Session 3520

FROM FINITE STATE MACHINES TO COMPLEX 1!
REACTIVE SYSTEMS WITH VISUAL FORMALISMS

Carl W. Steidley, Jeffrey W. Roule
Department of Computer Science
Southeastern Louisiana University
Hammond, Louisiana 70402
Abstract

It is well known, that a digital computer stores information internally in binary form. At any
instant, the computer contains certain data, so its internal storage is set in certain patterns of
binary digits. We call this the state of the computer at that instant. Since the computer contains a
finite amount of storage, there is a finite (although large) number of states that the computer can
assume, thus a computer can be formally and abstractly defined and represented with a finite
state machine of the form M=[S,1,0,fs,fo] where S is a finite set of states, | is the finite input
alphabet, O is the finite output alphabet, fs:SxI->S, and fo:S->0. Another and generally more
accessible way to define such machines is the visual formalism of a directed graph called a state
graph or more often a state-transition diagram (or state diagram for short).

Generally, a transformational system is specified by a transformation or function, so that an
input/output relationship is usually considered a sufficient specification. A reactive system, in
contrast with a transformational system, is characterized by being, to a large extent, event-driven,
continuously having to react to external and internal stimuli.

There has been a major problem in the specification and design of large and complex reactive
systems. This problem is rooted in the difficulty of describing reactive behavior in ways that are
clear and realistic, and at the same time formal and rigorous enough to be amenable to detailed
computer simulation.

In this paper we will describe a broad extension of the conventional formalism of state machines
and their visual formalism, state diagrams, developed by Harel, that is relevant to the
specification and design of complex, discrete-event systems, such as multi-computer real-time
systems, communications protocols, and digital control units.

Introduction

In a naive sense it may be said that computer scientists are interested in solving two questions:
What problems can be solved with a computer, and if a problem is theoretically solvable, what is
the most effective way to solve it? Answers to the first question arise through development and
study of models of computation. During the undergraduate experience we introduce students to
the foundations of computation, which address the first question through abstract models of the
computer. This model is frequently the finite state machine or finite state automaton. Finite state

1 Partial support for this project was provided by the National Aeronautics and Space

1'60¢'¢ abed



Administration’s JOVE Program, Contract # 3606-08

machines are of practical interest as well as theoretical interest since they are commonly used in
compilers to perform lexical analysis.

We generally introduce the finite state machine in a formal mathematical fashion such as:
M=[S,1,0,fs,fo] where S is a finite set of states, | is the finite input alphabet, O is the finite output
alphabet, fs:SxI->S, and fo:S->0O. Before long however we may find many of our students, if not
perplexed, bored by the mathematical abstraction and we find much sagacity in the old student
adage that "a picture is worth a thousand mathematical equations”, thus, we find ourselves using
state transition diagrams to illustrate our finite state machines.

Transformational versus Reactive Systems

Many kinds of data processing systems are transformational systems, that is, the system is
defined by a specifying transformation or function. Usually an input/output relation is sufficient.
The timing of the inputs and outputs is fairly predictable. Such a system repeatedly accepts
inputs , carries out some processing, and outputs the results when the processing is done. While
transformational systems can be highly complex, there are a number of methods that allow one to
decompose the system's functional or transformational behavior into ever-smaller parts in ways
that are both coherent and rigorous.

A reactive system, in contrast with a transformational system, is characterized by being, to a large
extent, event driven, continuously having to react to external and internal stimuli. Examples of
reactive systems include: automobiles, missile and avionics systems, communication networks,
and operating systems. The literature on software and systems engineering is almost unanimous
in recognizing the existence of a major problem in the specification and design of large complex
reactive systems.[see 1,2,3,4,5] The problem is rooted in the difficulty of describing reactive
behavior in ways that are clear and realistic, and at the same time formal and sufficiently rigorous
to be amenable to detailed computer simulation. The behavior of a reactive system is really the
set of allowed sequences of input and output events, conditions and actions, perhaps with some
additional information such as timing constraints. The problem is made especially acute in that a
set of sequences, usually a very large and complex set, does not seem to lend itself naturally to
friendly gradual, level-by-level descriptions, which would fit nicely into a human being's frame

of mind.

Visual Formalisms

States and events are a natural medium for describing the dynamic behavior of both
transformational and reactive systems. Such systems would be comprised of fragments of the
following form "when event x occurs in state X, if condition A is true at the time, the system
transfers to state Y." Finite state machines and their corresponding state-transition diagrams (or
state diagrams for short) are a visual formalism for collecting all such fragments of a system into
a whole. (see Figure 1.)

