
1

Programming Education
Tim Hong-Chuan Lin, Jenny Zhen Yu

Department of Electrical and Computer Engineering,

California State Polytechnic University Pomona,

3801 W Temple Avenue, Pomona, CA 91768, USA

Abstract

Computer Programming is an essential skill for modern engineers since engineering products are realized or enhanced
through software or firmware; examples include printers, web pages, office products, etc. Also, the curricula of
engineering departments normally include at least one programming class, to prepare the students to write programs. C,
Visual Basic, MATLAB etc. are examples of such languages for engineering students.

The authors have worked in industry for many years, wherefore the first author has worked in software industry for 20+
years and later has instructed several programming courses in the engineering college for another 20 years. The author
knows there are many types of programming errors, from the mechanical ones that can be fixed using the right tools to
more subtle style errors like stinky code etc. The author presents the errors as well as discuss the possible remedies to fix
these through education..

Indexed Terms — programming errors, hard code, bad smell, programming proficiency.

1. Introduction

Our modern world consists of many computers, devices and parts made via engineering, that depend on engineering
disciplines, but gradually have components or modules written in computer software or firmware and it is common
understanding that economy of developed nations depend greatly on software.

Realizing the importance of such skill, the programming and software engineering courses have become part of the
curricula for many engineering colleges. The level of competence and proficiency of programming skill however is
important for the engineering student if they want to have that as a good asset in their repertoire.

We all know that many serious system problems were due to faulty computer software / firmware such as New York
Blackout in 2003, Bank of New York overdraft of 32 billion dollars in 1985, and the ARIANE rocket failure in 1986 etc.

Since the successful software and faulty software are all developed by programmers, formerly programming students, it is
the programming educators’ responsibility to ensure students receiving programming education do not make faulty
software, starting first from not making syntax errors, link errors etc. (which are mentioned in section 2 of this paper)

A paper from ACM SIGCSE (Association for Computing Machinery’s Special Interest Group on Computer Science
Education) had identified 13 syntax errors and 6 logic errors from surveying 58 schools about Java programming1.

Programming students or even working programmers usually pay attention only to making working software, but not to
making good software; whereas good software should not only be bug free but also should be easy to maintain (chapter 9
Evolution2).

2

From the educators’ point of view, we know that the programming students can learn many constructs of programming
mechanically, and know how to put them together as a working program, but not necessarily know how to verify if their
programs (or some industry product) really work (see section 4.3.4 verify on a real example from student mistakes in
doing their exams). They can produce smelly code, hard code (see section 3.2 of this paper) or can produce code that only
works on their computer (using their C drive for example, see section 3.3.3). They also can submit the answer of their
program for instructor review in some peculiar way like say just code, or just output, but not both (section 3.3 of this
paper), which made the programming instructor’s work hard. To show the extreme of a working but not acceptable code
for educational purpose, professor Nyhoff3 showed in his Data Structure book a small program that works but should by
no means be a program (this is explained in section 3.1). All such code programs are examples of non-maintainable code
which is error prone that can easily produce buggy code and then cause big problems sooner or later.

Below, Section 3.2 shows several examples of smelly code generated by the students that the instructor needs to be careful
of not grading those as correct just because they generated the right result and section 3.3 shows defective submissions of
programming students for the assignments and exams.

Section 4 of this paper presents some remedies to the programming problems with pair programming, instructor’s fixes
(educating the students on NOT doing the hard code approach, on teaching the students to do test and debug by
incorporating several test cases in every programming assignment etc.

Section 5 concludes this paper.

2. Common Programming Errors (when students take the classes)

2.1 When do Programming Problems Happen?

Students of programming can have problems at the time when they take the programming class(es), or later on when they
need to use their programming skills learned earlier in either a later class, capstone project in school, internship project, or
programs when they start working as a software engineer.

The following lists the common errors in the first or second programming class. The students may know about syntax
errors (the purpose of learning a computer language is to know, to avoid and / or to fix syntax errors), may or may not
know about how to fix link errors (where to find the missing libraries), may know they have run time errors like division
by zero, array out of bound.

A paper from ACM SIGCSE (Association for Computing Machinery’s Special Interest Group on Computer Science
Education) had identified 13 syntax errors and 6 logic errors from surveying 58 schools about Java programming. 1

2.1.1 Syntax Errors
Any thing not following the language specs, such as no semicolon at the end of C instructions, left brace without matching
right brace, variables starting with numbers, etc.

