
Proceedings of the 2010 ASEE Gulf-Southwest Annual Conference, McNeese State University Copyright©
2010, American Society for Engineering Education

1

Session: FC2-2

THE LAB WORKSHOP MODELS ON MICROCHIP’s PIC
MICROCONTROLLERS IN EET PROGRAM

Muhammad M. Baig, Rafiqul Islam
Dept. of Engineering Technology

Northwestern State University
Natchitoches, LA 71497
email: baigm@nsula.edu
email: islamr@nsula.edu

Abstract

The microcontroller is a versatile, simple and low-cost solution for many electronic-based
interface and control situations and problem solutions. It is usable in place of a combination of
many active and passive electronic components. Lesser components and lesser connections
enhance reliability and life of the designed systems besides many other obvious advantages. A
microcontroller is intelligent, so programmable, that adds to its awesomeness. We will call an
electronic design based on (/ using) a microcontroller as a microcontroller-based project /
application. Designing of a microcontroller-based application is a challenge, since it involves
simultaneous completion of both its hardware and software designs. Besides, it requires to use
and know how to use each of the hardware and software development tools.

This lab workshop models on Microchip’s PIC microcontrollers is intended for students
undergoing an undergraduate-level of studies in Electronic Engineering Technology (EET) at
Northwestern State University of Louisiana, Natchitoches and those who have a credit in a two-
semester Digital Electronics course and a credit in a single-semester high-level programming
language course. This lab workshop is for the purpose of exploring / explaining various aspects
of building the PIC microcontroller-based applications

This paper will be a complete description of hardware & software requirements and procedures
on how to experimentally develop, build, test and troubleshoot a PIC microcontroller-based
application. This includes writing a program code, translate it to an object code loadable onto a
microcontroller. The authors will demonstrate how to use all the required hardware as well as
software development tools in three laboratory projects. This hands-on experience will
strengthen students’ knowledge base and make them more marketable in this field. It will also be
valuable to the students of other colleges and universities with similar concentration.

Proceedings of the 2010 ASEE Gulf-Southwest Annual Conference, McNeese State University Copyright©
2010, American Society for Engineering Education

2

1. Introduction

A microcontroller is a computer implemented on a single very large scale integrated (VLSI)
circuit, containing some of the peripheral components, namely, memory, timers (including event
counting, input capture, output compare, real-time interrupt and watchdog timer), pulse-width
modulation, analog-to-digital converter, digital-to-analog converter, parallel input / output
interface, asynchronous serial communication interface, synchronous serial communication
interfaces, direct memory access controller, memory component interface circuitry and software
debug support hardware.

In the Electronic Engineering Technology (EET) program at Northwestern State University of
Louisiana, Natchitoches, we teach the Microchip’s 8-bit microcontrollers. Our choice of these
microcontrollers is based on the fact that they are one of the new market leaders in the today’s
competitive 8-bit microcontroller market [1, 2 & 3]. Our program consists of a single semester
three credit hours class course associated with a single semester one credit hour laboratory
course.

The laboratory course includes labs on the Microchip’s PIC16 mid-range core devices and PIC18
high-end core devices, both being the good representatives of Microchip’s 8-bit microcontrollers.
The former -type features a 14-bit wide code memory, an improved 8 level deep call stack and an
increased op-code width allowing 128 registers and 2048 words of code to be directly addressed
and are more often programmed in assembly. The latter type features a 16-bit wide op-codes
(allowing many new instructions), and a 16 level deep call stack, and more importantly are
programmable in C.

The lab workshop will represent a sample of model labs which we are teaching in the
microcontrollers’ laboratory course. Specifically these will include two labs based on a PIC18
high-end core microcontroller one of them programmed in C and the other in assembly and third
lab based on the PIC16 mid-range core microcontroller programmed in PICBasic/PICBasic PRO.

But before we perform the lab workshops, we need to discuss some of the concepts, factors and
phases of the lab performance task. These include how to develop a microcontroller-based
application, tools needed for and how to use them. Next few paragraphs will briefly describe
them.

