
Paper ID #24196

2018 ASEE Zone IV Conference: Boulder, Colorado Mar 25
Supplemental External Assignments Incorporating Immediate Feedback for
use in Entry-level Coding Courses to Promote In-Class Active Learning

Dr. John M Pavlina, Embry-Riddle Aeronautical University, Prescott

Ph.D. obtained at the University of Central Florida in Orlando under the direction of Donald Malocha.
Researched Surface Acoustic Wave wireless sensors for use in NASA applications. Post Doctoral re-
search performed at the Albert-Ludwigs-Universität Freiburg on disaster scenario cell phone location.
At the university hospital affiliated with Albert-Ludwigs-Universität Freiburg research was conducted on
prostate cancer ablation using HIFU and MRI. Currently working as an assistant professor at ERAU in
Prescott, AZ.

Mr. Brennan Robert Gray

c©American Society for Engineering Education, 2018

Supplemental Outside-of-Class Assignments Incorporating

Immediate Feedback for use in an Entry-level Coding Class to

Promote In-Class Active Learning

John M. Pavlina and Brennan Gray

Embry-Riddle Aeronautical University, Prescott-Campus

Abstract

Introductory computer programming classes remain difficult for incoming students with little to

no experience or interaction with the background processes of a computer. Most students only

interact with the graphical user interface, and therefore possess little understanding of the actual

code running the programs they use daily. The first class introducing such coding concepts

provides a significant challenge to many because of the various concepts that need to be learned

quickly. The students must not only learn the basics of whatever programming language they are

utilizing but also the fundamentals of programming a computer. It benefits the students to

provide opportunities to learn coding interactively both inside and outside of prescribed class

time. Difficulties arise in implementing in-class active learning strategies from the beginning of

term when these first-time students must quickly internalize new vocabulary and familiarize

themselves with the coding environment. When some of the basics of acquiring computer

language may be performed outside of class, additional instruction time can then be allotted to

active learning in the classroom. In order for these beginner students to succeed in assignments

outside of class, feedback must be given immediately regarding the code being attempted. One

of the main benefits of obtaining instant accuracy feedback centers on an increase in student

engagement. This work examines the use of assignments with interactive learning activities.

These assignments are placed on a website, such as codevolve.com, where the student can follow

step-by-step instructions and then run the code to determine if the outcome is as it should be.

This feedback students receive reaches far beyond simply whether or not the code will compile

but actually checks the outcome of the code to ensure compliance with a desired end result. The

exercises and resulting feedback provide students with an advantage during classroom

instruction. The observed results of students performing the outside exercises showed increased

engagement and competency during the in-class active learning assignments when compared to

the control. They required less direct intervention because of common syntax errors and basic

commands as these issues had been previously addressed in their out-of-class activities. An

example of an exercise will be shown to demonstrate the activity and feedback system. Results

from student surveys as well as a qualitative and quantitative look at student performance will be

presented.

Background

Many students prefer to spend lecture time in interactive learning activities1,2,3. However, active

learning techniques in entry-level coding classes prove challenging for students who come into

the university with no programming experience. These students generally lag behind their peers

with previous experience and tend to fail the course.

Concepts such as active learning and the “inverted” or “flipped” classroom are familiar to

students in the contemporary university environment4,5. It is no longer a question for instructors

of whether these concepts work6 but rather how best to integrate them into one’s own course.

However, introductory computer programming courses

remain tricky to navigate in an active learning

environment. The students at Embry-Riddle who are

required to take this course come from very different

backgrounds, levels of experience, and degree programs.

The breakdown of majors for students enrolled in the

author’s EGR 115 entry-level coding class in the Spring

and Fall of 2017 is shown in Table 1. Because of the

inconsistency of coding experience in first-year students,

the instructor quickly discovers a large disparity of prior knowledge that must be addressed. The

results from a first week survey in the Fall 2017 are shown in Table 2. One can see that a large

portion of the students come into the course with absolutely no prior programming experience.

