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Static Finite Element analysis of a Truss Assembly using MATLAB 

Abstract: 

The theme of this article is to present an approach for the development of matrix based stress 

analysis equations for trusses and demonstrating use of MATLAB software to expedite the 

solution of the matrix based equations. The approach involves developing displacement matrices 

for connected springs based on their spring constants, and then extending the technique to two 

dimensional bars by determining their equivalent stiffness through their axial displacement 

formula. The bar matrices are then adjusted for bar orientation angle and global matrices for 

trusses are assembled using the stiffness method. Techniques for inclusion of the boundary 

conditions in the global matrix equations are shown. MATLAB software has extensive matrix 

manipulation capabilities and features. MATLAB instructions are used to find the displacements 

for an example truss. The MATLAB produced results are compared against results obtained by 

classical techniques. The stresses in truss components can then be determined by using the 

displacements. A discussion regarding the application of the techniques to more complex 

scenarios where solutions cannot be easily obtained through classical techniques are discussed. 

The technique has uses as a supplement to traditional material in an intermediate undergraduate 

structural analysis course. The application of the technique in preparing students for actual use of 

a commercial Finite Element software such as MATLAB is discussed. 

 

Introduction: 

Moderately complex trusses are used in structures such as bridges and aircraft wings. The stress 

analysis of these trusses are done by the Finite Element method in an industrial setting. However, 

from an educational point of view, students need to understand the theory behind the finite 

element formulation in order to be able to use commercially available Finite Element software 

correctly. Small size Finite Element formulation can be done using hand calculation techniques 

and these formulations can be solved by hand calculation techniques. However, from an 

educational point of view, it is beneficial for students to also solve moderately large models 

without using commercially available software. MATLAB matrix analysis capabilities reduce 

the level of tedious and time consuming calculations that must be performed for solving a 

moderate size finite element model that has been formulated in matrix form. This article 

describes a lab exercise that was used to get the students started using MATLAB for this 

purpose.  

The techniques described in this article were used in an undergraduate structural analysis course 

and in an undergraduate engineering mathematics course. 

In the static stress analysis course the technique was used to gain some insight into methods that 

commercial finite element software use for solving stress analysis of trusses. In the advanced 

engineering mathematics course, the technique was used to show how to use matrices for solving 

engineering problems. In both courses, a component of homework and exams was using 

MATLAB to solve truss problems.  

 



Technical discussion & numerical example: 

Figure 1 shows a deformed spring. [1]  

 
Figure 1: A one dimensional deformed spring 

 

In figure 1, 𝑑1x is the displacement at node 1, and 𝑑2x is the displacement at node 2 and L is the 

original length of the spring.  

 

Stiffness matrix for the spring of figure 1 is shown in equation (1). In equation (1), K is the 

spring stiffness and “[K spring]” is the stiffness matrix for the spring where the spring is 

modeled as a finite element. [1] 

 

                                              [𝐾 𝑠𝑝𝑟𝑖𝑛𝑔] = [
𝐾 −𝐾

−𝐾 𝐾
]                                                              (1) 

 

Equation (2) is the force-displacement matrix for spring of figure 1. In equation (2), f1x and f2x 

are the forces at nodes 1 and 2 respectively.  

 

[
f1x
f2x

] = [
𝑘 −𝑘

−𝑘 𝑘
] [

𝑑1𝑥
𝑑2𝑥

]                                                                    (2) 

 

There are a number of techniques for assembling a force displacement matrix when springs are 

attached in series. The superposition technique is presented in this article. The superposition 

technique is best described by an example.  

 

Consider the spring assemblage shown in figure 2. The nodes in the assemblage of figure 2 are 

intentionally arbitrarily numbered in order to illustrate the superposition technique. [1]  



 
Figure 2: 3 spring elements attached in series 

 

The stiffness matrices for elements 1, 2 and 3 of figure 2 can be determined by using equation 

(1). 

  

As shown in figure 2, element 1 is between nodes 1 and 3, element 2 is between nodes 3 and 4, 

and element 3 is between nodes 4 and 2. Based on the location of the nodes, the stiffness 

matrices for elements 1, 2 and 3 from a node location point of view can be written as shown in 

equations (3), (4) and (5). [K1], [K2] & [K3] are the element stiffness matrices for elements 1, 2 

& 3 of figure 2. 

