0, Y1, …,Y6} and
marks (states of FSM) {a1, …, a5} is shown in Figure 1. The table of the
corresponding FSM is presented in Table 1.

P
age 4.170.3

am as X(am,as) Y(am,as)
a1 a2 x1x2 y2,y3

a4 x1x2’x3 y4

a1 x1x2’x3’ -
a3 x1’ y2

a2 a4 1 y1,y4

a3 a1 x4x1 y1,y3

a3 x4x1’ -
a4 x4’ y1,y4

a4 a5 x2 y5,y6

a1 x2’ -
a5 a1 1 y1,y3

Table 1. Table of FSM corresponding
to ASM shown in Fig. 1.

<E

[�

[�

[�

\�

\��\�

\��\�[�

\��\�

<H

\�

[�

[�

\��\�

<�

<�

D�

D�

<�

D�

<�

D�

<�

<�

D�

D�

[

[

[

[

[

[

�

�

�
�

�

�
�

�

�
�

�

�

Figure 1. Example of the marked
ASM

In Table 1:
am - current state,
as - next state,
X(am, as) - transition function, i.e. a Boolean function which is equal to 1 iff FSM

makes the transition from state am to state as (xl’ is negation of xl).
Y(am, as) - list of output signals which are equal 1 on the transition of the FSM

from am to as.
In the light of the above, we may define control as a process by which the FSM’s

transition from one state to another occurs. That means that at any time the FSM is in
any of a number of possible states; that there are conditions under which the current
state changes; and that the control unit implies the choice.

2. Design Education versus Design Automation Education

Two directions can be distinguished in a logical design education: the design
education and the design automation education. The logical design education can be
defined as an educational area dealing with the teaching and the learning of logical
system’s design process. The design automation education relates to the teaching and
the learning of methods for optimization of the logical systems design according to
various criterions. Having different aims, these two directions require different
teaching strategies, different learning activities, and different students’ skills.

The main learning outcome in the design education is a real project of a logical
device created by a student. The main learning activity in this direction is designing.
The designing is performed by using Computer Aided Design (CAD) systems,
hardware design languages (VHDL, Verilog, Altera, Xillinx etc.) or by using special
design education environments, for example proposed in the present paper.

The main learning activity in the design automation education is solving problems
of optimization. Ability to solve such problems is one of the basic skills of the CADs
developer.

P
age 4.170.4

Learning activities in the design automation education can be based on using the
proposed formal models of ASM and FSM. Examples of possible classroom activities
are presented in the following list.

1. Combining several ASMs (FSMs) into one ASM (FSM) with minimum
number of vertexes.

2. Decomposing of one ASM (FSM) into a network of constituent ASMs (FSMs).
3. Investigation of influence of certain changes made to ASM, on the FSM-

representation of the control unit.
4. Implementation of the same control unit using the ASM and the FSM

descriptions and analysis of the received results.

3. Interactive Learning Environment

The interactive learning environment was developed in the framework of SMILE-
project (State Machine Interactive Learning Environment) in the School of Education
of the Tel-Aviv University. SMILE-environment was developed for implementation
of the above-mentioned ideas, i.e.:

 • SMILE constitutes the Controlware toolkit;
 • SMILE supports both the programming and design paradigms of teaching
control concepts;

 • SMILE serves two pedagogical needs: design teaching and design automation
teaching;

 • SMILE is capable of controlling real equipment.
SMILE comprises two Editors: the Algorithmic State Machine Editor (ASM

Editor) and the Finite State Machine Editor (ASM Editor), having each its display
window. The SMILE-environment screen shot is shown on Figure 2.

The environment enables the students to design a control unit both in the form of
FSM by the FSM Editor, and in the form of ASM by the ASM editor. When the
control unit is designed in one of these editors it can be visualized simultaneously in
the windows of both editors. Any changes made in one of the editors cause relevant
changes to appear not only in its window but also in the other editor window.

Both of the State Machine Editors ensure a number of very powerful features for
describing virtually any type of a State Machine. For example, a student can represent
a State Machine hierarchically, i.e. a State Machine having a large number of states
can be described in multiple levels. For debugging a State Machine, two very
important features are available in the Editors. The first is an animated simulation
where any step in the control process is depicted by a change in color of the ASM
(and/or FSM) symbolic states, which can be seen in the appropriate display windows.
The second feature of the Editors is a possibility to study the control process watching
the behavior of real equipment.

It should be noted that, when the Control Unit’s description is debugged, the
resulting State Machine file could be obtained in the accepted hardware description
language forms (VHDL, Verilog). Such a file can be further used for a real VLSI
design.

P
age 4.170.5

Figure 2. The SMILE-environment screen shot.

4. Conclusion

We have proposed a new educational approach for teaching logical design of
control systems, which allows bridging a comprehension gap between theoretical and
engineering courses related to the subject. The approach is implemented by the State
Machine Interactive Learning Environment (SMILE) developed in the School of
Education of the Tel-Aviv University. It is addressed to students of Electrical
Engineering and Computer Engineering undergraduate education.

It is believed that after having been trained by SMILE the students will acquire
both theoretical and practical basic skills required in the subject.

Bibliography

1. S. Baranov. Logic Synthesis for Control Automata. Kluwer Academic Publisher,
Dordrecht/Boston/London. 1994.

2. I. Levin, V. Levit. "Controlware for Learning with Mobile Robots", Computer Science
Education, Vol. 8, No2, pp. 1-11,1998.

3. I. Levin, D. Mioduser. "A Multiple-Constructs Framework for Teaching Control Concepts",
IEEE Transactions of Education, Vol.39, Issue No.4, pp.488-496, 1996.

4. D. Mioduser, I. Levin. "Cognitive-conceptual Model for Integration Robotics and Control into
the Curriculum", Computer Science Education, Vol. 7, No. 2, pp. 199-210, 1996.

ILYA LEVIN
Dr. Ilya Levin received the Ph.D. degree in Computer Science from Latvian Academy of Science.
During 1985-1990 he was the Head of the Computer Science Department in the Institute of New
Technologies of Leningrad. During 1993-1996 years he was the Chairman of the Computer Systems
Department of Holon Center for Technological Education, Israel. Being presently a Senior Lecturer of
the School of Education of Tel Aviv University, he is a supervisor of the Technology Education
program. He is an author of more then 50 papers both in the Design Automation and in the Technology
Education fields.

P
age 4.170.6

