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Abstract  
 

This research is on indentation testing (following ASME standards) of 3D printed Ti- 6Al-4V 

built by powder-based direct energy deposition technology. Ti-6Al-4V is attractive material for 

the aerospace and aviation industry. The purpose of this research is conduct indentation or hardness 

testing using both Rockwell and Vickers testers to examine the mechanical characteristic of the 

as-3D printed alloy. The hardness data were also compared with wrought Ti-6Al-4V alloy. The 

comparison of 3D printed and wrought indicates that the mechanical characteristics in terms of 

hardness does not have significant difference between the two manufacturing processes.  

I. Introduction 

Titanium alloys are used in the aerospace industry due to their unique mechanical properties. 

The strength of Titanium alloys is comparable with steel, but because of some additional properties 

such as such as lightweight, resistance to corrosion and heat, it is a prime metal for aerospace 

applications [1]. In many cases, high costs involved in  machining can outweigh the benefits of Ti-

6Al-4V to use. Using additive manufacturing for Ti-6Al-4V components, significantly reduced the 

machining cost while reducing the material waste as compared to the wrought manufacturing. The 

most typical alloy mix is 90% Titanium, 6% Aluminum, and 4% Vanadium, commonly known as 

Ti-6AL-4V (Ti64) [1]. Titanium is one of the most common alloys used in the aerospace industry 

that has been manufactured with a wide variety of 3D printing techniques, including LENS (Laser 

Engineered Net Shaping) technology ([2], [3], [4]). 
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The purpose of this work is to test the mechanical properties of as-built additively 

manufactured Ti-6Al-4V compare it with the wrought Ti-6Al-4V. The desired outcome of this 

experiment is for the additive manufactured material to be as close as possible to the wrought 

material. The mechanical property being tested in this paper is Hardness [5]. It is common practice 

in literature to compare mechanical properties of 3D printed metals to wrought metals of the same 

composition [6], [7]. The company OPTOMEC agreed to provide the required sample and to 

deliver the best quality sample. OPTOMEC is very well known for its LENS technology and it is 

at the forefront of additive manufacturing technology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Diagram showing how the Direct Energy Deposition (DED) process works. Material 

is deposited layer by layer and the movement is CNC controlled. The laser and the powder 

from the nozzle meet at the molten pool. 
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II. Methodology 

The printing technique used to additively manufacture Ti-6Al-4V in this experiment is powder-

based direct energy deposition (DED). The dimensions of the printed specimen were 2 in by 2 in 

by 0.5 in (0.5 inches in height with a square top). The as-deposited material can be observed in 

Fig. 2. The material was fabricated with alternating 90-degree hatching directions, with a ratio of 

layer height to hatch spacing of 1:2.  
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One side of the block was machined and polished to a surface roughness, Ra, of 5 micro inches 

[4]. The methods used to study the hardness of the sample were Vickers (Micro indentation) and 

Rockwell tests. Vickers hardness measurements were made using a standard Vickers diamond 

pyramid hardness tester with a load of 1000 g. The dwell time was 10 seconds, and an average of 

25 values were taken per transverse line. Rockwell Hardness measurements were made suing 

Rockwell C scale with load of 150 kg with load time of 5 seconds and an average of 13 indents 

were taken per transverse line. Tests were performed on both the longitudinal direction and 

transverse directions to investigate any changes. Some builds show different microstructure along 

different directions, and therefore different mechanical properties ([8], [9], [10]).  

Figure 2: Titanium 6Al-4V sample (as-built) 

Polished side 
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Fig. 3 shows Rockwell indentations performed on the sample. The Rockwell indentations were 

done after the Vickers indentations. The Vickers test was also performed in a similar fashion to 

the Rockwell test but not visible due to their very small size. 

For the Vickers test, the distance between the indentations and the edge of the sample is a 

minimum of three indentation diameters/diagonals [11], and for conservative reasons here the 

assumed diameter is a maximum diameter of 0.2 mm. If indents are closer than this distance to 

each other, the hardness values could be off. Therefore, three diameters is equal to 0.6 mm. The 

distance between the indentations along a line is estimated conservatively to be six diameters and 

six diameters is equal to 1.2 mm. As mentioned in ref. [1], The Vickers hardness is calculated 

using the following equation: 

                                      HV = 
(1.8544)𝑃

𝑑2
                                                                             (1) 

 where HV is Vickers Hardness, P is load in kg and 𝑑 is diagonal length in mm.  

