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Abstract
We describe an approach for the computational modeling of complex reaction systems, based on a language that allows the
description of general types of chemical reactions. These descriptions are compiled and automatically executed to generate the
entire reaction network. The language provides a general method for describing reactions–not limited to a specific class of
chemical transformations. Reactions are described using a sequence of commands to characterize the reaction site, the
transformation of the reactants to products, and, if desired, thermodynamic constraints to determine the dominant steps within each
reaction type. These commands allow flexibility in the types of reaction systems that can be analyzed and may also be used to
adjust the level of detail within a specific reaction network. The commands were developed to mimic the natural way in which a
generic reaction is often described ~nformally.

INTRODUCTION

Complex reaction systems occur in many chemical processes,
including fermentation, combustion, polymerization, and
petroleum refining. Modeling such systems is difficult because
there are large numbers of reactions and reaction intermediates
involved (Mavrovouniotis et al., 1993). Better models of
complex reaction systems can lead to improvements in the
design, operation, and control of these chemical processes.
Improved accuracy of chemical analysis techniques and increased
computational capabilities are gradually enabling computational
study of reaction networks in their full detail.

The computational approach described here is based on a
language that allows the description of general types of
chemical reactions, which are then used to generate the entire
reaction network for any given feed. The distinguishing feature
of this work is that it can be used for any type of reaction
system. Reactions are described using a sequence of commands
to characterize the reaction site, the transformation of the
reactants to products, and, if desired, constraints to determine
the dominant steps within each reaction type. These commands
allow flexibility in the types of reaction systems which may be
analyzed and in adjusting the level of detail of the network.

THE REACTION DESCRIPTION LANGUAGE

The Reaction Description Language, RDL, is a computer
language developed to describe generic types of chemical
reactions. Using the keywords of RDL, commands may be
formed that locate the reaction site, manipulate the reactant to
form the product, and detelmine whether a reaction may be
applied to a specific reaction site. The syntax and the types of
operators in RDL mimic the way in which a generic reaction is
often described informally, Thus, the reaction descriptions are
usually self-documenting. Modification or addition of reaction
types is accomplished easily and transparently.

The permitted keywords of the language, shown in Fig. 1,
include operators and item descriptors. An operator receives a
set of arguments and performs a particular task. For example,
the operator disconnect ensures that its two arguments, which

must represent portions of a molecule, are adjacent to each
other and disconnects them. An item descriptor refers to a
portion of the compound or network (e.g., reaction, positive-
atom, or reactant). Item descriptors are formed using prefixes,
items, and suffixes (Fig. 1). Valid item descriptors include
“negative-atom”, “aromatic-rings”, and “triple-bond”. The
combination of certain prefixes and items is undefined; the term
“positive-bond” has no meaning and is assumed to represent a
variable. A variable is a collection of characters that is defined
by the user with an assignment operator, Label-site or Set-var.
A user-defined variable cannot coincide with an operator or legal
item descriptor; in effect, the keywords of RDL are reserved.
The production rules of RDL, in BNF notation, are listed in
Fig. 2. A reaction description is formed by a set of statements,
or commands, enclosed by braces.

II= concatenate I=or

Fig. 1. The keywords of RDL, including operators and item.
descriptors.
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Mmlpulatlon  Phrases
trmsform-stmt —> ( Wmsform-cxprl  I trmsform-cxpr2  )
tmnsform-exprl —,  tram  form-op  1 I1err.cxpr
trmsform-expr2 —,  trmsfc>rm-op2 aem-cxpr  itcm-expr
set-stmt —,  ( scl-op  slot-expr  number-expr )

Pmmng  Phmscs
pruning-stint —,  ( pr.nmg-.p  expr  )
test-stint —) ( kst-op  expr expr  expr’? )
tind-expr —,  f,nd-item-cxpr  I Iind-test-expr

M1scelkmeous Exprcssion~
imthme[ic-cxpr ‘~ (  @hmet~c.op  numhcr-expr.  )
Iind-item-expr —> ( Imd-up  Item-dcscmptor  partid-prep.cqxt )
tind-tcsc-expr —,  ( iind-!cst-op  n u m b e r - c x p r  aem-descripmr  partm.prep-e.prt  )
ilem-expr —,  varmble I mm-dcswptor  I I tind-km-expr
number-cxpr —,  test-slmt I Iind-cxpr  I number-expr I slot-expr  I n“mbw
plmal.prep-expr —,  prep-expr ,Lem-cxpr
pred,cate-cxpr —,  ( preckk-op  jmmcxpr  )
preposamn-expr —,  Item-cxpr  p3rtIal-prep-cxpr
prep-expr —,  prep-cxprl  I prep-cxpr2 I prep-expr3
prep-exprl —,  prep-op 1
prep-expr2 —,  prep-IIp2 n.mbcr-expr
prep-expr3 —,  prep-c>p3  ,tem-expr
relatile-cxpr —,  ( rcl-op  number.expr number.expr )
Slot.cxpr —,  ( itcm-op  llem-cxpr  )

= one or more ‘! = zero or one
t = zero or more I=or

Fig. 2. The production rules of RDL in Backus  Naur Form.
This is a formal description of the syntax of the language.

