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Abstract

A digital flight data recorder/controller system for a radio-controlled helicopter has been
built to demonstrate the basic requirements necessary to build a flight control system.  The sys-
tem utilizes the standard radio control system augmented with an extra micro controller and other
circuitry to utilize rate gyro feedback in the control loop.  The system is able to record flight data,
perform programmed flight maneuvers such as frequency sweeps, and record flight data.  The
data that has been recorded can be now be used to develop a closed loop control system.

Introduction

A radio controlled (RC) helicopter is one of the most difficult hobbies to master.  It is a
very complicated machine with many control actuators.  It has a complicated model of motion.
The control inputs are coupled with one another.  How could one be made easier to fly?  Add a
stability augmentation flight control system!  This would require some electronics able to use the
radio to servo control signal to sense the pilot input and the rate gyro feedback signal to generate
a control signal that will control the helicopter in such a way that the motion of the helicopter
will match the pilot’s input.  Since the motion of a helicopter is very difficult to analyze, the sys-
tem would be designed so that it could record flight data, which is used to identify the system.
Since the electronics recording the flight data would be in the loop of control (without altering
the control signal, just passing it through), the dynamics of the controller would be included in
the identification, which would lessen the chances of a system adding an adverse effect to the
plant.  Once the data is gathered, it can be analyzed to identify the plant, and a control law can be
put into the control system to stabilize the helicopter.

With a system like this built, it can be used in many ways to enhance the learning process
at Cal Poly:  Some of the uses include demonstrating the effects of changing the control gains,
performing lab exercises to design a control system with the given architecture, or adding even
more functionality.  Since it was designed for expandability, adding more functionality or even
hardware would be a relatively simple process.  More sensors, such as accelerometers, level indi-
cators, or possibly a GPS receiver (weight permitting) could be connected to the hardware.  Also,
the firmware could be modified to add functionality, change the control laws, or a variety of
other applications. P
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System Description

The project began with a standard radio controlled helicopter, which included a gas en-
gine and radio controller.  Several pieces of hardware were needed for the control system: rate
feedback devices, control system electronics, input/output devices, and mounting hardware.  The
choice for the feedback devices was made simpler because most of today’s RC helicopters come
equipped with a rate gyro to help control the yaw of the helicopter, which is very tightly coupled
to the power setting.  The yaw gyro, developed by the radio manufacturer, was developed to
sense the yaw motion and send a rudder servo command to stop the unwanted yaw motion.  This
same device was determined to be adequate for the roll and pitch feedback as well.  This choice
also made sense since the electronic interface was already existing, and the units are inexpensive,
lightweight, and available.  Two of these gyros were added for the roll and pitch feedback.

The main flight requirements on the electronics were forced by the existing radio elec-
tronics.  The radio controller generated a Pulse Width Modulated (PWM) signal to control the
position of the servos (control actuators), while the rate gyros generated an analog differential
voltage signal.  These two facts required a system that could interpret PWM and analog signals to
generate a PWM signal.  Also, the system needed to record flight data and have some means of
downloading that to a personal computer (PC).  These things pointed to the use of a micro con-
troller, which has built in PWM generators, analog to digital converters (A/D) and serial commu-
nications capabilities.  A micro controller also adds flexibility since it can be reprogrammed to
change the functionality of the system.  The Motorola MC68HC711K4 (K4) micro controller
chip was chosen to meet these needs.  The K4 has two 16-bit PWM generators, an 8-bit A/D, se-
rial communications lines, 24K bytes of EPROM (electrically programmable read only memory)
storage, several I/O and address lines, and a Serial Peripheral Interface used to communicate at a
high rate with the external 12-bit A/D for the analog feedback.  The 12-bit A/D was added to
system to have better resolution of the feedback signal.  To prepare the signal for the A/D, there
are a few stages of amplification and a low pass filter.  The filter is a very important item, which
is used to filter out any high frequency noise.  The initial cut-off frequency was set at about 70
Hz, and the implications of this value will be discussed later in the Data Collection Section.  The
system also needed a way to store data collected in flight, so a 512K byte Static RAM (random
access memory) chip was added.  A static RAM chip was chosen since it can retain its contents
with very low power consumption.  Finally, a power supply was added which used battery power
when the system was turned on, and switched to a capacitor to maintain the Static RAM’s con-
tents.  There are also comparators and buffers for the PWM inputs and outputs and a serial line
driver to interface with a PC via an RS232 connection.

