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Abstract

The standard method for developing economic criteria such as present worth entails extrapolating banking
formulae into the more complex industrial environment, but discerning students recognize that the two en-
vironments are different and question the validity of this approach. This paper first develops a very funda-
mental, easily understood economic decision criterion for the banking environment in a manner that recog-
nizes an assumption central to economic analyses: reinvestment. This basic criterion is extended to show
that present worth, equivalent annual worth, and future worth produce the same decisions, so they may be
used as surrogate criteria. The next step is to explicitly consider the more complex nature of industrial in-
vestments and capital accumulation. The development of industrial criteria parallels that of the banking
environment, but it addresses additional issues, such as how to determine the appropriate discount rate. A
final section provides a summary and conclusions.

Introduction

This paper addresses a fundamental problem in teaching engineering economics. It is common
practice to derive formulas within the context of a single savings account or loan with a stated
rate of interest. Then these formulas are ported to a totally different environment, that of industry
wherein reinvestment occurs in a multitude of projects with different rates of return. This can
lead good students to ask potentially embarrassing questions such as:
1. Why use formulas derived under one set of conditions in a totally different environment?

2. Why is the minimum attractive rate of return (MARR) used as the discount rate?

Answering these questions merely requires a few pages of reading.

Oakford and Theusen [1] provided the first empirical validation of the effectiveness of
present worth (PW) analyses in the 1960's when they:
1. observed that economic analyses should seek to maximize the wealth of a entire firm at some
future point in time;
2. modeled the investment process via a computer simulation and numerically determined an op-
timal discount rate policy; and
3. explained their logic using the concept of a unit investment of one dollar for one year.

This paper extends their work by developing a closed-form mathematical model for the future
total worth (FTW) of an entire firm, its wealth at the end of the planning horizon, as a function of
project selection.

The model is suitable for presentation in an undergraduate class. Its level of mathematical
complexity is well within students' grasp, and it:
1. avoids developing equations in one environment and then using them in a totally different one;

2. explains why PW works (e.g., why it produces the same decisions as FTW);

3. shows how to determine the appropriate discount rate.

The objective is not to question current methods of analysis, but to present why they work.
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The paper assumes that investors select projects to maximize their FTW. The logic of this approach
is developed initially in a banking environment wherein reinvestment occurs in a single account. Next,
modeling is extended to more complex industrial investments. The development provides a framework for
understanding topics such as comparing alternatives with different lives or determining the appropriate dis-
count rate.

Reinvestment in a Single Account

The following subsections assume that all funds for investments come from and return to a single account,
such as a savings account. An example illustrates the basic logic of such investments, and then generalizing
the example provides criteria for selecting projects.

Example for a Single Account

Suppose that an investor has an account paying 10% interest that initially
contains $100. Only one of the three alternatives shown in Table 1 will be
chosen over the next 3 years, and neither A nor B will be replaced. Project A
consists of withdrawing $10 at time 0, and then returning to the account $7
at time 1 and $5 at time 2. Project B withdraws $9 to provide returns for 3
years. The null alternative rejects A and B and  leaves all of the initial assets
in the account, so its cash flows are all $0.

Table 2 shows that A's withdrawal reduces its initial balance
to $90, so its balance at time 1 is 90(1.1) + 7 or $106.00. Its balance
at time 2 is 106(1.1) + 5 or $121.60, and its final balance at time 3 is
121.60(1.1) or $133.76. Similarly, the final balances for project B
and the null alternative are $134.15 and $133.10. Project B is the
best choice for an investor who wishes to maximize the final bal-
ance.

All costs and benefits are known, so each alternative's final balance can be computed. The balance
of both projects A and B is reinvested at time 2 and grows at 10% until time 3. The fact that project B's
balance is augmented by $5 at time 3 has no bearing on the computation of project A's final balance. Simi-
larly, the null alternative has reinvestment without returns for 3 years, and its final balance still can be cal-
culated.

Generalization for a Single Account

If all costs and benefits of alternatives are known and reinvestment occurs in a single account, then it seems
reasonable to use the final balance procedure:
1. Set the length of the planning horizon to the life of the longest alternative.
2. Assume future benefits and costs increase or decrease capital that is reinvested.
3. Choose the alternative producing the largest final balance at the end of the planning horizon.

Performing the balance calculations using symbols instead of numbers results in the following
formula for final balance:
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where Bn is the balance at the time n (the end of  the planning horizon), A is the initial assets in the account,
cj is the cash flow at time j, and i is the account's interest rate.