 

                                       [𝐾1] = [
(1,1) (1,3)
(3,1) (3,3)

]                                                                           (3) 

 

                                       [𝐾2] = [
(3,3) (3,4)
(4,3) (4,4)

]                                                                           (4) 

 

                                       [𝐾3] = [
(4,4) (4,2)
(2,4) (2,2)

]                                                                           (5) 

 

The global stiffness matrix [K global] for the assemblage of elements 1, 2 and 3 for figure 2 

based on sequential numbering of the nodes can be written as shown in equation (6). 

 

                            [𝐾 𝑔𝑙𝑜𝑏𝑎𝑙] = [

(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3) (3,4)
(4,1) (4,2) (4,3) (4,4)

]                                                  (6)                                                                                                

 

The global stiffness matrix for the assemblage of figure (2) is calculated by equation (7). 

 

                                         [K global] = [K1] + [K2] + [K3]                                                          (7) 



In equation (7), terms that are missing from a matrix are assigned a value of “0’. Implementing 

equation (7) for the model of figure 2 results in the global stiffness matrix of equation (8). In 

equation (8), K1, K2 & K3 are the spring stiffness for elements 1, 2 & 3 of figure 2. 

 

                                 [𝐾 𝑔𝑙𝑜𝑏𝑎𝑙] = [

K1 0 −K1 0
0 K3 0 −K3

−K1 0 K1 + K2 −K2
0 −K3 −K2 K2 + K3

]                                (8)                                                                         

 

The global stiffness matrix relates global forces to global displacements as shown in equation 

(9). In equation (9), f1x, f2x, f3x & f4x are the forces at nodes 1 through 4 of figure 2, d1x, d2x, 

d3x & d4x are the displacements at nodes 1 through 4 of figure 2 and f1x, f2x, f3x & f4x are the 

forces applied to nodes 1 through 4 of figure 2. 

 

                              [

f1x
f2x
f3x
f4x

] = [

K1 0 −K1 0
0 K3 0 −K3

−K1 0 K1 + K2 −K2
0 −K3 −K2 K2 + K3

] [

d1x
d2x
d3x
d4x

]                                 (9) 

 

As shown on figure (2), the displacements at nodes 1 and 2 are 0. Consequently the matrices of 

equation (9) can be reduced as follows (The lines show the rows and columns that are taken out 

of the matrix).  

 
Taking out the deleted rows and columns out of the matrices of equation (9) results in equation 

(10). 

 

                        [
f3x
f4x

] = [
k1 + k2 −k2

−k2 K2 + K3
] [

d3x
d4x

]                                            (10) 

 

Assuming the following values for spring stiffness and force values for the model of figure 2 and 

substituting these values into equation (10) results in equation (11). 

K1 = 1000 lbf/inch; K2= 2000 lbf/inch; K3= 3000 lbf/inch; f4x = 5000 lbs 

 

                        [
0

5000
] = [

3000 −2000
−2000 5000

] [
d3x
d4x

]                                            (11) 

 

A solution of the matrix of equation (11) results in the following values for d3x and d4x. 

 

d3x= 10/11 inch;         d4x= 15/11 inch. 



Substituting the values of 0 for d1x and d2x (because these nodes are fixed), and substituting the 

calculated values for d3x and d4x into equation (9) results in equation (12). 

 

                       [

f1x
f2x
f3x
f4x

] = [

1000 0 −1000 0
0 3000 0 −3000

−1000 0 3000 −2000
0 −3000 −2000 5000

] [

0
0

10/11
15/11

]                            (12)                                   

 

A solution of equation (12) (obtained by hand calculation or by using MATLAB) results in the 

following values for the forces at nodes 1 through 4 of the finite element of figure 2.  

 

f1x = -10000/11 lb.  ; f2x=-45000/11 lb.  ; f3x= 0    ;   f4x= 55000/11 lb.  

 

The calculation of forces of equation (12) is possible by classical hand calculation techniques 

because the matrix sizes are small. For larger systems, hand calculation techniques are not 

practical, and MATLAB can be used to perform the calculations.  

 

A bar can be modeled similar to a spring by using standard bar deflection formulas. Figure 3 

illustrates the concept. 

 
Figure 3: A one dimensional deformed bar 

 

Since the bar element is developed by using the same deflection technique as a spring, 

assemblage of a number of finite elements that are based on bar formulation is done by the same 

technique that is used for assembling a number of spring elements.  