2. Development of a Microcontroller-Based Application

Development of a microcontroller-based application (project) is a two-portion development
process, consisting of: (a) a hardware development process and (b) a software development
process. The two development processes are distinct from each other but are closely related to
each other and therefore these must progress side-by-side [3].

The Hardware Development: Like development of any electronic engineering project, the
hardware development of a microcontroller-based application is a multistep procedure. It, almost
sequentially, involves: (a) determining a schematic circuit for a problem according to the

Proceedings of the 2010 ASEE Gulf-Southwest Annual Conference, McNeese State University Copyright©
2010, American Society for Engineering Education

3

problem’s requirements & specifications, (b) selecting and collecting a suitable microcontroller
and all other electronic components (hardware) for the circuit, (c) building the circuit on a
solder-less breadboard, (d) checking the connected circuit for its correctness of connections and
(d) using the programmed microcontroller and finally power-on testing of the circuit.

The Software Development: The software development is basically a three-step process, namely:
(a) To write a program (/ a source code) in assembly or C or PICBasic / PICBasic PRO; (b) To
assemble / to compile (translate) a source code into an object code and; (c)To program (/ load the
object code) onto a microcontroller.

(a) To write a program / code: This is the first step in which a program / code is written. At
this stage we call the program / code as a source code. The source code is simply a sequence of
instructions that is designed, for a selected microcontroller device, to do a job. Each type of
programming langauge has its own set of such instructions which are readily available from
various sources. In fact, instructions in assembly is freely loadable from Microchip’s web site
www.microchip.com and those in C and PICBasic / PICBasic PRO are available from the
market on a nominal price. We will, for this lab workshop, write our source codes in each of
assembly, C and PICBasic / PICBasicPRO.

(b) To assemble / to compile a source code: At this step a source program / code is converted
(translated) into a code which is executable by a microcontroller to do an assigned job. A
program / code after the successful completion of this step, is usually known as an object code.
It is worth-mentioning here that: (a) if a source code / program is written in assembly, the source
code needs an assembler software to assemble (convert) it to an executable object code and (b) if
a source code is written in a high-level language, the source code needs a compiler software to
compile (convert) the source code into an executable object code.

(c) To program the microcontroller: This is the final step in which the object program / code is
loaded onto a microcontroller.

Software Development Tools: There are a number of software development tools available. To
translate a source code into an object code, we will use Microchip’s MPLAB IDE and its
associated assembler software and commercially-available compiler software. So in this lab
workshop, we will use both an assembler software and two compiler softwares.
Microchip’s MPLAB IDE is a complete development tool. Microchip’s MPLAB IDE is, free of
cost, loadable on line from Microchip’s web site, namely, www.microchip.com. The MPLAB
IDE provides an Integrated Development Environment and it also inherits an assembler software
needed to convert a source code in assembly into an object code.

We will also use the PICBasic PRO Compiler software to compile source codes in PICBasic /
PICBasic PRO and the Microchip’s C18 C Compiler software to compile source codes in C.
Each of the PICBasic PRO Compiler software and the Microchip’s C18 C Compiler software is
available, at nominal cost, in the market.

Proceedings of the 2010 ASEE Gulf-Southwest Annual Conference, McNeese State University Copyright©
2010, American Society for Engineering Education

4

Hardware Development Tools: An object code, which is in an executable format, is,
then, loaded onto a microcontroller. This step is performed using a programming carrier board
and its associated software. We select Micro-Engineering Lab’s Programming Carrier Board
along with its associated software for this purpose.

Laboratory Workshop One:

The Microchip’s PIC16F84A Microcontroller-Based Project Programmed in PICBasic PRO.

Objectives:

Implement a binary counting (from binary 0000 0000 to binary 1111 1111) program that will
light eight LEDs connected to PORTB’s eight output lines.