Economic Criteria for a Single Account

Final balance is an easily understood decision criterion, but other criteria are more popular. They
are presented below, still within the context of a single account.

Future Worth.  A project's future worth (FW) is defined as the difference between the final bal-

Table 1.  Cash Flows
Time Alternative

A B Null
0 -10 -9 0
1   7  3 0
2   5 4 0
3   0 5 0

Table 2.  Account Balances
Time A B Null

0 90.00 91.00 100.00
1 106.00 103.10 110.00
2 121.60 117.41 121.00
3 133.76 134.15 133.10

P
age 4.212.2



ance of the project and that of the null alternative, so
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Future worth is a surrogate criterion for final balance, since it differs only by the term A(1+i)n

and hence results in the same ranking of alternatives. Note that the definition implies that the FW
of the null alternative is always $0.

Present Worth. A project's present worth (PW) is defined as the single, current cash flow that
produces the same final balance as the project. The final balance for a single, current cash flow
of PW dollars is A(1+i)n + PW(1+i)n. Set this equal to the general expression for final balance in
equation (1) and solve for PW to obtain:
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or

PW = FW(1+i)-n . (4)
Present worth is proportional to future worth, so it results in the same ranking as future worth
and hence the same as final balance.

Equivalent Annual Worth.  A project's equivalent annual worth (EAW) is defined as the equal
amounts flowing into or out of an account at times 1, 2, ..., n that produce the same final balance
as the project.  Setting the final balance for cash flows of amount EAW at times  1, 2, ..., n  equal
to the final balance of a project results in
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Equation (5) shows that equivalent annual worth is just a re-scaled version of present worth, and hence is
proportional to future worth and final balance. Thus it produces the same ranking as final balance, and is
another surrogate criterion.

Note the exponent in equation (5). It must be the same for all alternatives if EAW is to be
proportional to final balance. This means that the EAW for project B in the example must be
computed over 3 years, not 2. This does not pose a problem for alternatives that are not replaced
and for which all costs and benefits are known. Further analysis is required for other situations.

Capital Budgeting

The foregoing analyses deal with mutually exclusive projects in an unlimited capital environ-
ment. Now consider the capital budgeting problem wherein projects are independent and capital
is limited. Maximizing present worth and hence final balance in this environment is a complex
binary programming problem.

Benefit / Cost Ratio.  Project's benefit / cost (B/C) ratios provide an easily implemented capital
budgeting heuristic. Let B/Cj equal the ratio of the present worth of project j's cash flows at times
1 through n to its first cost. Thus B/Cj equals the rate at which project j provides benefits per unit
of cost. Selecting projects in decreasing order of their B/C ratio until funds are exhausted usually
results in a selection of projects of a quality very similar to that of the binary programming for-
mulation [1]. The heuristic does not include incremental analyses designed to insure selections
identical to PW. Its success nonetheless indicates that a project's B/C ratio is an indicator of its
quality in a limited resource environment. P
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Rate of Return. The internal rate of return (IRR) of a project is defined to be the interest rate
that would be paid by a savings account receiving c0 dollars and returning yearly flows of cj dol-
lars. This implies that it is the root of the following equation:
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The rate of return (RoR) heuristic selects projects in decreasing order of IRR until funds are ex-
hausted. It does not include incremental analyses designed to insure selections identical to PW,
but it still produces very good results [1].

Relationship between B/C and RoR.  The B/C and RoR heuristics both provide good solutions
to the capital budgeting problem. They do not provide identical rankings of independent alterna-
tives, but they do produce highly similar rankings because they tend to be proportional. This ten-
dency can be measured statistically using their correlation coefficient. The following experiment
performed using an Excel spreadsheet found this correlation to average 97%, where 100% means
that the two criteria are perfectly proportional.

The basic experimental procedure involves creating a set of 100 independent projects.
Each project lasts 5 years and consists
of randomly selected returns, each
between 0 and 1, with an initial cost
computed so that the project's IRR is a
random number between 5% and
25%. Then the correlation coefficient
is computed for the resulting 100
IRR's and their corresponding B/C
ratios using a discount rate of 5%.
Correlation coefficients also are com-
puted for B/C ratios evaluated at 10%,
15%, 20%, and 25%. For example,
Figure 1 shows a scatter plot of 100
points with a coefficient of 97.1%.
The resulting 5 coefficients are stored, and the entire procedure is repeated 50 times. The average
value of the resulting 50 sets of 5 correlation coefficients is 97%, with a standard deviation of
2% and individual values ranging from 92% to 99%.