 

Bar elements are used for modeling truss assemblies. In a truss, various truss elements can form 

an angle with the global coordinates as shown in figure 4. 



 
Figure 4: A bar element making an angle θ with X axis 

of global coordinate system  

 

The global stiffness matrix relating global forces to global displacements for the element shown 

in figure 5 is given in equation (13). [3]  

 

                          [

f1x
f1y
f2x
f2y

] [

C ∗ C C ∗ S −C ∗ C −C ∗ S
C ∗ S S ∗ S −C ∗ S − S ∗ S

−C ∗ C −C ∗ S C ∗ C C ∗ S
−C ∗ S − S ∗ S C ∗ S S ∗ S

] [

d1x
d1y
d2x
d2y

] [AE/L]                              (13) 

 

In equation (13), C is COS θ, S is SIN θ, f are forces and numbers and letters after f are showing 

node number and force direction, and d is displacement and numbers and letters after d are 

showing node number and deflection direction. 

 

The same assembly technique that was illustrated for the finite element of figure 2 (demonstrated 

in equation 9) can be used to assemble a finite element consisting of bar elements.  

 

Figure 5 is the finite element model of a truss. Equation (14) is the formulation of the truss of 

figure 5 analogous to equation (11).  



 
Figure 5: Finite Element model of a truss 

 

                        [
0

−10000
] = [

1.354 0.354
0.354 1.354

] [
d1x
d1y

]                                            (14) 

 

Equation (14) can be written in a compact matrix form as shown in equation (15). 

 

                                                                 [f] = [K][d]                                                                 (15) 

 

Both sides of equation (15) can be multiplied by the inverse of matrix [K]. This results in 

equation (16). [4] 

                                                              [d] = [K]-1[f]                                                                  (16)  

MATLAB can be used to find the displacements of equation (16). The stresses can then be 

calculated from the displacements. 

 

In summary, the finite element solution of a truss using MATLAB matrix operations consist of 

the following steps.  

1. Develop the finite element formulation of truss elements using spring analogy. 

2. Use matrices to develop the finite element matrix equations relating forces, displacements 

and stiffness values of the truss elements. 

3. Use MATLAB matrix operations to solve the system equations.  

 

Educational value of the technique: 

The example presented in this article was one of the earlier assignments in an undergraduate 

structural analysis course. The article set the stage for more complicated assignments that were 

solved by the semi-automated technique described.  



After most students were comfortable with the semi-automated technique, the actual Finite-

Element modeling module of MATLAB (not described in this article) was used to analyze 

moderately complex trusses representing bridges and aircraft wings. 

 

End of the semester comments by students indicated that the students had a better understanding 

when using a commercial finite element software (Finite Element module of MATLAB) because 

they had gone through the process of manually setting up Finite Element equations and solving 

them.      

 

Summary & Conclusion: 

In this article the Finite Element formulation of trusses were demonstrated by using an analogy 

with spring deflections. An example of solving a simple truss Finite Element formulation by 

semi-manual techniques using MATLAB matrix capabilities was presented. The technique 

helped the students to better understand the Finite Element capabilities of MATLAB where the 

entire process is automated and handled internally in the MATLAB software.  

 

End of the semester student feedback were mostly positive. Students indicated that the technique 

when combined with hand calculation techniques (classical techniques) enabled them to better 

understand both techniques. Some unique issues regarding take home exams were encountered 

as a result of the introduction of the completely automated Finite Element capabilities of 

MATLAB. The exam questions had asked for a complete classical technique solution. Some 

students used the Finite Element technique and provided the correct answers without doing the 

hand calculation solutions.  These cases were not treated as academic dishonesty cases, and the 

students were given a chance to do the hand calculation solutions and turn them in. 

 

The techniques presented here can be expanded and be included as a supplement for a vibration 

analysis course. MATLAB (which stands for Matrix Laboratory) has extensive matrix analysis 

capabilities and the basis of vibration analysis is matrix algebra. The inclusion of MATLAB in 

an undergraduate course has the potential to get the students interested in more advanced finite 

element software such as NASTRAN/PATRAN and ANSYS. The author has developed a 

graduate level stress analysis course using NASTRAN/PATRAN and a second graduate level 

course using NASTRAN/PATRAN is under development. The subject of the second graduate 

level course is advanced vibration analysis. 
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