Schematic Circuit

U2

PIC16F84A

RA21
RA32

RA4T0CKI3

MCLR4

VSS5

RB0INT 6
RB1 7
RB2 8

RB3 9
RB4 10
RB5 11

RB6 12
RB7 13

VDD 14

OSC2CLKOUT 15

OSC1CLKIN16

RA017

RA118

VDD
5V

VDD
5V

R1
4.7kΩ

R2
330Ω

C1
22pF

C2
22pF

X1

HC-49/U_40MHz
(*4MHz)

C3
100nF

LED1

R3
330Ω

LED2

R4
330Ω

LED3

R5
330Ω

LED4

R6
330Ω

LED5

R7
330Ω

LED6

R8
330Ω

LED7

R9
330Ω

LED8

J1

Key = A

R10
10kΩ

J2

Key = B

R11
10kΩ

J3

Key = C

R12
10kΩ

(MSB) (LSB)

6362

0

VDD

0

VDD
616059

5857
56

5554
5352

51 50 49 48 47 46 45 44

43
42

0

Procedure:

Step 1: Writing of a Program.
B0 VAR BYTE
delay VAR BYTE
delay = 500
TRISA = 15
TRISB = 0
loop:
For B0 = 0 TO 255

Proceedings of the 2010 ASEE Gulf-Southwest Annual Conference, McNeese State University Copyright©
2010, American Society for Engineering Education

5

IF PORTA.0 = 0 Then hold
IF PORTA.1 = 0 Then fast
IF PORTA.2 = 0 Then slow
PORTB = B0
Pause delay
Next B0
GoTo loop
hold:
IF PORTA.0 = 0 Then hold
GoTo loop
fast:
IF PORTA.1 = 0 Then
delay = delay + 10
EndIF
IF delay > 1000 Then
delay = 1000
EndIF
GoTo loop
slow:
IF PORTA.2 = 0 Then
delay = delay - 10
EndIF
IF delay < 20 Then
delay = 20
EndIF
GoTo loop
End

Step 2: Compiling of the Program

1) Software Installation: Install the PICBasicPRO Compiler. Execute SETUP.EXE on the

PICBasicPRO Compiler disk and follow the instructions presented. Install all of the
necessary files to a subdirectory named C:\PBP on the hard drive.

2) Open Codedesigner Lite (/Click on icon ‘cdlite’).
3) Open File > New. Start the IDE’s editor. Select the microcontroller 16F84A from the IDE’s

drop-down list. Create the BASIC source file for the program (/Copy the program code from
Step 1 and paste).

4) Save the code using File > Save As in C:\CDLite\Pro directory under the name
seven_seg_1.pbp.

5) Go to Compile > Compiler Options. This opens a ‘Compiler Options’ window. Select / Set
Compiler Options as shown in Figure 6.1.

 Go to Compile > Compile (or press Function F5 key).
6) The successful compilation of the source code is shown on the Compiler Output window.

The PICBasic PRO Compiler generates HEX (.HEX) files. The object code will be saved in
C:\CDLite\Pro directory.

Proceedings of the 2010 ASEE Gulf-Southwest Annual Conference, McNeese State University Copyright©
2010, American Society for Engineering Education

6

Figure 7.1

 Compiler Options
PIC Basic Pro Compiler OK
Compiler Pathname: Cancel
C:\PBP\PBPW.EXE Find

Compiler
Command Line Options:
 √ Auto Close Compiler Output Screen in 5 secs
 √ Don’t Display DOS Window

Step 3: Programming of the Microcontroller

We use micro-Engineering Labs Inc. s’ the melabs U2 Programmer.
1) Plug the melabs U2 Prgrammer to the PC USB port using a USB cable.
2) Insert the PIC 16F84A microcontroller device on to the Programmer carrier board.
3) Launch the programmer software, i.e., click on the melabs Programmer icon to open melabs

Programmer window.
4) Select the 16F84A microcontroller. Go to File > Open. Select the seven_seg_1.pbp program

from the dialog box.