26022 abed



Figure 1

It is difficult, if not impossible, however, to represent a complex system in this fashion due to the
unmanageable, exponentially growing multitude of states, all of which are illustrated without the
benefit of strata, resulting in a chaotic state diagram without structure. To be useful, a state/event
approach, just like a good software system, must be modular, hierarchical, and well-structured.

Statecharts

According to Harel, [6] a good state/event approach should also cater naturally to more general
and flexible statements, such as

(2) "in all airborne states, when yellow handle is pulled seat will be ejected”

(2) "gearbox change of state is independent of braking system"

3) "when selection button is pressed enter selected mode"

(4) "display-mode consists of time-display, date-display, and stopwatch-display"

In keeping with the "one picture is worth a thousand words” (or for that matter a thousand formal
equations) aphorism, Harel offers statecharts as a way to extend the state/event formalism in
ways that will satisfy the needs expressed above , and at the same time retain and improve the
visual appeal of state diagrams. Statecharts constitute a visual formalism for describing states
and transitions in a modular fashion, providing for clustering, orthogonality (concurrency), and
refinement. Statecharts also encourage zoom capabilities for moving easily back and forth
between levels of abstraction. That is,

statecharts = state-diagrams + depth + orthogonality + broadcast communication.

where: depth = hierarchy
orthogonality = independence or concurrency

Clustering and Refinement

Generally we teach the concept of hierarchy using trees or other such line graphical
representations. There is, however, a real disadvantage in utilizing these representations. Since
lines and points have no width, no advantage is taken of the area or location of the diagram.

£'602'¢ abed



Statecharts depict states as boxes and utilize encapsulation to depict hierarchy. Transition arrows

are allowed to originate and terminate at any level and can be labeled with state change events
and/or conditions. (see Figure 2)

Figure 2

The semantic implication of the superstate depicted in Figure 2 is the exclusive-or of the two
substates. Thus, the superstate depicted is an abstraction or clustering of the two substates. The
outgoing transition arrow captures the common, and highly important property of statecharts, the
two substates' transition arrows are replaced by the single transition arrow from the superstate
indicating that the transition is from all substates. The statechart of Figure 2 could have been

designed from another approach. That is, we may have arrived at the situation depicted in Figure
3.

Figure 3

The superstate may then have been refined to include the two substates depicted in Figure 4.

Figure 4

6022 9bed



Of course the underspecification of the transitions and conditions would be realized and included
in the diagram yielding the original statechart of Figure 2. Thus, clustering or abstraction is a
bottom-up concept and refinement is a top-down concept and both depict the or-relationship
between a state’s substates.

Suppose that as far as the “outside world” is concerned, the default start state of a system is state

A. Three methods of depicting this in statecharts are illustrated in Figure 5. Figure 5i depicts a

direct entry to an open state. Figure 5ii depicts entry into a substate. Figure 5iii depicts a two-
step form of Figure 5ii.

N S

Figure 5

Independence and Concurrency

The concept of concurrency, that is the concept of two processes brought together to interact,
where the interactions may be regarded as events that require simultaneous participation of both
processes, can be difficult to model. For example, consider the diagram of Figure 6.

Figure 6

G602 9bed



In the study of automata we may refer to the situation depicted in Figure 6 as the orthogonal
product of states. That is, where we considered the OR of states in the last section, now we will
consider the decomposition of the AND condition. The concept of orthogonal product of states
captures the notion that to be in a given state a system must be in all of its AND components.

A statechart implementation of the system depicted in the figure above is given in Figure 7.

Figure 7

An orthogonal product statechart is depicted by a dashed line to split a state box into
components. Figure 7 depicts a super-superstate Y consisting of two AND component
superstates A and D with the property that being in the super-superstate entails being in some
combination of one of the two states of superstate A with one of the three states of superstate D.
In this case, a super-superstate is the orthogonal product of the two super states. Without further
information, entering the super-superstate from the outside is equivalent to entering through the
default arrow to both of the states indicated. If the first event occurs, it transfers to the next two
states simultaneously. This illustrates a type of synchronization: a single event causing two
simultaneous happenings.

We have considered the hierarchy, orthogonality, and broadcast features of statecharts since these
are the features necessary to clearly specify and model complex reactive systems. However,

while beyond the scope of this paper, statecharts include condition and selection entrances,

delays and timeouts, and unclustering features as well. A full semantic description of statecharts
can be found in [9,10].

Modeling With Formal Methods

The main stages in the development life cycle of a system are requirements analysis and
specification, design, implementation, testing, and maintenance. In both the requirements
analysis and specification, and design stages developers specify the system under development in
terms of its functional capabilities and its behavior over time, and determine the main subsystems

9'602'¢ abed



that implement these capabilities. The resulting specification is called the system model.