2.1.2 Link Errors and Load Errors
Link errors are usually caused by missing libraries (like say the main function does not exist). The author instructed
computer network labs and when winsock (windows socket) library is used, there is special way of including the libraries
in say Visual Studio to make the program link well (ws2_32.lib needs to be specified, the library name is cryptic, right?).

2.1.3 Run Time Errors
This can be division by zero, array out of bound, wrong data type etc., that usually can be treated by exception handling.

2.1.4 Logic Errors
This means software bugs; code that does not work as specified. This is the hardest one to fix. Most if not all software
contain bugs to some extent.

3

3. More Advanced Programming Problems (stinky, smelly, or bad code)

Programmers can work hard to get rid of errors as mentioned in section 3. However, they may fall trap to write bad code,
i.e. code that works, but not coded in a professional way. They could be called stinky code, smelly code etc. Sommerville
mentioned in his software engineering book, code with bad smell 2 (Sommerville’s writing originally referred to Fowler’s
book in 1999 6)

Spaghetti code is one such example of bad smelly code (nobody likes to read spaghetti code, even though you know it
works).

The programming problems mentioned in this section refer to the code that seems to work, i.e. it produces the correct
answer; but it is no good in a professional way.

3.1 Spaghetti code example: From Dr. Larry Nyhoff’s exercise.

Nyhoff showed an interesting example of spaghetti code in the exercise of his Data Structures Book 3 in Fig. 1: (he had
asked the students to rewrite that as structured code)

int row = 0, col;
A: col = 0;
 If (col < n) goto B;
 goto A;
B: if (row < n) goto C;
 goto E;
C: if (mat[row][col] == item) goto D;
 col ++;
 If (col < n) goto B;
 row ++;
 goto A;
D: cout << “item found\n”;
 goto F;
E: cout << “item not found\n”;
F: ;

Figure 1. (a) Spaghetti code (b) structured version of (a)

Explanation: The code in Figure 1(a) is the spaghetti code that follows the spec of searching for an item in a matrix,
however, it is entangled with so many goto’s so that the idea of the program is hidden in the moving arounds. The code in
Figure 1(b) does the same thing without the confusing goto’s.

3.2 Smelly code: hard code or special logic code

Smelly code, or stinky code means code that works or runs in principle, but is not considered correct way of
doing programs since they used the wrong approach, used hard code, or tried with lots of pains with the code
not generalizable or scalable for different situations. Followings are a few smelly code examples from the
author’s students’ homework or exams.

• Example 1. Consider this freshmen programming assignment: Compute and display prime numbers up
to n with n = 100 and display 8 in a row.

boolean found = false;
double mat [n][n]; // declare and define
A square matrix of n x n
for (int row = 0; row < n; row ++)

for (int col = 0; col < n; col ++)
 if (mat[row][col] == item)
 {
 cout << “item found”;
 found = true;
 break;
 }

// after finishing the nested for loops
if (!found)
 cout << “item not found”;

4

3.2.1 Find Prime Number: Problematic Hard Code approach

The normal design would be: write a loop (for loop or while loop) and check all integers k from 2 up to the integer of
interest n exclusive (or 100, 200 etc.) to see if k divides the integer n (note the range would be 2 to n-1, or 2 to n / 2 (half
n), or best, the square root of n).

However, a student of the author had code like Fig. 2 below. Will that be considered a correct program to generate all
prime numbers up to 100 (and then 200, 300 etc.?)

cout << “2 is a prime” << endl;
// print 2 is a prime and next line
cout << “3 is a prime” << endl;
…..
cout << “89 is a prime” << endl;
cout << “97 is a prime” << endl;

Figure 2. Student code of program to generate prime numbers using brute force or hard code

This is the “hard code” approach: the student manually calculated 2, 3, 5, 7, …, 89, 97 and typed these one by one.
Should this be considered a correct answer? (of course, it would be hard if not impossible to use the same approach to
print all prime numbers < 1,000, < 10,000 etc.

3.2.2 Problematic Special code or magic number approach for prime numbers

Another interesting way of doing this program is: check if the integer n is divisible by 2, 3, 5, or 7. If not, then this is a
prime number. This is also a wrong way, but not that easy to discern.

