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Abstract  

 
A method to modify ceramics using a low power microwave plasma torch is described. The size, 
shape, surface area, and phase of alumina particles were dramatically modified by passage through 
an atmospheric pressure argon plasma, operated at 1 kW or less power. Specifically, irregularly 
shaped particles of gamma-alumina with an average diameter of 11 mu m were converted to smaller 
(ca. 4 mu m) spherical particles primarily consisting of delta- and alpha- (corundum) phases. Also 
notable was the finding that modifications of the particles, such as changes in surface area, correlate 
to applied plasma energy. The plasma torch was operated with an argon flow rate of 5 slpm, power 
of between 400 and 1000 W, and average particle residence time in the plasma of 0.1 s.  
 

Introduction 
 
There are many methods for producing nanoparticles including, lame reactors, pyrolysis reactors, 
evaporation and condensation aerosol generators, collision and coalescence mechanisms, and 
nanoparticle agglomerates and aerogels1.  The existing methods all have their advantages and 
disadvantages (Table 1). 
Methods for preparing spherical Al2O3 particles are known. These methods generally require 
plasmas generated from high power (about 10 kW) sources.  Although spherical alumina particles 
can be generated by high power methods such as ablation from aluminum electrodes, control of the 
spherical particle size is not possible using high power methods.  The major advantage of the 
Atmospheric Pressure Plasma Torch is that it is very versatile at a low cost.  
The Atmospheric Pressure Plasma Torch can be used to create nanoparticles of many shapes and 
sizes depending on the precursor, the power and the flow rates of the plasma gas and the aerosol 
gases2.  In the current investigation spherical alumina nanoparticles were produced using the 
atmospheric pressure plasma torch, however, in the past many shapes and sizes of particles with 
different compositions have been made using this same method.  The goal of this research is to 
synthesize dense particles of alumina having a controlled particle size and narrow particle size 
distribution.  
 
 
 
 
 



 
Table 1. Synthesis Method Comparison 
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Synthesis Method 
 
Alumina nanoparticles were synthesized using an atmospheric plasma torch (Fig.1). In the synthesis 
900W of microwave power was used with an argon plasma gas flow rate of 3.509 mL/s. The 
precursor used in the synthesis of the alumina consists of 20µm spherical aluminum particles. The 
precursor was placed in a beaker in an ultrasonic bath, which excited the aluminum and passed 
through the torch using an aerosol carrier gas that was a mixture of Argon and Oxygen. The O2 and 
Ar had flow rates of 0.2022 mL/s and 0.5287 mL/s, respectively. At these flow rates alumina was 
produced at 124.4 mg/hr. By changing the parameters of the apparatus such as the microwave 
power, plasma gas flow rate and the aerosol gas flow rates we believe we can change the particle 
size and get a more uniform size distribution. 
 

 
Figure.1. Schematic of Torch Apparatus 
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Results 

 
Alumina powder was collected from a filter with nano-sized pores (Fig.2).  Scanning electron 
microscope (SEM, 5200 Hitachi) images were produced to determine the particles size and shape. 
From the image below (Fig.3.)  it can be seen that the particles are spherical in shape and that they 
range from ~10nm to ~70nm, however, this is only a rough estimate.  
 

  
Figure 2. Alumina Nano Powder.      Figure 3. SEM Images of the Alumina Nanoparticles.  
 
Transmission electron microscopy (TEM, JOEL 2010) was carried out to further investigate the 
produced alumina nanoparticles (Fig.4). An imaging package (Image J®),   was utilized to measure 
the size of 400 particles. The analysis of several TEM images, showed a particle size distribution 
with a particles size beyond 100nm.  The distribution chart (Fig. 5) shows that the majority of the 
particles have sizes ranging from 5-70 nm, which is consistent with the results obtained from SEM 
imaging. 
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Figure 4. TEM Image of the Alumina  Nanoparticles.         Figure 5. Particle Size Distribution 



 
 
X-ray diffraction was performed using a Phillips model, MPD diffractometer. This technique not 
only provides phase information, but also shows qualitative insight into the degree of crystallization. 
The x-ray diffraction results (Fig.6) show that we have a fairly pure grade of the tetrahedral d phase 
of alumina3.  
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Figure 6. X-ray Diffraction of the Alumina Nanoparticles 

 
 

Conclusions  
 

The proposed method of producing alumina nanoparticles via plasma torch is very versatile. 
Through further investigation, the size of the alumina nanoparticles could potentially be controlled. 
The particles produced are spherical in shape. However, the size distribution of the particles is fairly 
broad and more research needs to be done to tune this method to obtain the desired uniform sized 
particles.  The particle size and particle size distribution can be controlled through adjusting various 
parameters, which include: the density of the precursor particles in the aerosol that enter the plasma 
hot zone, the flow rates of the aerosol gas and the plasma gas, the amount of time that precursor 
particles remain in the plasma hot zone, the composition of the plasma gas and aerosol gas, and the 
level of power used to generate the plasma. 
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