Since correcting specification errors and misconceptions discovered during later stages of the
system'’s life cycle is extremely expensive, it is commonly agreed that a thorough comprehension
of the system and its behavior must be achieved in the specification stage and that extensive
analysis should be carried out as early as possible. This is important for all the participants in the
development of the system. If a clear and comprehensive model is constructed early, the
customer can become acquainted with and can approve of the functionality and behavior of the
system before investing heavily in the implementation stages. Precise and detailed models are
also in the best interests of the designers and the testers of the system. Moreover, the specifiers
themselves use modeling as the main medium of expressing their ideas, and exploit the resulting
models in analyzing feasibility and operational issues. This is particularly true for reactive
systems, whose behavior can be complex, causing the specification problem to be particularly
elusive and error prone. Thus, building a model can be considered a transition from concepts and
ideas to concrete descriptions. The concepts underlying a system are captured in three views:
functional, behavioral, and structural.

The functional view captures the “what”. It describes the system’s functions and processes, also
called activities, thus pinning down its capabilities. This view also includes the inputs and

outputs of the activities, i.e., the flow of information to and from the external environment of the
system and among the internal activities. The behavioral view captures the “when”. It describes
the system’s behavior over time, including the dynamics of the activities, their control and timing
behavior, the states and modes of the system, and the conditions and events that cause modes to
change and other things to happen, thus, it also provides answers to questions about causality,
concurrency, and synchronization. The structural view captures the “how”. It describes the
subsytems and modules constituting the real system, and the communication between them. The
functional and behavioral views provide the conceptual model while the structural view is
considered to be the physical model.

I-Logix Corporation of Andover, Massachusetts has created a software tool which incorporates
these three views of a system model. The system, called STATEMATE, uses three graphical
languages: the first called activity-charts is for modeling the functional view, the second
incorporates Harel's statecharts visual formalism for modeling the behavioral view, and the third,
called module-charts, is for modeling the structural view.

Some of the basic ideas that make up STATEMATE languages have been adapted from other
modeling languages, such as data-flow diagrams, state-transition diagrams, data dictionaries and
mini-specs. However the languages of STATEMATE include many extensions that increase the
expressive power and simplify and clarify the model. The languages of STATEMATE have
formal semantics. The general visual style as well as many of the conventions and syntax rules
are common to all three of the STATEMATE languages.

At this point the reader may ask the question, “What can we get out of this model beyond the
benefits of careful thinking that come implicitly from the process of its construction?” The
STATEMATE package provides for analyzing the model by syntax checking, the ability to

1'60¢°¢ abed



execute or run the model, and to view graphically the system’s response using its simulation
feature. A simulation control language is part of the system providing the user with control over
how the executions proceed, yet allowing for the exploitation of the power of the tool to take
over many of the details. The simulation feature thus provides for debugging, deeper analysis,
and exhaustive scenario testing.

Finally, one of the most far reaching benefits of a model that is precise and comprehensive is the
ability to translate it in its entirety into runnable code. In STATEMATE this is done using its
prototyper package, which can be instructed to automatically translate an Activity-chart with all

of its descendants, including their controlling Statecharts, into a high level language such as Ada
or C. The main use of the resulting code is in observing the system performing under
circumstances that are as close to the real world as one wants. For example, the prototype code
can be executed in a full-fledged simulator of the target environment or in the final environment
itself. The code produced should be considered to be prototypical, and not necessarily
production or final code. Consequently, it might not always reflect accurate real-time
performance of the intended system. Nevertheless, it runs much faster than the animated
simulations, and hence is useful for testing the system’s performance in close to real
circumstances.

Example

For demonstration purposes we will include two examples given by Hoare in his book
Communicating Sequential Processes (CSP)[12]. For comparison and contrast we will
implement the examples first in FDR and then in statecharts. (The automated formalism Failures
Divergence Refinement (FDR)[13] was developed from CSP.)

The first of these examples is a simple vending machine which will deliver a chocolate for each
coin of proper denomination deposited in the machine. The formal FDR expression for this
example is as follows:

VM = coin -> choc -> VM

A statechart implementation of this example follows:

8'602'¢ abed



Figure 8

While certainly more illustrative, the statechart implementation is probably no more informative
than the FDR expression for the mathematically literate.

However, the FDR implementation of a slightly more complicated machine, one offering the use
of a choice of coins to insert and a selection of candies to dispense, is much more complicated

using more specialized notation and requiring a slightly more sophisticated understanding of
mathematical notions.

