
Session 3232

Experimenting with Web-Based, Personalized
Homework Assignments

Daniel H. Linder
Mississippi State University

Abstract

In our senior-level computer architecture course at Mississippi State University, we are experi-
menting with using a Web interface to distribute, debug, and collect VHDL programming assign-
ments which are unique to each student. Using a standard Web browser, students interact via
forms with a remote computer that runs their VHDL simulations, checks the results, and returns
debugging information in the form of HTML tables. This presents a simpler interface to the stu-
dents than the full VHDL CAD tools and eliminates issues associated with tool distribution and
licensing. The personalized nature of the assignments also helps ensure that all students work
through the assignments in detail. We have found that the fixed format of the returned simulation
results does not interfere with code debugging and that the immediate feedback to the students on
the success or failure of their simulations strongly motivates them to work until their simulations
are correct.

I. Introduction

The growing importance of hardware description languages such as VHDL for the simulation and
synthesis of modern digital systems makes these languages an essential component of a computer
engineering curriculum. However, programming assignments in VHDL or other exercises that use
CAD tools can be difficult to add to a course for several reasons. CAD tools often have complex
interfaces that take time to learn. An assignment using a CAD tool can quickly turn into a struggle
with tool usage rather than a reinforcement of lecture concepts. Licensing can be another prob-
lem. Many students prefer to work on their own PCs instead of coming to a centralized lab, but
CAD tool vendors may be reluctant to make an expensive tool available on all student machines.
Finally, if every student has the same assignment, interactions among students can degenerate
from discussing concepts to merely exchanging details of how to get the assignment working.
When this happens, many students obtain only a superficial understanding of the issues involved
in the assignment.

To help address these problems, we are experimenting with using the Web for the distribution,
debugging, and collection of VHDL programming assignments1. In our senior-level computer
architecture class, a student can use a standard Web browser for the compilation and simulation of
VHDL code for specific hardware modules. Code is submitted through an HTML form interface
and the results of the simulation are returned via an HTML table. This simple interface allows stu-
dents to avoid tool complexities and concentrate on code development. Since the VHDL compila-
tion and simulation tools run on a university server, there is no need for installing and licensing
the tools on student computers. In fact, the Web interface allows students to work on their assign-
ments from virtually any computer—including those not powerful enough to run the tools even if

P
age 4.257.1

a license were available. Our VHDL Web system also generates a personalized assignment for
each student. The assignments for the different students all share a common structure, but their
details differ. Hopefully, this will make each student work through a particular version of the
assignment.

Many educators have also experimented with the automatic generation and grading of personal-
ized homework assignments and quizzes. Several non-Web-based examples include Circuit
Exerciser2, CAPA3, CircuitTutor4, and CHARLIE5. These efforts have reported improved student
grades, greater student effort on assignments, and increased teacher productivity. With the growth
of the Internet, automated assignment systems are now exploiting the ubiquitous interface pro-
vided by a Web browser. Examples of Web-based systems include Mallard6, Carnegie Mellon
Online7, and microprocessor courses at Case Western Reserve University8. Using the Web elimi-
nates the need to distribute and install custom software packages to access the system. Also, stu-
dents are already familiar with how to use the browser interface.

Our VHDL exercises are an attempt to apply the concept of Web-based, personalized assignments
to problems involving programming and CAD tools. The next section examines several of the
assignments that have been successfully incorporated into our system. The remaining sections dis-
cuss the Web-based implementation, the results, and possible future work.

II. Personalized VHDL Homework Assignments

From the student’s perspective, our VHDL programming assignments have four steps:

1. Request a personalized assignment specification
2. Create/edit VHDL code on a local computer
3. Compile and simulate code on a remote computer
4. Submit the final code for grading

Students may repeat steps 2 and 3 many times while debugging. Steps 1, 3, and 4 are accom-
plished via our Web interface.