Table 2: Students response to level of programming experience

Programming

Experience

Never High

School

High

School

AP

College/

University

At a job Self

Taught

of students 28 13 4 7 1 5

The EGR 115 programming course introduces students to computing using MATLAB. The

choice of MATLAB is due to the usefulness in later courses to all of the majors. It is generally

understood that while computer engineers and electrical engineers will go on to utilize the

programming aspects of the course more, everyone is to be taught the same. Because of the

emphasis on programming, students must learn all of the basic concepts (loops, branching, and

functions) and apply them to engineering problems. The author’s first attempt at teaching this

course to coding beginners resulted in many disgruntled and unhappy students as discovered on

the end-of-year teaching evaluations. The students were assumed to have significant prior

programming knowledge and therefore felt lost during the majority of the course.

In the subsequent semester, adjustments were made, the pace and material to be covered in class

was altered, and the use of more in-class activities was introduced more liberally. However, such

a strategy ended up as an overcorrection, since more than half of the class with some prior

programming experience received no benefit.

This disparity in experience and need to balance class time between total beginner and slightly

experienced students prompted the desire to create a way for novice students to obtain help

outside of the class time. Of course, contemporary students have access to massively online open

Table 1: Division of student

by degree

Major Spr 17 Fall 17

AE 22 43

ME 4 8

EE 0 5

CE 0 2

courses (MOOCs) such as MIT OpenCourseWare to learn programming languages.

Unfortunately, the completion percentage of students attempting a MOOC are below 40% with

the average being about 15%7, and such online offerings do not teach exactly what must be

learned for the student’s particular course at their own university.

With a custom assignment designed by the instructor for students of the course, rookie

programmers have the possibility of absorbing introductory MATLAB terminology and syntax

so that the application of larger concepts, e.g. loops, can be explored during class time.

Description of Course

The course is EGR 115: Introduction to Computing for Engineers is described as follows: “This

is an introductory course in programming and computing for scientists and engineers. The course

introduces students to the following aspects of software engineering: specification, requirements,

design, code, and test. This course uses a problem-solving approach for developing algorithms.

The following topics will be included: data types and related operations, looping, decision,

input/output, functions, arrays, files, and plotting.” The class extends beyond simply learning

how to program but also delves into problem solving and software engineering concepts.

EGR 115 students are expected to analyze scientific and engineering problems, design

algorithmic solutions to these problems, and implement the algorithms. The course is broken

down into eight main topics as shown in Table 3.

Table 3: Basic outline of the course topics covered in EGR 115

Week #’s Topics

Week 01-02 Introduction to MATLAB

Week 03 Plotting with MATLAB

Week 04 Problem Solving with Top-Down-Design

Week 05 Branching Statements

Week 06-08 Looping Statements / Vectorization

Week 09-10 Functions

Week 11 File I/O

Week 12-14 Applications /Advanced Topics

Only the first few classes are devoted to MATLAB and MATLAB syntax. Those familiar with

MATLAB understand this means the instructor must cover a wealth of information including

terminology and the MATLAB environment in a short time. Because of the focus on algorithm

development and software engineering practices, only a few class sessions can be spent learning

the basics. Therefore, out-of-class activities were created to cover some of these basic topics for

total beginners.

Eleven exercises were developed and implemented for this course. The activities start with the

basic operations available in MATLAB and work up to using characters and strings inside

MATLAB. The list of supplemental assignment topics is as follows:

 Basic Operations

 Addressing Matrices

 Operations with Vectors

 Operations with Matrices

 Input and Output to the Command Window

 Relational Operators and Masks

 Branching statements: If-else

 For Loops

 Loops: Break and Continue

 Vectorization

 Characters and Strings

Basic Codevolve Lesson Description

The supplemental activities were designed on a website called Codevolve.com. The website was

founded with a mission to make technical education scalable and accessible to as many people as

possible. This platform allows educators to create custom lessons for learning any aspect of a

programming language. The lessons can be set up many different ways but the most basic layout

is shown in Figure 1. The activities may be run in a browser tab or integrated into a learning

management system (LMS). CANVAS is the LMS used at ERAU, and it supported the tracking

and grading of the Codevolve student assignments.