5) On the dialog box:
a) Go to View > Configuration. This opens ‘Open’ window for the melab Prog-

Configutation. On this window, Select/Set:
i) Oscillator to XT.
ii) Watchdog Timer to Enabled (Set ON)
iii) Power-up Timer to Disabled
iv) Code Protect to Off

b) Go to Program > Erase to erase the chip.
c) Go to Program > Program to load the object code on to the chip.
d) Go to Program > Verify to verify the object code is loaded on to the chip. (Optional)

Step 4: Testing of the microcontroller-based project
Construct the circuit shown in the schematic on a solderless breadboard.
Insert the programmed PIC16F84A on to the circuit.
Power on and test the circuit.

Proceedings of the 2010 ASEE Gulf-Southwest Annual Conference, McNeese State University Copyright©
2010, American Society for Engineering Education

7

Laboratory Workshop Two:

The Microchip’s PIC18F452 Microcontroller-Based Project Programmed in C.

Objectives:
Implement a program in C to control and drive a PIC18F452 microcontroller-based two-way
traffic light signal.

Schematic Circuit:

Same as shown in the Laboratory Workshop with PIC 18F452 instead of PIC16F84A.

Procedure:

Step 1: Writing of a Program

/*A program on C18 C compiler to run a TLC*/
#include <p18F452.h>
#pragma config WDT = OFF

void delay (void)
{
 unsigned int i;

for (i = 0; i < 50000; i++)
 ;
}

void main (void)
{

 TRISD = 0;
 PORTD = 0;

 while (1){

 PORTD = 0x41;
 delay ();
 delay ();
 PORTD = 0x21;
 delay ();
 delay ();
 PORTD = 0x11;
 delay ();
 PORTD = 0x14;

Proceedings of the 2010 ASEE Gulf-Southwest Annual Conference, McNeese State University Copyright©
2010, American Society for Engineering Education

8

 delay ();
 delay ();
 PORTD = 0x12;
 delay ();
 delay ();
 PORTD = 0x11;
 delay ();

 }
}

Step 2: Compiling of the Program

The compiling of the program is accomplished by using Microchip’s MPLAB IDE and C18 C
Compiler, and by sequentially following the steps as described below:‐

1) Install MPLAB IDE software

Using its CD for C18 Compiler Software, install the C18 C Compiler software on your PC.

2) Start MPLAB IDE
 Select Start > Program > Microchip > MPLAB IDE from your monitor screen or
a) Double click on the MPLAB IDE icon.

3) Configure the Project

a) Go to the Configure > Settings menu and choose the Projects tab
b) Ensure the setup to be as shown in Figure 3.1.
c) Then, Click on OK.

Figure 3.1

 Setting

√ Close open source files on project close
√ Close output window before build
√ Save project before build
Save files before build

• Yes No

Prompt

√ Halt build on first failure
√ Use one-to-one project-work space model

 Ok

Cancel Apply

Proceedings of the 2010 ASEE Gulf-Southwest Annual Conference, McNeese State University Copyright©
2010, American Society for Engineering Education

9

4) Select the Target Device
a) Go to the Configure > Select Device
b) Choose the target device as 18F452.
c) Click on OK.

5) Create a New Project & Save it in the directory c:\pic18.
a) Select the Project > New .
b) The ‘New Project’ dialog, as shown in Figure 5.1, will open.
c) Type the Project name as: c_tlc_1.
d) Type the Project directory as ‘C:\ pic18’. OR
e) Click ‘Browse’ button.

i) The ‘Browse For Folder’ dialog will open.
ii) Scroll on to pic18 and click on pic18 and then click OK.

f) Then Click on OK in the ‘New Project’ dialog.