Figure 3: As-built Ti 64 sample showing the polished side and the Rockwell indents. 
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The wrought bar sample was polished using SiC papers of grit size 120 grit up to 1500 grit 

before the hardness tests. The indentations were only performed on one line of indentations in the 

as-received status of this sample. Here, no spatial variation of properties was assumed for the 

wrought material.  

Due to the small height of the printed material with respect to its width and length, it was 

expected that there would not be a significant change in the heat conditions of the deposited 

material. Thus, no large variations in hardness were expected in any direction.  

Figure 4: As-built Ti64 Vickers indentation 0.6 mm from Top edge 
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Fig. 4 and Fig. 5 show, respectively, pictures taken of the Vickers indentations of the as-built 

Ti64 sample and the wrought Ti64 sample using a digital camera and metallurgical software. The 

calibrated software measurement shows the length of the diagonal, which is used in equation [1] 

to calculate the Vickers hardness. The software was calibrated using a standard specimen supplied 

by the device manufacturer.  

For the Rockwell test, the distance between the indentations and the edge of the sample is three 

indentation diameters [12], and for conservative estimates, the assumed indentation diameter was 

1 mm. Therefore, three diameters is equal to 3 mm. The distance between the indentations along a 

line is three diameters as well.  

 

 

 

 

 

Figure 5: Wrought Ti64 Vickers indentation 
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IV. Results and Discussion 

The mean of the 25 Vickers micro indentations at each of the three heights was calculated, 

along with the standard deviation, and documented as follows: 

Table 1: Vickers average/standard deviation results 

Material/Location of 

indent 

HV/standard dev. 

 
Titanium 64 (0.6 mm 
from bottom edge) 

 

 

 

369.7/9.17 

 
Titanium 64 (3.3 mm 
from bottom edge) 

 

 

 

383.5/13.6 

 

Titanium 64 (11.5 mm 
from bottom edge) 

 

 

 

373.0/11.2 

 

Wrought Titanium 64 

 

396.3/11.15 

 

The standard deviation was in the 9.17-13.6 range for all 4 indented lines, which is 

maximum 3.5% of the mean. This indicates close measures and precision of data.  

The mean of the 13 Rockwell indentations at each of the three heights was calculated, along 

with the standard deviation, and documented as follows: 

Table 2: Rockwell average/standard deviation results  

Material/Location of 

indent 

HRC/standard dev. 

 
Titanium 64/Top line 

 

 

37.5/0.68 

 
Titanium 64/middle 

line 
 

 

 

37.0/0.60 

 

Titanium 64/bottom 
line 

 

 

 

38.1/0.42 

 

Wrought Titanium 64 

 

37.6/1.17 
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The standard deviation was in the 0.42-1.17 range for all the 4 indented lines, which is 

maximum 3.1% of the mean. This indicates close measures and precision of data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are conversion charts, see [13] for example, between different hardness measurements. For 

example, the last reference shows that 37.5 HRC is equivalent to 367.5 HV. Comparing the data in Tables 

1 and 2, it is seen that average HRC values of about 37.5 in Table 2 are equivalent to about 370 HV (i.e. 

the data in Table 1). This comparison provides another verification for the results in this work. 

The as-built Ti-6AL-4V hardness results show that it is almost identical to the wrought Ti-

6AL-4V sample. Table 1 and Table 2 show that the as-built Ti64 and the wrought Ti64 materials 

are similar to each other in their average values (within the standard deviation range).  

Fig. 6 shows that there is no significant change of hardness along the vertical direction. Fig. 7 

as well shows that there is no change along the transverse, i.e. horizontal, direction. The results 

are consistent which suggest similar microstructure in longitudinal and transverse directions.  
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V. Conclusion 

Studying the hardness of a material is important because it offers a valuable insight into its 

strength, durability and how the material could be useful. Two of the purposes of additive 

manufacturing is to save material and build parts and shapes that can’t be casted, and once it’s 

proven that it can achieve same mechanical properties, industry can use it in a variety of ways. 

The indentation (Vickers or Rockwell) results are consistent across the indented specimen’s side 

which suggests similar, or at least not much different, microstructure in the longitudinal and 

transverse directions. In addition, the results of the wrought and as-built samples are very similar 

as well which is a feature of a good build and also suggest not much different microstructure 

between the two. However, more future work is needed to ascertain these microstructural 

comments. Studying the microstructure is important because it gives the ability to predict the 

mechanical and chemical properties of the material.   
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