There is a seemingly smarter way of doing this problem by C as in Fig. 3:

 int main() {
 // This program computes all prime numbers less than 100
 // by checking if 2, 3, 5, or 7 divides that number
 int n = 100;
 for (int i = 2; i < n; i ++)
 if (i == 2 || i == 3 || i == 5 || i == 7)
 cout << i << " is a prime number" << endl;
 else // i is a prime number if 2, 3, 5, or 7 does not divide that
 if (i%2 != 0 && i%3 != 0 && i%5 != 0 && i%7 != 0)
 cout << i + << " is a prime number" << endl;
 }
}
Figure 3 Another example with “bad smell” for computing prime numbers

Explanation. This approach turns out to be working (printing out all primes < 100) for n = 100, but does not work for n =
200 since 121, as the square of 11, is not a prime, it is not divisible by 2, 3, 5, or 7 (unless the code is now “enhanced” to
check if the integer n is divisible by also 11 and 13). Special numbers or magic numbers like 2, 3, 5, and 7 are used.

3.2.3 Another special code approach example

5

Example 2: Consider now a different still freshmen level programming assignment: Compute the sum of digits for an
integer of variable length. Suppose we are computing the sum of digits for 1234 and also 12345.

Figure 4 (a) Correct code, (b) Pseudo (wrong) code handling integers as 1 digit, 2 digits, 3 digits, 4 digits etc.

Explanation. The correct code is as in Figure 4(a) that employs basic constructs like while loop, and arithmetic
instructions + and &. The smelly approach in Figure 4(b) uses different ways to process integers of 1 digit, 2 digits, 3
digits etc.

3.2.4 Two different ways of reverting an integer. Which way is right?

Figure 5 (a) Correct code (b) Wrong code that looks simpler than (a)

Explanation: The correct way in Figure 5(a) computes the reverted integer; the wrong way in Figure 5(b) displays the
last digit of the integer starting from the last digit, one by one. If say we use n = 1234, both (a) and (b) will display 4321,
but (a) generates 4321 in the final variable rev, while (b) only displays 4, 3, 2, and 1 in that order without generating any
number. Using optics as an analog, (a) generates a real image, while (b) generates a virtual image.

3.3 Defective submission of code
It is not always easy to receive the student programmers’ code correctly. There are many possible ways, some of them are
actually really funny.

3.3.1 Send a link

The student’s answer to the programming question is “my answer code is uploaded to this Github link (or some other
link)”. The student did NOT show any output from such code; the instructor needs to download from say Github (and
create a Github account if the instructor does not have yet), run, and check if the output is correct.

3.3.2 Show a folder only

The student either answered in a Word / PDF file by saying “my answers are in the attached folder (or attached source
files)” or only submitted folders of code without any answers to the programming assignment, shown in Fig. 6.

sum = 0;
while (n != 0) {
sum += n % 10; // add last digit
n = n % 10;
}

sum = 0;
If (n < 10)
sum += n% 10;
else if (10 <= n < 100)
// code to process 2 digit integer
else if (100 <= n < 1000)
// code to process 3 digit integers.

int rev = 0;
while (n != 0) {
rev *= 10; // multiply by 10
rev += n%10 // add last digit
n = n / 10;
}
cout << rev;

int rev =0;
while (n! = 0) {
rev = n%10;
cout << rev;
n = n/10;
}

6

(a) (b)

Figure 6.(a) Proper way with a solution (b) Improper way with code, but no answer in Word or PDF

3.3.3 Other peculiar ways that the student may present their answers

• Show code only in Word / PDF

The student could just copy their code of many lines (sometimes 1 or 2 page long) into the answer, without outputs and
explanation. It in general obscures where the answer of the student is. There is no hint of if the code runs, or what the
output may look like from the student (the student may not show the outputs of the code at all).

• Show code with hard coded folder of student’s computer

The student could have a line of code like below (if the student’s name is John Doe)

JohnsFunction (C:\\JohnDoe\\ Johnsexecutable) as an absolute path.

This code runs on the student’s computer because the student has access to the folder JohnDoe; however it does not run on
the instructor’s computer or any other computer.

The correct way is JohnsFunction (“..\Johnsexecutable”) as a relative path.

• Show outputs only (without turning in the code)

The student could turn in the output, but did not turn in the source code. (the code could be hard coded to generate the
expected output).