In step 1, a student requests a personalized assignment via an HTML form that asks for the stu-
dent’s university ID. When the form is processed, an HTML page with a mixture of tables and text
is returned that specifies the details of the assignment. This specification is saved on the remote
computer so that it may be retrieved at any time using the same form. The assignment specifica-
tions for the different students look similar, but their details vary. For example, our instruction
decoder assignment varies instruction attributes such as opcode, field positions, and addressing
conventions. The ALU assignment changes the size of the requested adder and the carry-
lookahead unit. The pipelining assignment varies the number of stages in the execute and memory
sections of the pipeline. The assignment specifications ask the student to create a behavioral or
structural architecture for one or more VHDL entity declarations. For example, the pipelining
assignment requests behavioral architectures for the forwarding and stalling units of the specified
pipeline.

In step 2, a student may use any local computer and editor to create the VHDL code. When it is
time to test the code, the student performs step 3 by entering the local file names for the VHDL

P
age 4.257.2

code files into another HTML form. When the form is processed, the code is transferred to the
remote server machine for compilation and simulation. If compilation errors are found, an HTML
page is returned that shows a list of the errors. If the code successfully compiles, it is simulated
and the HTML page returned from the form’s processing shows a combination of two sets of sim-
ulation data. One set consists of the results from simulating the student’s code. The other set
shows the correct simulation results. Differences between the student’s results and the correct
simulation are highlighted so that the student can quickly see where the behavior of the submitted
code was wrong.

Regardless of the simulation results, a student can complete step 4 by pressing a form button on
the HTML page returned from step 3. This submits for grading the last code that was simulated.
In our present system, the number of edit-compile-simulate cycles is only limited by the student’s
patience. There is no penalty for the amount of debugging required. There are, of course, penalties
for code that does not compile, does not simulate properly, or is not submitted by the due date.
Students can resubmit their solutions if they realize how to fix remaining problems (the last sub-
mission is graded).

The format of the HTML page returned to the student in step 3 is critical to the success of an
assignment. There must be sufficient information to debug the code, but there cannot be so much
that it overwhelms the student with details. When students run the VHDL simulation tools
directly on workstations in our computer lab, they have access to the full interface. They can
examine signals and variables throughout a design and interact with a simulation as it proceeds.
With the Web-based system, an entire simulation runs with a fixed set of test vectors in a batch
mode and data is returned only on a preselected set of signals. A major question at the beginning
of this project was how students would perform under these limitations.

As an introduction to VHDL, our instruction decoder assignment asks the student to define logic
for parsing a 32-bit instruction into its field values based on the instruction’s class. Figure 1 shows
an example portion of the simulation output returned to the student. On the left side of the table is
a list of instructions that was automatically generated when the student requested the assignment.
During the simulation, the instructions are applied to the student’s logic and the output values are
captured and displayed on the right side of the table. For each instruction, the right side shows two
rows of data. The first row is the answer and the second row is the student’s solution. The yellow
field indicates a difference between the student’s results and the answer. In this assignment, the
VHDL code does not need internal signals or state variables and the students reported no diffi-
culty in using the table results to debug their logic blocks.

In our ALU assignment, the student must define a behavioral model for an individual bit and then
assemble a structural model for an ALU using carry-lookahead units. A table similar to Figure 1 is
returned to the student—the left side shows the input operands and the right side shows the output
result of the ALU. It was clear that the students would have preferred access to the values on the
internal signals of their structural models. This is difficult to provide without putting restrictions
on how the students name and organize signals. Nevertheless, the students were quite successful
with this assignment. They could temporarily change their code to use the provided outputs for
examining signal values other than those for which the outputs were intended.

P
age 4.257.3

Figure 1. Example Output for the Instruction Decoder Assignment

Figure 2. Example Output for the Pipelining Assignment

P
age 4.257.4

Our pipelining assignment presented the greatest challenge in terms of returning simulation
results to the students. In this assignment, the students must add stalling and forwarding logic to a
processor with a 9-stage pipeline. There are many I/O signals for the stalling and forwarding logic
blocks and a simple listing of their values would create a bewildering display of numbers.
Figure 2 shows an example portion of the output returned to the student. The left side shows the
updates to the registers and memory while the right side shows the flow of instructions through
the student’s pipeline. The signals for each stage of the pipeline were condensed using several
techniques. The signals that indicate what instruction is in a stage and the registers it uses are dis-
played by converting them into a simple assembly language representation. Color is used to repre-
sent some of the key signal values controlled by the student’s code. A red background for an
instruction indicates that the stage is stalled. A green background for a data value indicates that
the data was forwarded from some other part of the pipeline. Finally, JavaScript is used to hide
values that are seldom used. At the extreme right of the table are JavaScript buttons that pop up
dialog boxes containing listings of the current register and memory values.