As an example, Fig. 3 is a specification for the 1.2-hvdride,,
shift reaction. Lin& 1–3 o; Fig. 3 locate the reaction site and
create the variables Carbon 1, Carbon2, and H 1. In locating a
reaction site, only topologically unique atoms are found. For
the secondary heptyl ion:
Cl H3-C+H-C2  H2-CH2-CH2-CH2-CH3 (7)

only two reaction sites are located: (C+-C l–H) and (C+–C2–H).
The total number of reactions is accounted for in the last line of
Fig. 3, (Set Number-of-reactions (Symmetry-number-of H1 )).
The symmetry number of an atom is the total number of atoms
topologically equivalent to it. Thus, the total number of
reactions for the reaction site (C+–C1–H), in compound (1) is
three because there are three equivalent hydrogens attached to
Cl, Similarly, the total number of reactions for the site (C+–
C2–H) is two because there are two equivalent hydrogens
attached to C2.

Lines 4-7 of Fig. 3 are the manipulation statements, which
form the product of the reaction. In the secondary heptyl ion
example, the compound would be manipulated twice,
corresponding to the two reaction sites found, to form a
primary heptyl ion and a heptyl ion with the charge on C2,
shown below.
C 1+ H2-CH2-  C2H2–CH2–CH2–CH2-CH3 (2)
Cl H3–CH2-  C2+ H-CH2-CH2–CH2-CH3 (3)

The primary ion (2) is discarded when the pruning command on
line 8 is applied: (Forbid (Primary Carbon2)),  where the
variable Carbon2 refers to C 1 in structure (2). This line is
included based on the assumption that the formation of primary
ions is not favored thermodynamically. Because this command
is located after the manipulation statements, Carbc

the carbon atom in the product. Thus, the test is applied after
the product is formed. A more efficient method of rejecting
these reaction sites would be to place line 8 before all the
manipulation statements. Compile-time optimization can be
used to automatically rearrange the execution order of the
commands.

Note that the value of a variable shifts from reactants to
products at run time. In the discussion above, the variable
Carbon2  in lines 1-3 of Fig. 3 refers to a carbon atom in the
reactant However, in lines 4-8, Carbon2 refers to a part of the
product. In general, a variable refers to the product if it is in a
statement that occurs after any manipulation command.

I

2
3

4
5

6

7
8

9

(Label-site Carbonl  (Find positive-carbon))
(Label-site Carbon2 (Find neutral-carbon attached-to Carbon l))
(Label-site H 1 (Find neutral-hydrogen attached-to Carbon2))
(Disconnect Carbon2 HI )
(Connect Carbonl  Hl)
(Subtract-charge Carbon 1)
(Set (Charge-of Carbon2)  1)
(Forbid (Primary Carbon2))
\, Set Number-of-reactions (Symmetry-number-of H 1 ))

Fig. 3. RDL commands for the 1,2-hydride shift reaction.

As a second example, a description of ~-scission  of a carbenium
ion (Fig. 4) illustrates the default behavior of phrases within a
Lubel-site command. When both variables of the operator
attached-to are atoms and the phrase occurs within a Lubel-site
command, only atoms that are connected by single bonds are
located. Thus, the reaction sites found by applying lines 1
through 3 to a compound will only contain carbons connected
by single bonds. To specify a reaction site in which the order
of the bonds are irrelevant, additional commands must be
included. A reaction site composed of a neutral carbon atom
connected to a neutral oxygen by a bond of any order could be
described by the commands:

(Label-site Cl (Find neutral-carbon))
(Label-site B 1 (Find bond attached-to Cl ))
(Label-site Oxyl (Find neutral-oxygen attached-to B 1))

The default behavior within the Label-site commands was
developed based on the assumption that multiple bonds play a
major role in the types of reactions a compound may undergo.
Thus, in describing a reaction site, one generally states the
presence of these items explicitly.

