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“What Works” in Engineering Education? A Meta-analysis of VaNTH/ERC 

Biomedical Engineering Modules 

 
Abstract 

 

 The Vanderbilt-Northwestern-Texas-Harvard/MIT Engineering Research Center  

(VaNTH/ERC) for Bioengineering Educational Technologies has undertaken a series of 

studies to examine the effects of instructional innovation on learning outcomes. In this 

paper we summarize the nature, scope and results of these assessments. In the spirit of 

identifying evidence-based practices in education, we present estimates of the overall and 

conditional effects from 28 studies and sub-studies reported in 19 evaluation studies. The 

results suggest that VaNTH-sponsored innovations are effective, although some of the 

effects may be exaggerated or understated due to technical and procedural problems. This 

paper identifies which effects are trustworthy and which require additional examination  

before they can be incorporated (or not) into the knowledge-base on “What Works” in 

biomedical engineering education.    

 
I. Introduction 

 

Established in 1999 with a grant from the National Science Foundation, the 

Vanderbilt-Northwestern-Texas-Harvard/MIT Engineering Research Center  

(VaNTH/ERC) for Bioengineering Educational Technologies is aimed at improving the 

short- and long-term learning outcomes of bioengineering education at many levels with 

a particular emphasis on undergraduates. To achieve this goal, the center has enlisted 

teams composed of faculty in bioengineering, learning sciences, learning technology and 

assessment and evaluation to develop innovative instructional strategies and to test their 

effectiveness relative to traditional instruction in bioengineering (See Harris, Bransford & 

Brophy
1
). These innovations are based on the model of learning and instruction described 

by Bransford, Brown & Cocking
2
 in a volume issued by the National Academy of 

Sciences entitled How People Learn: Brain, Mind, Experience, and School (popularly 

known as the “HPL model”). Using the HPL model to guide the creation of innovative 

instructional materials, over 60 modules and course enhancements have been developed 

within VaNTH covering a variety of bioengineering areas. This paper examines the 

quality of the evidence underlying VaNTH-sponsored studies and summarizes the 

quantitative effects of these innovations that have been derived from experimental and 

quasi-experimental evaluation efforts to date. 

 

A primary motivator behind this paper is to contribute to a relatively new global 

interest in identifying evidence-based practices (see Cottingham, Maynard & Stagner
3
, 

Slavin
4
). In doing so, we follow an evolving set of guidelines and practices that are being 

developed by the major organization responsible for conducting similar types of reviews. 

We have drawn from practices espoused by the Cochrane Collaboration (see 

http://www.cochrane.org) in medicine, the Campbell Collaboration in social and 

educational areas (see http://www.campbellcollaboration.org), the Institute of Education 

Sciences’ (IES) What Works Clearinghouse (see http://www.ed.gov/ies/whatworks/), and 

the Coalition for Evidence-based Practices (see hhtp://www.evidencebasedprograms.org).  
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For each of these organizations, a necessary first step is a review of the quality of the 

evidence underlying each study.  

 

In addition to serving as a update of the results reported earlier in Cordray, Pion, A. 

Harris & Norris
5
, this paper adds new information on the quality of the evidence 

underlying each study.  As with the prior analysis, we regard these results as preliminary 

estimates, pending additional reanalyses guided by advances in statistical practices. Final 

results will be presented later this year as part of a comprehensive summative appraisal of 

the impact of the VaNTH ERC project.  

 

II. Meta-analytic Methods 

 

Although the VaNTH/ERC educational innovations share a common pedagogical 

model (HPL), they represent a broad array of bioengineering topics (e.g., biomechanics, 

biotransport, optics, ethics). They have been developed by many different faculty at the 

partner institutions for college and high school students, and they represent single 

modules delivered as part of a course, collections of modules, and full-scale college 

courses. They use outcome measures that are designed to gauge the degree to which 

participants understand bioengineering principles and practices, a key objective of the 

HPL model (Schwartz et al.
6
). As such, it is not possible to use standardized learning 

outcomes.  Moreover, individual studies are, by necessity, limited to specific 

operationalizations of cause-effect relationships. An important set of inferences involve 

the generality of the results across types of students, materials, topics or content areas, 

and time. Further, conducting experimental tests of educational innovations in classroom 

settings often result in small-sample sizes for intervention and control conditions, making 

it difficult to detect effects (due to low statistical power).  