III. Web-Based Implementation

Figure 3 shows the software and hardware components involved in processing the HTML forms
used in our Web-based, personalized assignments. The “Local Computer” is whatever machine
the student uses to edit VHDL code and run a Web browser. The “Remote Web Server Computer”

Text
Editor

VHDL
Code

Web Browser

Standard Web
Server

CGI/RMI
Interface

JavaCAD
Server

Perl
Script

VHDL
Compiler/Simulator

Local
Computer

Remote
Web Server
Computer

Remote
CAD

Computer

HTTP

RMI

Figure 3. Implementation Components

P
age 4.257.5

is a machine that the university uses for running a standard Web server. The “Remote CAD Com-
puter” is a machine that is licensed by the university to run the CAD tools needed by the assign-
ments. Both remote computers can be the same machine, but keeping them separate allows the
remote CAD computer to be more secure.

The local computer needs only enough processing power to run a Web browser and editor. When
the student submits a form to compile and simulate VHDL code, the browser reads the code from
the file system on the local computer and transfers it over the Internet to the remote Web server
computer. No special capabilities are required by the Web server running on this machine; it needs
only the ability to execute common gateway interface (CGI) scripts. The VHDL code is trans-
ferred to the remote CAD computer using Java’s remote method invocation (RMI) protocol. Thus,
a CGI/RMI interface was created with Perl and Java to allow a CGI script execution to make an
RMI request.

The remote CAD computer runs a custom Java program called the JavaCAD server. We created
this server to make batch-mode CAD processes remotely accessible over the Internet. The
JavaCAD server can be called from an HTML form using the CGI/RMI interface mentioned
above or directly from a Java client program via a standard RMI request. We use the HTML forms
for the VHDL assignments and the direct RMI requests for a variety of other projects. When the
JavaCAD server receives an RMI request, it checks the parameters for security problems and allo-
cates temporary space for the execution of the requested CAD tool. Then, it spawns a Perl script
that controls the details of the particular batch-mode CAD process. If the process does not com-
plete its work within a given time limit, the process will be automatically killed. The JavaCAD
server also manages resources by reclaiming temporary disk space and limiting the number of
outstanding processes.

Each VHDL assignment requires the development of two custom Perl scripts called by the
JavaCAD server. The first script is used when a student requests a personalized assignment (step 1
discussed in Section II). The work of this script involves the following:

1. Create the HTML specification of the assignment
2. Select the test vectors for simulations of the assignment
3. Generate the solution VHDL code
4. Compile and simulate the solution VHDL code to obtain the answers for

comparison with simulations of the student’s code

When this script finishes, the HTML specification of the assignment is returned to the student.
The second custom script that must be developed is used when a student wants to compile and
simulate code (step 3 discussed in Section II). The work of this script involves the following:

1. Compile the VHDL code supplied by the student and return errors if neces-
sary

2. Simulate the code with the selected test vectors and collect the output results
3. Generate the HTML table comparing the results of the student’s code to the

answers obtained when simulating the solution code

P
age 4.257.6

Even though the details of the scripts change from assignment to assignment, the basic pattern of
the code stays the same and this helps reduce the programming effort. The most time-consuming
part of developing a new assignment is not the writing of the custom scripts but is the design of
what the assignment will involve, how it will differ for the individual students, and how the simu-
lation output will be displayed.

IV. Results

Although the full, interactive simulator interface has greater flexibility, our HTML table approach
seems to work well for these introductory assignments. We had been concerned about the practi-
cality of debugging a programming assignment over the Web, but the students adapted quickly
and many expressed a preference for the Web interface. This is probably demonstrated most
clearly by the small number of students who resorted to using the VHDL tools directly on a lab
workstation—even though many students had prior experience with the tools. In some ways, the
HTML tables are actually superior to the direct simulator interface. The tables displayed for the
pipelining assignment condense a large amount of information that would be more difficult to
comprehend as simulator waveforms. Of course, students specializing in this area must eventually
learn how to control the CAD tools themselves, but we have other courses that focus on tool
usage. The Web interface helps ease this course’s diverse set of students into VHDL program-
ming. (The fall ‘98 class included 48 students drawn from the undergraduate and graduate pro-
grams in computer, electrical, and computational engineering as well as computer science and
physics.)