 Figure 5.1
 New Project

Project
Name
c_tlc_1

Directory
C:\pic18

Project
 OK

Cancel

6) Set Language Tool Location

a) Select Project > Set Language Tool Locations.
b) This will open ‘Set Language Tool Locations’ dialogue as shown in Figure 6.1.
c) Click on ‘Microchip C18 Toolsuite’
d) Click on ‘Executables’
e) Click / Highlight on MPLAB C18C Compiler (mcc18.exe)
f) Click OK

 Figure 6.1

 Set Language Tool Location
 Registered Tools

+ B Knudsen Data CC5X
+ B Knudsen Data CC8E
+ Byte Craft Assembler & C Compiler
+ CCS C Compiler for PIC12/14/16/18
+ IAR PIC18
+ IAR Systems Midrange
+Microchip ASM30 Toolsuite

Proceedings of the 2010 ASEE Gulf-Southwest Annual Conference, McNeese State University Copyright©
2010, American Society for Engineering Education

10

+Microchip C17 Toolsuite
+ Microchip C18 Toolsuite
 - Executables
 MPASM Assembler (mpasmwin.exe)
 MPLAB C18 C Compiler (mcc18.exe)
 MPLIB Librarian (mplib.exe)
 MPLINK Object Linker (mplink.exe)
Location
C:\MCC18|bin\mcc18.exe

Browse

Help

OK Cancel Apply

7) Set Language Toolsuite

 Select Project > Set Language Toolsuite.
a) This will open ‘Select Language Toolsuite’ dialog as shown in Figure 7.1.
b) Highlight MPLAB C18 C Compiler (mcc18.exe),
c) Thus, highlighting C:\MCC18\bin\mcc18.exe in ‘Location’.
d) Click on OK

Figure 7.1

 Select Language Toolsuite

 Active Toolsuite
Microchip C18 Toolsuite

Toolsuite Contents
OK

MPASM Assembler(mpasmwin.exe)
Cancel

MPLINK Object Linker(mplink.exe)
Apply

 MPLABC18C Compiler (mcc18.exe)
MPLIB Librarian (mplib.exe)

Location
 C:\MCC18\bin\mcc18.exe

Browse

 Help

OK Cancel

Proceedings of the 2010 ASEE Gulf-Southwest Annual Conference, McNeese State University Copyright©
2010, American Society for Engineering Education

11

8) Enter Source Code
a) Select File > New
b) This opens a blank Edit window ‘Untitled’.
c) Enter the program.
d) After entering the source code, select File > Save
e) Save the file in the project directory as ‘c_tlc_1.c’

9) Setting Build Options

a) Select Project>Build Options: this opens Build Options For Project “c_led_1.mcp’ dialog
window as in Figure 9.1.

b) Click on Directories Go to Output Directory and click on Include Search Path. Click on
‘New’. Type ‘c:\mcc18\h’ and click on Apply.

c) Again go to Output Directory and click on Library Search Path. Click ‘New’. Type
‘c:\mcc18\lib’ and click on Apply.

d) Again go to Output Directory and click on Linker-Script Search Path. Click on ‘New’.
Type ‘c:\mcc18\lkr’ and click on Apply.

e) Click OK.

Figure 9.1

Build Options For Project “c_led_1.mcp”
 MPASM Assembler MPLINK Linker

MPLAB C18
 Directories Trace

MPASM/C17/C18 Suite
Directories and Search Paths
Show directories for: Include Search

Path ↓
 New Delete

Down Up
c:\mcc18\h

Suite Defaults
 Build Directory Policy
 Ο Assemble/Compile in source-file

directory, link in output directory
 Ο Assemble/Compile/Link in the project

directory
 OK

Cancel Apply Help

Proceedings of the 2010 ASEE Gulf-Southwest Annual Conference, McNeese State University Copyright©
2010, American Society for Engineering Education

12

10) Add Source File to the Project
a) Select Project > Add files to Project
b) A dialog window ‘Insert Files Into Project’ will open as in Figure 10.1.
c) Select Look in pic 18.
d) Highlight c_tlc_1.c
e) Click Open.
f) The newly inserted file will appear in the ‘project pane’.
g) Save the project c_led_1.c by selecting Project > Save.