Figure 1: The layout of a generic lesson within the codevolve.com website.

Various parts of the assignments layout are shown in figures 2 – 5. Commands can be typed in

an editor window, Figure 2, exactly how they would be entered into an .m file. The editor

window runs in the browser, no MATLAB software needed. The results display in the terminal,

Figure 3.

Figure 4: Code Editor Window

Figure 3: Command Terminal Window

Figure 2: Lesson instruction and general information

The left side of the interface layout shows

the blocks of steps for the assignment. As

shown in Figure 4, the student can read

the lesson information and note the

purpose of the block. The goal of the

assignment is listed as an instruction,

Figure 5, and tells the user specifically

what needs to be done in order to

complete the block and move on.

If the student types an incorrect entry, a small codey bot in the bottom corner informs him or her

of their error and provides a hint or suggestion as to how to fix the answer, Figure 6. If, however,

the student enters the correct answer, the bot displays a ‘Good work!’ message. The user is then

able to move to the next code block or end the activity.

Figure 6: Example output from the helper bot when the answer is wrong. This mechanism allows

for more than simply right and wrong to be displayed.

Figure 7: Example output of the helper bot when the answer is correct.

Discussion

The supplemental lessons were created in the spring semester of 2017 and offered as a beta test

to a single section of 29 students. At the time, only 5 activities existed, covering multiple topics.

This first group of students was offered the option of performing the outside activities. At the

end of the semester, a survey was given to gauge student response to the activities.

The student survey questions are as follows. Note that the coding activities were referred to as

“reading supplements” at the time.

1. I find the format of the reading supplements helpful to the way that I learn.

2. I feel that the reading supplements engage my interest.

3. I find that the reading supplements help me in understanding the readings and lectures.

Figure 5: The instruction shown to the user that

is to be completed.

4. I find that the reading supplements confuse me.

5. I would learn more if the reading supplements were more structured

6. The problems worked in the reading supplements help me in working other problems on

my own.

7. I feel that I need more guidance in the reading supplements

8. I find it helpful to get feedback from the reading supplements.

9. I feel that the reading supplements should be given prior and not after the material is

covered in class.

10. I think that I would learn better if a different format were used for the reading

supplements (suggested below).

Students rated each question on a 5 to 1 scale with the rating ranging from: strongly agree, agree,

neutral, disagree, and strongly disagree. The results of this first survey are as shown in Table 4.

However, it should be stated that half of the class only performed one or two of the activities. Of

those that completed all the activities, the results showed a much more positive benefit. The

evidence suggests the previously-mentioned disparity in prior knowledge may have influenced

the more intermediate students to only complete a few of the assignments if they felt they already

knew the material.

Table 4: Results from student survey performed during the spring 2017 course.

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Overall

Mean

3.85 3.19 4.12 2.28 2.92 3.58 2.15 3.80 3.65 2.68

Completed

All Mean

4.60 3.80 4.40 1.80 2.60 3.80 2.20 4.40 3.20 2.40

Some of the comments offered by the students regarding the supplemental activities also provide

insight into why some may have performed all of assignments while others performed only one

or two.

The question posed to students was the follow: “What aspects of the activity need improvement /

any suggestions?”

Student responses:

 “They are a good learning tool but without a grade or any consequences most students

(me) won't do too many of them.”

 “Less help, make it a tiny bit harder. …”

 “Not really, they're great as is.”

 “I like it, it allows using learned material sooner than using it on the homework. Keeping

it fresher in my mind.”

 “I like the reading supplements and think it is nice to see the information presented twice,

sometime in different ways.”

These responses provided enough information to suggest that the activities may be useful to

some, if not all, if formatted the right way.

Over the summer, the assignments were revised and edited. Changes included shortening the

activities, covering just one topic at a time, and improving the feedback and reliability of the

code checking. The result of this revision was a set of eleven activities covering a large portion

of the course material listed previously.