• Turn in PNG file or JPG file for the result of each question

4. Remedies or Corrections for the Problems

There were papers suggesting ways to fix software coding problems mentioned in section 2 and section 3 above
56. There seems to be no culture or environment that shows a consistent and universal way in the programming
education that educate the programming students to not only write working code (code that gets rids of the
many types of errors in section 2) but also to write effective and professional code that does not have the
problems mentioned in section 3. The students should also submit their answers to the instructors in a
professional way. The following subsections of this section 4 shows the author’s understanding of possible
different approaches (as the first attempt? since the author never heard about or hardly heard about this) to bring
a better programming environment academically and to have students better educated in programming, which is
an essential skill for the student, and also an essential element to make the world advancing in the right way and
the right speed. The author recalls a retired colleague’s comment: “Engineering students used to be good in
hardware skill, but poor in software skill; but they are now poor in both hardware skill and software skill” (this
comment was made about 10 years ago, around 2013).

7

4.1 Pair Programming (Agile Development)

Pair programming of having two programmers working in a team, reviewing or testing each other’s code, or
practiced in agile development (chapter 32) is a good way that trains the programmer or the student trying to
understand the other programmer’s code. The author had tried pair programming in some programming course
and also had covered the concept of agile development with the sprint cycle and scrum master concept in the
Software Engineering course. It seems that the students received such concepts well and could conceivably use
this if they work in the software industry later.

4.2 Software Refactoring.

The good theoretical ways would be through software refactoring methodology as we can see in the 3rd, 5th and
6th references later on 4-6.

4.3 Immediate Fixes by Instructors (or Managers)

Pair programming or extreme programming practiced in agile development
The quick way of fixing the problems is through programming education. This means through the direct
interface of instructors with the students (or managers with the employees) by telling them what they did wrong
and probably show them what the right way is.

4.3.1 Spaghetti code or magic number code.

The spaghetti code or smelly code mentioned in section 3.1 and sections 3.2.1, 3.2.2, 3.2.3, 3.2.4 etc. can be
straightened out through the instructor interactions with the students or via the ways in reference 3 and 5 35.

4.3.2 Right way of submission:

The many peculiar ways of submissions mentioned in section 3.3 can be fixed via instructor interactions or via
showing the students good examples like below of good one and best one in Figure 7 (in a class manual say).

Good one: Show the code (with a screen capture) and outputs (professional)

Best one: Show the code (with a screen capture) and outputs (professional) plus explanation of the code

8

Figure 7 (a) Good one (b) Best One

Explanation. This would be a godsend if a student turned in the answers like this; it is very rate; but we hope the
education or programming education can make more of this kind happen.

 4.3.3 Test and Debug (to fix logic errors mentioned in section 3)

The student wrote code to compute say 5! (factorial five) since the program says (write a program or function to compute
5!). They did not know or bother to see if the code works more generally to compute say 10!, or 2! (or what happens if the
user input -1, intending to compute the non-existing (-1)!.

The student also in general is not familiar with taking the advantage of the debugging tools (say the symbolic debugger in
Visual Studio or in Java Eclipse) to locate and fix the logic error in the code that produces wrong outputs.

Figure 8 (a) code of mul with iP = -1 (wrong), (b) code of mulfix with iP = 0 (correct)

9

Explanation: These two pictures show using debugging windows that the variable iP can have the wrong value -1 or right
value 0 when multiplying 1 + i and 1 -i.

 4.3.4 Verify

The following command in fig. 9 from a common software tool produces funny (wrong) result of trying to calculate the
remainder of 23! divided by 17.

Figure 9. Outputs from command window (a) wrong with answer = 7, (b) right with answer = 0

Explanation. This was a midterm question where students answered wrong by using the tool carelessly without
verification. (those students trying manually with mathematics or coding in C / Java etc. got the right answer 0).

Note here in Figure 9(a), it says 23!%17 = 7; but 17 is a factor of 23!, so 23!%17 should be zero, not 7.

So this is a tool error that many engineering students do not recognize as an error

Note: If you replace 23 by 18 in the command, you’ll get the correct answer. This is possibly due to overflow in the tool
used (if you do the same thing in C# / Java etc. it works fine)

4.3.5 Enhance

After the student achieved the level with the capability of writing code properly, presenting the programming results
effectively, knew how to test and debug, and could verify the correctness of the answer, she / he won’t be perfect unless
they did the last step of enhancement, to make the code professionally looking and also making the reading of their results
an enjoyable experience.