VMC = (in2p -> (large -> VMC) [] (small -> outlp -> VMC))
[l (in1p -> (small -> VMC) [] (in1p -> large -> VMC) []
(in2p -> outlp -> large -> VMC) [] (inlp -> STOP))

This example, definitely of British origin, models a more complex vending machine (VMC). In
the example, VMC waits for a coin to be input. Upon insertion of a one penny coin, a large or
small chocolate is selected. If a small chocolate is selected, it is dispensed and VMC returns to a
waiting state. If a large chocolate is selected VMC waits for another coin to be input. If the
second coin is a one penny coin, VMC dispenses a large chocolate and returns to a waiting state.
If the second coin is a two penny coin, VMC returns a one penny coin in change, dispenses a
large chocolate, and returns to a waiting state.

Upon insertion of a two penny coin, if a small chocolate is selected, VMC returns a one penny
coin in change, dispenses a small chocolate, and returns to a waiting state. If a large chocolate is
selected, VMC dispenses a large chocolate and returns to a waiting state.

The statechart implementation of this more complicated vending machine is, we believe, much
more intuitive.

6°602'Z 9bed



ATWMC IS
COIN_IN
JOUTP
IN1P
ANOTHER
‘SHHLL_OUT N hp oy p.| LARGE_OUT

Figure 9
Conclusions

The broad use of the state/event approach, in the form of finite state machines or state transition
diagrams, for the specification of systems is attested to by the literature. This approach has been
recommended for the specification of the following: user interface of interactive software [4,5],
data processing systems [2], hardware system description [1], communication protocols [8,9],
and computer aided instruction [3].

One of our jobs as educators is to teach students that there is no magic solution to the problem of
designing large and complex systems, except to use carefully fashioned methods, languages, and
formalisms that enable the work to be carried out gradually, module by module and level by
level[11]. Further, students should understand that the descriptions resulting from these practices
ought to be sufficiently coherent and precise to be both useful to an observer and amenable to
computer simulation, thus enabling as much computerized support in formal verification and
analysis as possible.

References

1. M.D. Edwards and D. Aspinall, The synthesis of digital systems using ASM techniques, in: T. Uehara and
M. Barbacci, Eds, Computer Hardware Description Languages and their Applications, North-Holland,
Amsterdam, 1983, pp 55-64.

2 A.B. Ferrentino and H. D. Mills, State machines and their semantics in software engineering, Proc. IEEE
COMPSAC'77 Conference (1977) pp 242-251.

3. S. Feycock, Transition diagram-based CAI/HELP systems, International Journal Man-Machine Studies, 9,
pp 399-413, 1977.

01'602'¢ abed



4. R.J.K. Jacob, Using formal specifications in the design of a human-computer interface, Communications of
the ACM, 26, pp 259-264, 1983.

5. D.L. Parnas, On the use of transition diagrams in the design of a user interface for an interactive computer
system, Proc. ACM Conference, pp 379-385, 1969.

6. D. Harel, Statecharts: A visual formalism for complex systems, Science of Computer Programming, North-
Holland, pp 231-274, 1987.

7. C.A. Sunshine et al, Specification and verification of communication protocols in AFFIRM using state
transition models, IEEE Transactions on Software Engineering, Vol 8, pp 460-489, 1982.

8. A.S. Tannebaum, Computer Networks, Prentice Hall, Englewood Cliffs, NJ, 1981.

9. D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman, On the formal semantics of statecharts, Proceedings of
the 2nd IEEE Symposium on Logic in Computer Science, 1987.

10. The Semantics of Statecharts, iLogix, Inc. Andover, MA.

11. Steidley, Carl W. , Roule, Jeffrey, A Tool for Teaching Visual Formalisms, submitted Journal for
Computingin ~ Small Colleges.

12. C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall Internationla Ltd., New York, 1985.
13. Failures Divergence Refinement, User Manual and Tutorial, Formal Systems (Europe) Ltd., 1995.

Biographical Information

CARL STEIDLEY is a Professor of Computer Science. He earned his Ph.D. at the University of Oregon. His
interests are in the applications of artificial intelligence and robotics. Prior to joining the faculty at Southeastern La.
Univ. he taught computer science at Central Washington Univ., and Austin Peay State Univ. Before that he was a
member of the faculty of mathematics and physics at Oregon Institute of Technology. He has had recent research
and development appointments at NASA Ames Research Center and Oak Ridge Natl. Labs.

JEFFREY ROULE is a senior majoring Computer Science at Southeastern Louisiana University. He has been
Steidley’s research assistant, funded by the NASA JOVE program, for one year.

11'602'¢ 9bed