This system also needs any easy to use interface to check internal parameters in the proc-
essor or activate different modes of operation.  A keypad and LCD display were added to the
system to allow the user to change settings and modes of operation quickly and easily.  The key-
pad has eighteen keys and is similar to the number keypad on some computer keyboards.  The
LCD displays two lines of data with sixteen characters per line.  Since these items would not be
necessary in flight, they were assembled separately from the controller circuitry and simply plug
in when needed.  In addition to the hardware, firmware needed to be written to utilize the LCD
and keypad to allow the user to change parameters and modes with the keypad.
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Data Collection

With the electronics assembled and tested, the next phase of the project began: flight-
testing.  In order to identify the helicopter system, the firmware was written to provide a means to
input a known control input into the system and record the response.  Two types of inputs were
chosen: step inputs, and sinusoids.  The step inputs are necessary to calibrate the feedback signal
level with the servo PWM signal.  By comparing the feedback voltage recorded at steady state
with a known input, the output to input ratio can be found and utilized in the closed loop control.
The frequency sweeps are necessary to identify the dynamic response of the system.

The steady state flight mode allows the user to output a precise step to the servo of a se-
lected channel.  The steps increase in size in 10% of maximum output incrementally by pilot
control.  Also, the pilot at startup defines the duration of the steps.  The steps begin in one direc-
tion and increase to the maximum output, then start again in the opposite direction at 10% and
work up to the maximum again.

In the frequency sweep flight mode, the micro controller generates a sinusoid output to
the servo. The sinusoids begin at a low amplitude and frequency, approximately 1/8 of the
maximum output and about 1/6 Hz.  The pilot controls when the frequencies change.  The fre-
quencies are 1/6 Hz, 1/5 Hz, 1/4 Hz, 1/3 Hz, 1/2 Hz, 1 Hz, and 2 Hz.  After the 2 Hz frequency
has been reached, the cycle repeats with higher amplitude of about 1/4 of the maximum, then 1/2
of the maximum, and finally the maximum output.

For safety and repeatability, the flight tests were performed on a training stand.  This
stand allows the helicopter to roll, pitch, yaw, and translate forward and backward to some ex-
tent.  See Figure 1.  As can be seen in the figure, the translational motion is altered by the me-
chanics of the stand.  For example, if the helicopter pitched forward while in the configuration
shown in the top view, the helicopter would only translate forward until the arm of the stand was
vertical (in the drawing).  Also, the stand would cause the helicopter to move sideways.

The initial flight tests did not limit the motion of the helicopter any more than the normal
limits on roll and pitch.  However, as the tests proceeded, it was observed that the mechanics of
the stand were affecting the true motion of the helicopter.  A roll or pitch motion would cause
translational motion laterally and longitudinally, as well as the entire assembly rotating around
the base, which could show up in the rate feedback.  It was determined that the stand must be
fixed by setting two cinder blocks on either side of the arm and lashing it to the blocks with rope
so that the arm cannot swing.  This reduced the motion of the helicopter to pure roll, pitch and
yaw.