As other educators have noticed, immediate feedback on errors seems to highly motivate students
to work until they achieve a perfect score. Nearly every student completed our VHDL assign-
ments correctly before the due date; only about 10% of the students submitted the assignments
late or with errors. As might be expected, the students performing the best on the in-class tests
consistently completed their assignments within a few days while the other students usually took
more than a week. Since our system time stamps the code submissions, it would be possible to
factor into the grade the length of time required to complete an assignment in order to reward the
students who turn in their solutions early.

From the instructor’s perspective, the Web-based system improves the efficiency of answering
individual questions and grading. A directory structure accessible to the instructor holds the last
code files that a student submitted along with the code’s simulation results. In response to an
email or phone call from a student, the instructor can quickly look at the same material the student
is viewing. At the end of the assignment, the submitted code is still manually examined to help
build an impression of how the various students are doing, but the automatic simulations and com-
parisons save a lot of repetitive work. This allows the instructor to concentrate on giving advice to
help improve the programming skills of the students.

V. Future Work

To support more complex assignments in the future, improvements are needed in the way displays
of simulated results are created and organized. Even generating an HTML table can require some
tedious programming. Thus, Perl/Java libraries that provide object-oriented abstractions for the
creation of displays with tables, block diagrams, and waveforms would be very useful. Also,

P
age 4.257.7

condensing simulation results onto a single HTML page is more challenging as the complexity of
the assignments grow (for example, the results page for the pipelining assignment has become
quite large). The JavaCAD server has the ability to allocate and manage temporary space for a
collection of Web pages that hold information about the results of a request. By exploiting this
feature, more complex Web page structures describing simulation results could be built. That is, a
relatively small page could be returned that contained links to more detailed information on other
pages. Also, more JavaScript could be used to display information only when it is requested.

Although this paper discussed VHDL exercises, a similar approach might be useful for other
kinds of programming assignments. This would be especially true if the goal of the assignments is
to quickly introduce the basics of a language without having to deal with a development tool’s
learning curve or the issues associated with the tool’s distribution and licensing. Even if there are
no problems with using the development tools, a Web-based testing system could complement the
tools by providing more comprehensive feedback and possibly unique displays of the code’s
behavior.

Bibliography
1. See http://www.ece.msstate.edu/~linder/Courses/EE4713/labs/ (use social security number 111223333 to experi-
ment with the assignments).
2. A. Yoshikawa, M. Shintani, and Y. Ohba, “Intelligent Tutoring System for Electric Circuit Exercising,” IEEE
Transactions on Education, vol. 35, pp. 222-225, August 1992.
3. E. Kashy et al., “CAPA—An integrated computer-assisted personalized assignment system,” American Journal of
Physics, vol. 61, pp. 1124-1130, December 1993.
4. B. Oakley, “A Virtual Classroom Approach to Teaching Circuit Analysis,” IEEE Transactions on Education,
vol. 39, pp. 287-296, August 1996.
5. D. Barker, “CHARLIE: A Computer-Managed Homework, Assignment and Response, Learning and Instruction
Environment,” Frontiers in Education Conference, pp. 1503-1509, 1997.

6. M. Swafford et al., “MallardTM: Asynchronous Learning in Two Engineering Courses,” Frontiers in Education
Conference, pp. 1023-1026, 1996.
7. D. Rehak, “Carnegie Mellon Online: Web-Mediated Education,” Frontiers in Education Conference, pp. 1510-
1516, 1997.
8. F. Merat and D. Chung, “World Wide Web Approach to Teaching Microprocessors,” Frontiers in Education Con-
ference, pp. 838-841, 1997.

DANIEL H. LINDER
At Mississippi State University, Daniel H. Linder is an assistant professor in the Department of Electrical and Com-
puter Engineering and is also associated with the NSF Engineering Research Center for Computational Field Simula-
tion. His current research interests include computer architecture and electromagnetic simulation. He received a Ph.D.
in Electrical Engineering from Mississippi State University in 1994.

P
age 4.257.8