Theusen demonstrated the high quality of the B/C heuristic for approximately solving the
binary programming problem that describes capital budgeting. The correlation between B/C and
IRR indicates that progressively less desirable projects based on the B/C criteria tend to have
progressively smaller RoR's. For example, suppose that the last project accepted on the basis of
its B/C ratio has a ratio of 1.4 and an IRR of 10%. Then as ratios decrease from 1.4, the corre-
sponding IRR's also tend to decrease from 10%. They do not, for example, fluctuate widely be-
tween 5% and 25%. Thus contractions and expansions in capital would affect projects with IRR's
of around 10%.

In general, the last projects that are selected or rejected due to expansions or contractions
in capital are referred to as marginal projects. Their average IRR is known as the average mar-
ginal rate of return (AMRR). This important concept will be used shortly in the development of
the industrial model.
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Figure 1. Sample Plot of B/C Versus IRR
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Reinvestment in Industry

In an industrial environment, funds for competing alternatives do not flow from and to a single account.
Instead, funds are taken from or reinvested in other projects, each with a potentially different IRR. This
section examines how this impacts the worth of a company at the end of the planning horizon. The follow-
ing subsections first use an example to illustrate the basic logic of industrial investments, and then gener-
alize this to develop criteria for selecting investments.

Example of Industrial Reinvestment

Suppose that the mutually exclusive investments shown in Table 1 are made in an industrial environment
having $100 of investment capital at time 0. The objective is to chose the alternative that maximizes the
capital at the end of the planning horizon, time 3. This capital at the end of the planning horizon corre-
sponding to each alternative is its future total worth, or FTW.

Alternative A initially requires $10, leaving $90
available for other investments, as shown in Table 3.
Similarly, alternative B allows $91 for other invest-
ments, and the null alternative results in all $100 remain-
ing available. All alternatives have a common funding
base of at least $90 for other currently unknown invest-
ments, and it is assumed this first $90 will be consumed
during capital budgeting by the better, non-marginal
projects that provide an average non-marginal rate of return (ANMRR), say 15%.

It also is assumed that there are a limited number of good investments, and that any funds above
$90 will be used by projects of marginal quality relative to those selected with the first $90. Recall from the
preceding section that an indicator of a project's quality for capital budgeting purposes is either its B/C or
IRR ranking. These two criteria produce similar rankings, so projects tend to be marginal regardless of
which measure is used. In this example, it is assumed that marginal projects have an average rate of return
equal to 10%, the AMRR.

The foregoing assumptions allow computation of the investment capital corresponding to each al-
ternative at time 1. Choosing alternative A implies that the remaining $90.00 of investment funds available
at time 0 will be invested in non-marginal projects grow at an ANMRR of 15% and then be augmented by
the first return of $7, so the funds for A at time 1 are

FA,1 = 90.00(1.15) + 7 (7)
or $110.50. Choosing alternative B results in the first $90.00 of investment funds growing at 15%, the mar-
ginal amount of $1.00 (91.00 - 90.00) increasing at 10%, and then augmentation by the return of $3, so

FB,1 = 90.00(1.15) + (91.00 - 90.00)(1.10) + 3 (8)
or $107.60. The null alternative results in the first $90.00 growing at 15% and the marginal amount of
$10.00 (100.00 - 90.00) increasing at 10%, so

FO,1 = 90.00(1.15) + (100.00 - 90.00)(1.10) (9)
or $114.50.

Assumptions similar to those made at time 0 must be made at time 1 to compute the investment
capital for time 2. At time 1, there will be investment capital of at least $107.60. It is assumed that the first
$107.60 of investments will grow at the ANMRR of 15%. Any funds above $107.60 are assumed to be
used by less attractive investments that provide an AMRR of 10%. Then the computation of the investment
capital for time 2 proceeds much as before.

At time 3, the reinvestment assumption is made again: Investments up to the common level grow at
the ANMRR, and investments beyond that amount increase at the AMRR. Repeating this process until the
end of the planning horizon allows the FTW corresponding to each alternative to be computed.

Generalization for the Industrial Environment

If all costs and benefits of alternatives are known and reinvestment occurs as described above, then it seems
reasonable to use the FTW procedure:

Table 3. Investment Capital
Time A B Null Common

0 90.00 91.00 100.00 90.00
1 110.50 107.60 114.50 107.60
2 131.93 127.74 131.33 127.74
3 151.51 151.90 150.85 150.85
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1. Set the length of the planning horizon to the life of the longest alternative.
2. Assume that future benefits and costs increase or decrease capital that is reinvested, and that common

amounts earn the ANMRR and amounts beyond that earn the AMRR.
3. Choose the alternative producing the largest FTW.