Line 4 in Fig. 4, (Forbid (Equal 1 (Find carbons attached-to
C3))), is an alternate method for disallowing the formation of
primary ions. This command illustrates that the language is
context sensitive; a Find expression within a Label-site
command will return all topologically unique items. Implicit
in Line 4 of Fig. 4, however, is that Find will locate and count
all of the carbon atoms adjacent to the atom labeled C3.
Because the Find expression is not located in a Label-site
command, the carbon atoms may be connected to C3 by a bond
of any order.

THE COMPILER

The compiler translates the reaction descriptions into the12 refers to
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internal representation of the generic reactions that is used by
the network generator. The modules of the RDL compiler are
shown in Fig. 5.

The parser verifies that the input is syntactically correct and
forms an intermediate representation of the reaction. Each
command is analyzed through the production rules of the
nonterminals.  One part of the parser analyzes expressions
beginning with preposition operators (e.g., attached-to,
belonging-to) while another part analyzes manipulation
statements. Each word in an RDL statement is replaced by the
appropriate token, depending on its context; for example, a
token representing a Find operator located within a Label-site
statement would be modified to reflect that only unique items
(atoms or bonds) should be located.

{
1 (Label-site Cl+ (Find positive-carbon))
z (Label-site C2 (Find neutral-carbon attached-to Cl+))
3 (Label-site C3 (Find neutral-carbon attached-to C2))
4 (Forbid (Equal 1 (Find carbons attached-to C3)))
s (Disconnect C2 C3)
6 (Increase-order-of bond connecting Cl+ C2)
7 (Subtract-charge C 1+)
8 (Add-charge C3)
9 (Set Number-of-reactions (Symmetry-number-of C3))

}

Fig. 4. A set of commands used to specify fl-scission
reactions.

The command (Label-site C2 (Find positive-carbon attached-to
C 1 )) is recognized as an assignment statement after the first
word (Label-site) is read; the resulting parse tree is shown in
Fig. 5. According to the production rule for an assignment
statement, the second parameter must be a user-defined variable,
while the remainder of the statement must be an item
expression: a variable, an item descriptor, or a Find expression.
The parser examines the second and third parameters of the
statement accordingly. An error is signaled if there are more
than two parameters after an assignment operator. If the
variable C2 in statement (12) has been previously defined, a
warning is issued. The third parameter of the statement, an
item expression, is recognized as a Find expression; it is sent
to the part of the parser that analyzes Find expressions.
Because the expression is within a Label-site command, the
token for the operator Find will be changed to indicate that only
topologically unique items should be located. Assuming that
Cl represents an atom, the token attached-to will be changed so
that only positive carbons connected to C 1 by a single bond
will be located. If the variable C 1 has not been defined, an
error is issued.

In addition to syntactic analysis, the parser also carries out
semantic analysis, which is facilitated by the highly specialized
vocabulary of the language. The expressions and statements of
the language are organized into sub-groups based on what they
ultimately return at run time. For example, the production rule
for an arithmetic statement is:

arithmetic-stmt  + (arithmetic-op number-expr*)

where number-expr*  is one or more expressions th

(13)

t return

numbers. However, in our language there are only five
possible types of expressions that result in a number: a slot
expression, another arithmetic statement, a find expression, a
test statement, or a set of characters that only contain digits.
These expressions are defined formally as number expressions.
Therefore, if another type of expression follows an arithmetic
operator, an error is issued at compile time.

The parser interacts closely with the lexical analyzer, which
reads the individual words and creates the appropriate tokens.
The words of RDL may not contain white space (i.e., a space,
tab, or new line character) and they must be separated from each
other by white space. Most words can be identified and
transformed into the appropriate token by a simple lookup call
to the symbol table. If a word is either an operator, unmodified
item, previously-defined variable, or a previously encountered
modified item (an item with a prefix and/or suffix) it is located
in the symbol table. The main function of the lexical analyzer,
therefore, is to distinguish between user-defined variables and
legally modified items (e.g., “negative-oxygens” is legal
whereas “negative-bonds” is not). When an unknown word is
encountered, the lexical analyzer first determines whether or not
the word contains a hyphen, which indicates that the word may
be an item descriptor modified by a prefix. If a hyphen is
found, the characters before the hyphen are collected and a
lookup call to the symbol table is made to determine whether
the characters represent a prefix. The remaining characters are
then analyzed to determine whether they represent an item (with
or without a suffix). The prefix and item, if found, are checked
for compatibility; if they represent a legal modified item, the
appropriate token is created and added to the symbol table.
Suffixes are treated in a similar manner. If the word represents
a new user-defined variable; an identifier token, representing the
variable, is created, added to the symbol table, and returned to
the parser.