After several tests were completed, the data was checked for validity.  A plot of the roll
step inputs was made showing the pilot’s input (nothing), the signal to the servo (step inputs),
and the rate feedback for roll, pitch, and yaw.  The plot showed large amplitude, high frequency
noise on the signal.  See Figures 2-4.
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The figures display data that was recorded at 35 Hz.  It appears that there is a high fre-
quency signal on the input.  Notice that the high frequency noise exists regardless of pilot input
or

Figure 1.  Helicopter Training Stand

servo signal.  The areas where the output is different from the pilot show the step generated auto-
matically.  The main cause of the noise is probably a slight rotor head imbalance because the noise
has higher amplitude on the roll and pitch channels.  Since the roll and pitch rate gyros are mounted
at the top of the helicopter frame just aft of the rotor mast, they will pick up the oscillations caused
by the imbalance.  The yaw gyro is mounted near the center of the helicopter and is oriented to pick
up the yaw motion, which would not be affected as strongly by a rotor imbalance.
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Figure 2.  Roll Time Response Plot (70Hz filter corner frequency)
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Figure 3.  Pitch Time Response Plot (70Hz filter corner frequency)
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Figure 4.  Yaw Time Response Plot (70Hz filter corner frequency)

By re-evaluating what frequency range is of interest, namely 1/4 to 2 Hz, it was deter-
mined that changing the cut off frequency of the low pass filter in the feedback loop could help
alleviate the noise problem.  Changing a capacitor on the circuit board changed the cut off fre-
quency to about 10 Hz.  10 Hz was chosen according to a rule of thumb that states that you
should sample at about 2 - 5 times the frequency range of interest to avoid aliasing.  Also, the
recording frequency was set to 23.3 Hz to be sure not to miss any important data (23.3 because it
is a multiple of 70).  See Figures 5-7 for the data showing the use of the new filter frequency. P
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Figure 5.  Roll Time Response Plot (10Hz filter corner frequency)
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Figure 6.  Pitch Time Response Plot (10Hz filter corner frequency)
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Figure 7.  Yaw Time Response Plot (10Hz filter corner frequency)

With the noise problem fixed, the flight tests were repeated.  After the first tests, the
firmware was altered so that the frequency sweep algorithm would automatically increment the
amplitude, which made the testing go much faster.  The step input and frequency sweep tests
were performed for roll, pitch and yaw.

Discussion and Results

The flight data clearly showed what the response of the helicopter is to certain inputs
(Figures 4-7 are just a sampling of the data collected).  A detailed analysis can now be performed
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to truly identify the system, which is left to another project.  Following is a brief discussion of
what can be seen in the data.

The step response data for all axes showed that the response is rapid and proportional to
the input.  As the steps are input, there is an instant spike in the feedback, which returns to the
null point when the helicopter reached the mechanical stop of the stand.  For the larger inputs, a
small coupling effect between roll and pitch can be seen.  It is hard to see in the plots, but it
seems that the coupling occurs when the helicopter reached the mechanical stop, creating a sort
of ‘bounce’.  Something that seems very odd is the coupling of the roll step inputs with a yaw
response.  This also appears to be the helicopter yawing after is reaches the stops.  For example,
the helicopter rolls right, then being at that sharp bank angle, the moment arm of the tail pulls the
tail down, causing the yaw.  This effect is not observed in pitch because the yaw axis remains in
the vertical plane as the helicopter pitches forward or aft.  Since there is not a mechanical stop for
the yaw axis, the step inputs resulted in saturating the rate gyros when yawing left.  This is be-
cause of the torque created by the engine helps the helicopter yaw left, but opposes right yaws.

The frequency sweep data shows similar results.  The roll and pitch data show only
slightly diminished magnitude at the higher frequencies and a very slight phase lag, again only at
the higher frequencies.  Just about all of the inputs resulted in some coupling between roll and
pitch.  Any coupling with yaw was very erratic and could not be pinpointed to a specific cause.
The yaw frequency sweeps are difficult to analyze.  Because of the unbalanced control power, the
helicopter would get into a high left yaw rate, which the right input could not overcome, but only
at high amplitudes and high frequencies.

Conclusion

This project demonstrates a tool, which can be used to develop and test simple control
architectures.  It has demonstrated that data can be recorded from a radio-controlled helicopter,
which can be used to analyze the system response.  Also, with relative ease, students can imple-
ment a control law in the firmware and test fly their design.  This system gives students the abil-
ity to test control systems and collect data from a dynamic platform, such as a radio controlled
helicopter, in a safe, easy to use, environment.
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