Developing a formula for FTW requires assigning symbols to the parameters of the investment
problem explained above, writing the expressions using those symbols instead of numbers until a pattern
emerges, and then algebraically rearranging the result. Let the following symbols be used, illustrated using
values from the preceding example:

Kj Common capital at time j, e.g., K0 equals 90.00 and K1 equals 107.60.
cj Value of a cash flow at time j, e.g., c0 for alternative B equals -9.
A Initial investment capital at time 0, e.g., $100.
a Average non-marginal rate of return or ANMRR, e.g., 15%.
m Average marginal rate of return or AMRR, e.g., 10%.
n Length of planning horizon, e.g., 3.

Then the equation for future total worth can be shown to be:
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In the example,
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or $151.51, as before. The FTW equation is primarily of theoretical importance, since the values
of Kj cannot be determined without performing year-by-year computations.

The top line in equations (10) and (11) is the FTW of the null alternative for which the
cash flows equal $0:
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Only the bottom line of equation (10) varies from alternative to alternative, and this leads to the
concept of future worth and other economic criteria for the industrial environment.

Economic Criteria for the Industrial Environment

The development of decision criteria for the industrial environment proceeds almost exactly as in
the single reinvestment rate case, as shown below.

Future Worth.  The future worth of an industrial project is defined as the difference between the project's
FTW and that of the null alternative:
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The formula for FW in the industrial environment is quite similar to the one for the single ac-
count environment, except that now the AMRR is used in place of the account's interest rate. The
interpretation of FW is the same for both environments.

Present Worth.  The more popular present worth measure is defined as the single cash flow at time 0 that
will result in the same FTW as the original project. Deriving the formula for a project's present worth is
done by setting the FTW of a project equal to the FTW of a single cash flow of amount PW at time 0, re-
sulting in either:
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or
PW = FW(1+m)-n (15)

As before, PW is proportional to FW, so it results in the same ranking as FW and hence the same
as FTW. Its interpretation is the same as before, but notice that it is evaluated at the AMRR.

Equivalent Annual Worth. A project's equivalent annual worth is defined as equal cash flows of amount
EAW occurring at times 1, 2, ..., n that produce the same FTW as the project.  Setting the FTW for equal
cash flows of amount EAW at times 1, 2, ..., n  equal to the FTW of a project results in
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EAW is proportional to PW, and hence to FW and FTW, so it is another surrogate criterion. The exponent
in equation (16) must be the same for all projects in order for proportionality to be maintained. Thus project
A's EAW must be computed over 3 years, even though it lasts only 2 years.

Summary and Conclusions

This paper focuses on the case where all costs and benefits are known. There are many situations where the
values of benefits are unknown, such as when pumps are compared. In this case, steps must be taken to in-
sure that the contributions of any unknown benefits to FTW are equal, thereby allowing the benefits to be
ignored. This usually is effected by choosing a planning horizon equal to the least common multiple of
service lives or to some preset length that truncates one or more alternatives.

There also are cost analyses in which a planning horizon cannot be set via a least common multiple
or truncation, but it can only be described as long and indefinite. In this case, a heuristic can be used if
there are identical replacements. The best equivalent annual cost (EAC) of each alternative is computed by
systematically varying its service life. Then the alternative with the smallest of these EAC's is chosen.

There are still other situations in engineering economics in addition to those noted above that re-
quire more detailed development. Nonetheless, the concept of future total worth provides a framework
within which to consider these topics and to identify which procedures are designed to maximize FTW and
which are heuristics.

There are several advantages of using FTW as a basic economic criterion. It is easily understood,
and it allows precise definitions of the more popular present worth and equivalent annual worth criteria.
FTW clearly reveals the reinvestment assumption, and this, in turn, explains why equal lives are not neces-
sary if all costs and benefits are known and why the AMRR is used to compute PW and EAW.

The AMRR is slightly different from the MARR. The AMRR is a representative IRR for however
many marginal projects are affected by typical fluctuations in capital, whereas the MARR technically is the
absolutely lowest IRR at which investment occurs. If there are not large changes in the values of the last
IRR's accepted, then the difference between AMRR and MARR is small and of little consequence in deci-
sion making. For practical purposes, it suffices to say that discounting should be done at the IRR's of mar-
ginal projects, a common interpretation of MARR.
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