Session 2525
Integrated Circuit Chip Testing
Engineering Design Projects K-12

Bill Monaghan, Ph.D, P.E.
College of Staten Island CUNY

For the past three summers | have been associated with the Science Discovery
Center at the College of Staten Island, City University of New York. This program is
sponsored by the New York State Education Department under a Dwight D. Eisenhower
Title 1l Project. Selected high school students have the opportunity of doing a project in
various disciplines under the guidance of the faculty.

The program meets six hours a day, four days a week for four weeks. The
participants give a poster presentation to the community at large on the final day. The
challenge for me was the identification of engineering design projects that could be
completed in the given time frame and that would have interest for the participants.

Overview

Based upon my experience in teaching a microcomp@é-86 based
interfacing course, a hardware/software design project was chosen. The SDK-86 allows
easy access to the system bus. The necessary lines are cabled to a solderless breadboard
design station. The presence of switches, pulsers and LEDs on the design station enables
one to do manual validation of the hardware interface. These features facilitate rapid
prototyping of the hardware interface. All input and output devices are treated as 10
ports. The SDK-86 has on-board serial communication capability with an RS-232C port.
Software can be developed on a PC and downloaded to the SDK computer. This feature
allows rapid prototyping of the software component of the project. The question still
remained: "What is a viable design project?".

SAGE: Smart Automated Gate Evaluator

The use of Automated Testing EquipmeXiTE) is pervasive within the
integrated circuit chip industry. It was decided that the participants were to design and
implement a multi-chip chip tester. The quad two-inpt@8 AND, 7432 ORand7400
NAND chips are pin compatible. This permits the construction of a multi-chip chip tester.
SAGE, the realization of the above, has been reported in the litdrandgevill be briefly
summarized.

Hardware Considerations

.“)n:t,"’
A .
-_ij; 1996 ASEE Annual Conference Proceedings
K e

o
&
¥

1°8G2'T abed

A major component of the interface is the decoder for port addresses. A 74154
decoder is used in the implementation. This decoder has two enable pins, E1* and E2%,
and will decode four address lines. Its wiring is shown in Figure 1. The output port

addresses are asserted low. For the decoder to be enabled, the M/IO* input must be low.

The port addresses are therefore in "1O space”. The M/IO* signal is low when the
software is executing either an IN or OUT instruction. Simultaneously both A15 and A0
must be low. The SDK-86 board has several 10 ports. The addresses for all on-board

ports have A15 high. A low in the SAGE design will avoid any possible conflicts with
these ports.

The reason for AO being low is more subtle. If AO is low, all decoded addresses
will be even. The 8086 processor is designed to sample the low portion of the data bus,
DO to D7, for the transfer of 8 bits of information when the port address is even. One
final comment is in order. The above design for port address decoding is non-absolute.
Many possible port addresses will appear equivalent to the decoder. This decision was
predicated on the need for simplicity within the existing time constraints. The
ramifications of non-absolute decoding were thoroughly discussed and compared to a full
absolute decoding implementation.

PORT ADDRESS

Al5 b O
o—q E1* o o
A0
* ° 4
Miox —————°| E2
Ad o| A3
A3 o| A2
Ao o| AL
Al o| AO o 30

Figure 1
74154 Decoder

The port address 0 is chosen for both input and output in the SAGE
implementation. Two 7475 level-sensitive latches are used to capture the test vector. A
74125 tri-state "electronic switch” isolates the results from the data bus. The unit under

test (UUT) can be any of the pin-compatible chips. The completed SAGE hardware is
given in Figure 2.

,\""2"”,
A .
-_ij; 1996 ASEE Annual Conference Proceedings
K e

o
&
¥

2'8G2'T abed

0 PORT ADDRESS
E1l*

o— 0
A15

mio* | E2* ©
Ad - Al X A3 - A0
(o)
74154

D3-DO [4]

WR* zD—l <l; ‘
D7 - D4
SO N S

T[‘l]

E2 El1 E1 E2 TRI-STATE
LATCH LATCH
O O OO0
7475 7475 74125 L_
[4]
ELRLE Ny
v U [4]
[4] U
>+

RD*

Figure 2
SAGE Realization

Software Considerations

The software is relatively straightforward. All chips are exercised with the same
test vector, 11100100. A stored table of correct responses is constructed and used to
compare the outputs of the UUT. Each table entry is one byte wide (8 bits) and contains
the appropriate correct responses for the chip. For illustrative purposes consider the OR
entry in the table: 01101110. The rightmost four bits, low nibble, is the correct response
to 11100100. Three 2-bit right circular rotations of the test vector will generate all the
remaining vectors needed for an exhaustive testing of a given UUT. Three 1-bit right

circular rotations of the appropriate correct response vector will move the correct
responses into the low nibble.

The IN and OUT instructions are the crucial components of the software. These
instructions require that the address of an input or output port be placed in the DX
register of the microprocessor prior to their execution. A typical sequence for an input is:

MOV DX,0
IN AL,DX

.\o,n:e,,”
A .
-_jEE»; 1996 ASEE Annual Conference Proceedings
K e

°
&
¥

£'gGe'T abed

The DX register is 16 bits wide while AL is 8 bits. The semantics of IN can be
stated as follows:

1. The content of DX is placed on the address lines A15...A0 and sent to the
system bus.

2. A control signal M/IO* is asserted low and sent to the system bus.
3. The read control signal RD* is asserted low and sent to the system bus.

4. The microprocessor waits for signal stabilization and then samples the data bus.

Since the outputs of the tri-state device in Figure 2 anmected to the data bus,
the above sequencdliwead these outputs into the AL register. Thus the outputs of the
UUT are read and compared to the correct response vector.