In the Fall of 2017, the supplemental activities were evaluated using two sections of the same

EGR 115 course. The assignments were presented as mandatory work for Section 2 and Section

1 was taught without offering the assignments. In Section 2, the activities were assigned after the

corresponding material was first covered in the lecture. The students in both sections took the

same exams and quizzes and solved the same homework problems.

In both sections, the students took a pre-class survey to determine previous programming

experience. Observations of in-class activities and active learning portions of the course were

noted by the instructor and the instructor’s TA. Even from early in the course, the instructor

noticed that the section that received the extra activities (Section 2) needed less help in-class

during the active learning sessions. The question remained as to whether it would affect the

student scores or not. The results of the two sections test scores are shown in Table 5.

Table 5 Results from each class overall, all student are included

 Exam 1 Exam 2 Final

Section 1 71.391 72.375 76.537

Section 2 72.241 70.553 74.019

Difference in

averages

-0.850 1.822 2.518

Table 6 Results from those with no prior experience in programming

 Exam 1 Exam 2 Final Midterm

Grade

Final Grade

Section 1 71.577 73.769 76.423 76.264 77.177

Section 2 69.692 68.769 69.000 70.984 69.998

Difference in

averages

1.615 5.000 7.423 5.280 7.179

The overall results of both sections show a marginal difference in the average scores. For those

students without prior programming experience, shown in Table 6, the first exam scores are

similar with a 1.6-point difference but the other scores between the two sections are quite

different. I believe the supplemental activities help beginner students, but further revisions are

needed.

Since most of the out-of-class learning activities are concentrated at the beginning of the

semester, it could be argued that these assignments helped those students who needed help. But,

as the semester continued on and new concepts were regularly introduced (most topics later in

the semester did not have corresponding out-of-class activities), the students could not keep up

with the pace of the course. Though the scores are low, it should be noted that that Section 1 had

the highest final average score of any 20+ student class the instructor previously taught.

Future Work

While the results of the test scores did not increase dramatically, the qualitative information

obtained from students was generally positive. The students felt the activities were helpful and

allowed them to keep up with the class. By attaching even the smallest of grade weight to out-of-

class assignments, the students were motivated to keep up with the supplemental activities.

While improved student scores would be welcomed by student and instructor alike, ultimately

the goal is to encourage the students to engage with the material and be able to participate during

in-class active learning activities. Such supplemental out-of-class activities do further this goal

and the immediate feedback presented to the students through Codevolve proves much more

useful than assigning homework problems which take time to grade and return. During the

waiting period for corrected homework, lost students will continue to fall behind and ultimately

not be able to keep up with the course.

It is the author’s desire to continue to use these activities, and perform further assessment of

student scores and perceptions in order to reach the goal of maximum student understanding and

participation in active learning classroom activities.

Bibliography

(1) Pickering, James D., and David JH Roberts. "Flipped classroom or an active lecture?." Clinical Anatomy

31.1 (2018): 118-121.

(2) Gannod, Gerald C., Janet E. Burge, and Michael T. Helmick. "Using the inverted classroom to teach

software engineering." Proceedings of the 30th international conference on Software engineering. ACM,

2008.

(3) Roberts, Jonathan C., et al. "The Explanatory Visualization Framework: An active learning framework for

teaching creative computing using explanatory visualizations." IEEE transactions on visualization and

computer graphics 24.1 (2018): 791-801.

(4) Princy, L., et al. "Effectiveness of Classroom Interactions in Engineering Colleges." Ergonomic Design of

Products and Worksystems-21st Century Perspectives of Asia. Springer, Singapore, 2018. 163-175.

(5) Arakaki, D. (2017, April), Lecture Videos to Supplement Electromagnetic Classes at Cal Poly San Luis

Obispo Paper presented at 2017 Pacific Southwest Section Meeting, Tempe, Arizona.

https://peer.asee.org/29222

(6) Prince, M. (2004), Does Active Learning Work? A Review of the Research. Journal of Engineering

Education, 93: 223–231.

(7) http://www.katyjordan.com/MOOCproject.html