Figure 10.1

 Insert Files Into Project

Look in: pic18
c_tlc_1

File name c_tlc_1 Open
File of type Assembly Source Files (*.asm) Cancel
√ Insert files with relative paths

11) Add the Linker File to the Project
a) Select Project > Add files to Project
b) A dialog window ‘Insert Files Into Project’ will open as in Figure 11.1.
c) Browse the MCC18C compiler installation directory (under c:\mcc18\lkr) and add the

appropriate linker file.
d) Select Look in: lkr.
e) Select 18f452.lkr (for the device into this project)
f) Click on Open.

 Figure 11.1

Insert Files Into Project

Look in lkr
18f442.lkr 18f458.lkr

18f2220.lkr 18f4320.lkr
18f442i.lkr 18f458i.lkr

18f2220i.lkr 18f4320i.lkr
18f448.lkr 18f1220.lkr

18f2320.lkr 18f6620.lkr
18f448i.lkr 18f1220i.lkr

18f2320i.lkr 18f6620i.lkr
18f452.lkr 18f1320.lkr

Proceedings of the 2010 ASEE Gulf-Southwest Annual Conference, McNeese State University Copyright©
2010, American Society for Engineering Education

13

18f4220.lkr 18f6720.lkr
18f452i.lkr 18f1320i.lkr

18f4220i.lkr 18f6720i.lkr

←

→

File name : 18f452

Open
File of type: Linker Scripts (*.lkr)

Cancel
□√ Insert files with relative paths

12) Build the Project

This step will compile the source code and translate it onto an executable code (object code).
a) Select Project > Build All or Project > Make (or Press Function key F10).
b) On successful build, the debug files (with the file name extension .cod or .cof) will be

generated and loaded.
c) On the OUTPUT window, BUILD SUCCEEDED message will appear.

Step 3: Programming The PIC18F452 Microcontroller
We use micro-Engineering Labs Inc. s’ the melabs U2 Programmer.
6) Plug the melabs U2 Prgrammer to the PC USB port using a USB cable.
7) Insert the PIC 18F452 microcontroller device on to the Programmer carrier board.
8) Launch the programmer software, i.e., click on the melabs Programmer icon to open melabs

Programmer window.
9) Select the 18F452 microcontroller. Go to File > Open C:\pic18 directory. Select the c_ltc_1.c

program from the dialog box.

10) On the dialog box:
a) Go to View > Configuration. This opens ‘Open’ window for the melab Prog-

Configutation. On this window, Select/Set:
i) Oscillator to XT.
ii) Watchdog Timer to Enabled (Set ON)
iii) Power-up Timer to Disabled
iv) Code Protect to Off

b) Go to Program > Erase to erase the chip.
c) Go to Program > Program to load the object code on to the chip.
d) Go to Program > Verify to verify the object code is loaded on to the chip.

Proceedings of the 2010 ASEE Gulf-Southwest Annual Conference, McNeese State University Copyright©
2010, American Society for Engineering Education

14

Step 4: Testing the Circuit
Construct the circuit shown in the schematic on a solderless breadboard.
Insert the programmed PIC18F452 on to the circuit.
Power on and test the circuit.
Insert the programmed PIC18F452 microcontroller on to the circuit and test it.

References

[1] Muhammad M Baig & Rafiqul Islam: Problems And Intended Solutions In Teaching PIC
Microcontroller In EET Program; Publisher: ASEE Mid-Atlantic Conference Fall 2009.
[2] Han-Way Huang, PIC Microcontroller: An Introduction to Software & Hardware Interfacing,
Publisher: Thomson Delmar Learning, (2005).
[3] Myke Predko, Programming And Customizing The Pic Microcontroller, publisher: McGraw-Hill,
(2002).
[4] John Iovine, PIC Microcontroller Project Book , publisher: McGraw-Hill/TAB Electronics, 2005.
Microchip’s web site: www:microchip.com
[5] Myke Predko, Handbook of Microcontrollers, publisher: McGraw-Hill, (2004).
[6] Microchip, MPLALB C18 C Compiler User’s Guide, 2005.
[7] MicroEng, PICBasic PRO Compiler User’s Book