The output sequence is quite similar to theut. Steps 1 and 2 are unchanged.
Steps 3 and 4 become:

3. The microprocessor places the content of the AL register on the data bus.

4. After all signals stabilize, the processor issues the WR* signal.

This procedure W load the external475 htches with the contents of AL and
this test vector is used as input to the UUT.

USReT: Universal Shift Register Tester

The 74194 is a 4-bit bidirectional Universal Shift Registi8R). Two of them
can easily be cascaded to form a 8-bit register. The chip has an asynchronous master
reset input, MR*. The operating mode of the register is determined by two inpats] s
S0, and is given by the following table:

$1 9 Operating Mode
0 0 Hold
0 1 Shift Right
1 0 Shift Left
1 1 Parallel Load

A clock pulse input (active rising edge) performs the chosen operation. Dsr and Dsl
inputs are used in shift operations. The parallel load inputs are desigggtedR Qo

being the leftmost bit. Since USReT was realized after successful completion of SAGE,
the SAGE interface was modified as shown in Figure 2. Particular attention should be
given to the various port addresses. Output port address 2 is used to perform a master
reset of the USR and output address 4 clocks the USR. Output address 6 controls the
7475 latches and input port address O reads the USR.

,\""2"”,
A .
-_ij; 1996 ASEE Annual Conference Proceedings
K e

o
&
¥

¥'8G¢'T abed

AO D 1 o
Al5 — o o
* O.
M/IO o E2* R .
A4 - Al :> A3 - A0 l l
74154 o
—0
WR*
L . < N\
WR* o DSL QO
cP
[[[1 MR*
E2 EL Bl E2 TRI-STATE
LATCH LATCH b1 DO S0 [8] (8]
7475 7475 L Js1
) Bl 74125
[4] 4] DSR Q7 LEDS (o)
D7-D4 D3- DO [8] \/
74194
DATA BUS
Figure 3

USReT ATE Interface

USReT ATE Interface

The current design utilizes the 7475 latch asoale register The DD bits
written to this register determine the operating mode of the USR. As an example, the
following instructions will place the USR in parallel load mode:

MOV AL,3; MOV DX,6; OUT DXAL.

If the following instructions are now executed, the USR will latch the 2EH datum:
MOV AL,2EH; MOV DX.,4; OUT DXAL.

At any time the latched contents of the USR may be read by executing:
MOV DX,0; IN AL,DX.

In a similar fashion a master reset of the USR is accomplished by executing:
MOV DX,2; OUT DXAL.

A HOLD operation is achieved by writing a 0 to the mode register. The sequence
of a read, a writdfollowed byanother read of the USWIll not show any change in its
stored value. Writing a 1 or a 2 to the mode register will configure the USR for shift
operations. Dsr and Dsl are typically independent inputs to the USR; tgitm 0¥l and
Q7 to Dsr produces circular shift operations. This is a useful arrangement for testing

.\o,n:e,,”
A .
-_jEE»; 1996 ASEE Annual Conference Proceedings
K e

°
&
¥

G'gGe'T abed

purposes. Similar to the SAGE interface, this hardware can also be developed and tested
in manual mode.

Software Considerations: Parallel Load Testing--Exhaustive Technique

A 3H is written to the mode register. A loop is then executed that performs
write to the USRa readand thera comparebetween a copy of the written value and the
read value for values between 0 and OFFH inclusive. Any discrepancy indicates a faulty
USR. By introducing timing loops in the software and connecting the outputs of the USR
to LEDs, the progression of the tests can be monitored. Stuck-at-1 faults are easily
emulated by disconnecting the appropriate lead. This exhaustive technique loops 256
times, a strateggot effective for memory cell testing of millions of 8-bit locations. This
realization leads into a discussion and implementation of a time-efficient algorithm for
parallel load operations.

Software Considerations: Parallel Load Testing--Walking 0/1 Technique

A common testing strategy is to write a field of zeroes and then walk a 1 through
this field. The sequence of test values written to the USR is as follows:

00000000, 00000001, 00000010, 00000100

00001000, 00010000, 00100000, 01000000, 1000000O.
Testing is performed for each value. A 0 is then walked through a field of ones. This
version of testing , while not complete, is performed using 18 tests and in approximately
7% of the previous time. Both strategies are implemented in USReT; the choice of which
to use is made at execution time.

Software Considerations: Data Shift , Hold and Master Reset Testing

The data value, 01010101, is written to the USR. The mode is then changed to a
Dsr operation. Two shift operations are performed with testing after each shift. Because
the wiring of the USR in the testbed produces circular rotations, a successful test indicates
that each cell of the USR can effectively shift in both a 0 and a 1 from the right. The
procedure is then repeated for a Dsl operation.

The Hold and Master Reset testing is relatively straightforward and requires no
unusual strategies. At any stage a failed test identifies a faulty USR.

Conclusion

Since both assembler language programming and interfacing are new to the
students, most find the SAGE project to be quite challenging. One participant moved
very quickly through the design and implementation of SAGE and was the major
inspiration to extend the UUT to a USR. Having gained experience with both projects, |
believe the USReT tester to be the preferred choice. In either case, microcomputer-based
hardware/ software projects are certainly viable for students in the 11th and 12th grades.

G

A .
i‘E'é 1996 ASEE Annual Conference Proceedings
@,'.‘x‘.“ -

0

9'gGe'T abed

1 Smart Automated Gate Evaluator, W. Monaghan, Proceedings of the Middle Atlantic
Section Meeting, ASEE, 1994.

BILL MONAGHAN

Dr. Monaghan is Chair of the Department of Applied Sciences at the College of Staten
Island, CUNY. His email addressnm®naghan@postbox.csi.cuny.edu

,\""2"”,
F %

AT @ .
-_ij; 1996 ASEE Annual Conference Proceedings
K e

o
&
¥

/'8G2'T abed