After the entire reaction description is parsed, it is sent to the
optimizer. Currently, this module marks the statements of a
reaction as belonging to one or more categories. This
information is used in the translation and in simple
optimization. The two main categories are the pretransform
commands and the remaining commands. Pretransform
commands include all Label-site statements and any statements
that occur prior to the first manipulation statement. The
number and type of variables referenced by each command is
determined. A command that only refers either to one variable
or to no variables is defined as a simple command. A global
command is a type of simple command where the single
variable, if present, represents the reactant, product, or reaction
as a whole. The command (Disconnect Cl hydrogen) is a
simple command, whereas (Require neutral reactant) is a global
command. The commands are further partitioned based on the
first word of the command; for example, a command beginning
with the operator Require is a pruning command.

Pretransform  pruning commands are placed at the beginning of
the reaction specification. It is inefficient to locate numerous
reaction sites in a compound only to discard them due to global
features of the compound. When finding the reaction sites for
hydride abstraction, it is undesirable to locate all neutral carbon-
hydrogen pairs in a carbenium ion, only to discard them
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because of a command that requires that the reactant be neutral.
Description of

Reaction TypesGompller ,

A

d
Internal

Representation
of Generic Reactions

(

positive-

partial-prep-expr

Fig. 6. The parse tree of the statement (Label-site C2 (Find
positive-carbon attached-to Cl)).

Currently additional optimization techniques are being
developed that affect both the compile time and run time
environments. One optimization technique uses an information
vector, based on the search and pruning commands. The vector
may include, for example, the compounds total charge, number
of multiple bonds, and other functional groups. The
information vector acts as a filter; only compounds that
conform to the vector specifications are further analyzed. Thus,
if a command was included to locate a ring, only reactants that

contained rings would be analyzed. These techniques are
transparent to the user, who need not consider the optimization
when writing a reaction specification.

The marked rearranged commands are sent to the translator for
the final formation of executable reaction functions, used in the
generation of the reaction network.

CONCLUDING REMARKS

A new approach for the computational generation of complex
reaction systems, based on a language for describing the general
type of reaction steps has been developed. Due to the large
number of reactants, intermediates, and reactions involved, there
are difficulties in modeling or even describing complex
systems. The Reaction Description Language can be used to
generate and simpIify any type of reaction system; the language
provides a method for describing reactions that is not based on a
specific class of reaction types. It allows considerable
flexibility in the definition and modification of reactions, and is
helpful in limiting the complexity of a reaction network. The
RDL compiler and network generator have been tested on
systems with several thousands reactions and hundreds of
intermediates.

Related methods occur in Computer Aided Organic Synthesis
(CAOS).  The broad range of modeling strategies in CAOS is
discussed by Ugi et al. (1994). Methods can be classified as
information-oriented or logic-oriented (Ott and Noordik, 1992).
Information-oriented systems such as LHASA (Pensak  and
Corey, 1977) rely on a library of well-understood reactions.
Logic-oriented programs, such as EROS (Gasteiger et al.,
1990), SYNCHEM (Gelernter et al., 1973), and CAMEO
(Jorgensen et al., 1990), rely on a mathematical model of
constitutional chemistry such as that developed by Dugundi and
Ugi (1973). These systems are often used to find unprecedented
reactions. Both approaches include a set of
constraints/heuristics to evaluate the applicability of a reaction.
Many systems rely on the user to ultimately acceptor reject a
particular pathway. All strategies must, however, contend with
the combinatorial explosion which arises from the large
number of potential reactions that may be chosen at any
particular point in the generation of a reaction pathway.

In the RDL system presented here, reactions are described using
a sequence of commands to characterize the reaction site, the
transformation of the reactants to products, and optional
pruning constraints. These reaction descriptions are compiled
and used by a network generator.

Auxiliary components are needed to transform the input
representation of the molecules into a form that may be
manipulated by the network generator. Simple text strings are
used to specify the individual molecules. These reactants,
along with the subsequently generated intermediates, must then
be analyzed: This involves determining the important
structural features of the molecule, such as the presence of
aromatic rings, as well as determining a unique canonical
representation of the compound. Canonicalization allows
efficient determination of the equivalence of two or more
compounds or atoms.
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The RDL compiler and network generator have been used to
generate complex systems involving thousands of specific
reactions and hundreds of intermediates (Prickett, 1994), and
auxiliary methods have been developed to analyze and simplify
these networks.
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