To achieve this level, the student is expected to, not only present the outputs, turn in the code, but also need to have some
documentation of the program, either inside the program (the coding comments), or outside the program as a standalone
document (such as detailed answer of a programming assignment in Word or PDF

4.4 Instructor’s documented guides and examples / Company’s guidebooks

This is enhancement of section 5.2 to have the instructors document such bad and good examples in a so called guidebook
or manual for the students, so that the students have constant access to the good and bad examples and learn from that.

4.5 Chapters on programming books or web sites addressing such issues

The commercial programming books usually show examples of working code, but generally do not show examples of
good working code in contrast with bad working code. We hope in the future, programming books or web sites cover
these as well.

10

5 Conclusion

Programming is a very essential skill. The errors mentioned in section 2 as common errors and the advanced
errors like bad smelly code should be avoided through education, from the instructors, from the books, or any
other ways like internet. Yet students can acquire programming skills through formal education from courses or
informal ones by learning themselves (such as picking up a language not instructed in school).

To really learn programming, the students need not only to know the basics and essentials, to get familiar with
these, but also need to avoid errors (just like car drivers need to know how avoid accidents). A good percentage
of programming instructions should be allocated for being conscious about errors (in the course curriculum),
and know how to avoid and to fix errors, so that errors caused by software bugs can be reduced to a minimum.
(there are many incidents from software bug, including the famous rocket problem caused by code bug).

By the way, the learning objectives defined by the authors’ ECE department, include the followings that are related to
programming: successfully practicing in the Electrical Engineering profession with solid theoretical and hands-on
Knowledge of Circuits, Electronics, Computer Software, Hardware, Communications and Electrical Power.

Based on the learning objectives, student outcomes were defined, such as an ability to identify, formulate, and solve
complex engineering problems by applying principles of engineering, science, and mathematics. With the proper
programming education, this helped the students not only to solve problems via programming but also knowing the ways
to verify and fix errors, they can really grab and make the programming skill an asset in their repertoire of professional
expertise.

It should be a lifelong process of acquiring good habit of writing professional code.

Reference

1. “Identifying and correcting Java programming errors for introductory computer science students”; Maria
Hristova, Ananya Misra, Megan Rutter, Rebecca Mercuri; ACM SIGCSE 2003 proceedings, pages 153-156.

2. “Software Engineering”, 10th edition, Ian Sommerville, Pearson, 2015
3. “ADTs, Data Structures, and Problem Solving with C++ 2nd Edition”, Larry Nyhoff, 2004, Pearson
4. “A survey of software refactoring”, IEEE Transactions on Software, volume 30, issue 2, pages 126-139,
5. “Straightening Spaghetti-Code with Refactoring?”, Markus Pizka, Software Engineering Research, 2004
6. “Refactoring: Improving the Design of Existing Code. “ Boston: Addison-Wesley (now Pearson). Fowler, M., K.

Beck, J. Brant, W. Opdyke, and D. Roberts, 1999

	Abstract
	1. Introduction
	2. Common Programming Errors (when students take the classes)
	2.1 When do Programming Problems Happen?
	2.1.1 Syntax Errors
	2.1.2 Link Errors and Load Errors
	2.1.3 Run Time Errors
	2.1.4 Logic Errors

	3. More Advanced Programming Problems (stinky, smelly, or bad code)
	3.1 Spaghetti code example: From Dr. Larry Nyhoff’s exercise.
	3.2 Smelly code: hard code or special logic code
	3.2.1 Find Prime Number: Problematic Hard Code approach
	3.2.2 Problematic Special code or magic number approach for prime numbers
	3.2.3 Another special code approach example
	3.2.4 Two different ways of reverting an integer. Which way is right?

	3.3 Defective submission of code
	3.3.1 Send a link
	3.3.2 Show a folder only
	3.3.3 Other peculiar ways that the student may present their answers

	4. Remedies or Corrections for the Problems
	4.1 Pair Programming (Agile Development)
	4.2 Software Refactoring.
	4.3 Immediate Fixes by Instructors (or Managers)
	4.3.1 Spaghetti code or magic number code.

	4.3.2 Right way of submission:
	Best one: Show the code (with a screen capture) and outputs (professional) plus explanation of the code

	4.3.3 Test and Debug (to fix logic errors mentioned in section 3)
	4.3.4 Verify

	4.3.5 Enhance
	4.4 Instructor’s documented guides and examples / Company’s guidebooks
	4.5 Chapters on programming books or web sites addressing such issues

	5 Conclusion
	Reference