      

To summarize what has been learned from this diverse collection of innovations, 

it was necessary to capture consistent information about study content, procedures, and 

results. We use a particular method known as meta-analysis (e.g., Cook, Cooper, 

Cordray, Hartman, Hedges, Louis, & Mosteller
7
, Cooper & Hedges

8
,  Hedges & Olkin

9
, 

Lipsey & Wilson
10

) to quantitatively summarize the results of multiple studies. Although 

meta-analysis methods are used extensively in many areas (e.g., medicine, education, and 

job training), their application in engineering and in engineering education is almost non-

existent. While novel to engineering, they have been used to assess the cumulative effects 

of problem-based instruction (Colliver
11

, Dochy, Segers, Van den Bossche, & Gijbels
12

, 

Gijbels, Dochy, Van den Bossche & Segers
13

).  

 

Quality of evidence. Fundamental to claims that an educational innovation 

“works” (i.e., the learning outcome for the group exposed to the innovation is greater, on 

average, than that of participants exposed to traditional instruction) is the quality of the 

research design used to derive the relative effect. Consistent with the guidelines for 

identifying evidence-based educational practices, we first examined the quality of the 

research design used in each of the VaNTH-sponsored studies. Designs were classified 

into two broad categories: (1) randomized experiments; and (2) quasi-experiments. It is 

widely held that results from randomized experiments (where participants have been P
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assigned to the innovation and counterfactual conditions at random) are more trustworthy 

than designs that entail non-random assignment (e.g., Boruch
14

, Shadish, Cook & 

Campbell
15

).  Quasi-experiments are a class of research designs that resemble an 

experiment because they entail the manipulation of conditions and systematic 

measurement of outcomes but do not allocate participants to conditions at random 

(Campbell & Stanley
16

). Quasi-experiments vary in their ability to control the influence 

of rival explanations. As such, we distinguished two subclasses of quasi-experiments: 

those where the innovation and control conditions were based on cohorts of participants 

in the same (or comparable) institution and those quasi-experiments that were based on 

participants in intact classes from different institutions. The former is generally less 

susceptible to the influence of selection bias than the latter (see Shadish et al
15

).      

  

The effect size. To quantitatively synthesize the results of many diverse modules, 

a common metric for the results, the effect size or ES, was derived for each study result, 

where 

 ES =  (M
T
 - M

C
)/ SDpooled.; 

 M
T
 = Mean of the treatment or experimental group; 

 M
C 

= Mean of the control group; 

 SDpooled. = Pooled standard deviation of both groups. 

 

The effects size (ES) is the mean difference between innovation control 

conditions, normalized to the pooled standard deviation for each condition
a
  . 

Cohen
17

 asserts that effect sizes of 0.20, 0.50 and 0.80 can be interpreted as representing 

small, medium and large effects, respectively. These values are used as benchmarks for 

the interpretation of effect sizes. Statistical tests for the null hypothesis and tests for 

between study homogeneity are also used to evaluate results. A comprehensive treatment 

of these issues is provided by Cooper and Hedges
8
, Lipsey & Wilson

10
, and the extensive 

references included in both of the classic texts on the topic. 

 

Selecting studies for inclusion in the meta-analysis. Because claims of what works 

depend on identifying the most trustworthy studies, the focus of this paper is on the 

extent which the effects differ systematically depending on the research design that was 

used. Rather than making an a priori determination to use only those results that stem 

from well executed randomized experiments, we treat the decision about inclusion of 

study results based on different designs as an empirical matter.  

 

III. Description of the Studies 

 

Table 1 presents a brief summary of each of the 28 estimates derived from 19 

VaNTH/ERC studies that attempted to estimate the effectiveness of a given module or set 

of modules
b
. Comprehensive descriptions of the modules and the studies used to derive 

these effect sizes can be found at the VaNTH website (http://www.vanderbilt.vanth.org).   

 
a
 The calculation of effect sizes depends on the statistical model that was used in each study. The definition offered 

here is the most generic version. Lipsey and Wilson10 provide a thorough discussion of the derivation and analysis of 

effect size estimates.    
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Table 1: Study Characteristics, Topics and Preliminary Effect Sizes  
Study  Topic Design No. 

Modules 

Type of Measure N
C 

N
T
 Effect 

Size 

1 Virtual Biology Labs Exp
1 

2 KBQ 14 14   0.351 

2 Virtual Biology Labs, Iron 

Cross, Jumping Jack 

Exp
1 

3 KBQ 16 16   0.381 

3 Metabolism Exp
1 

1 KBQ 18 19   0.600 

4 Ethics and Adaptive 

Expertise 

Exp
1 

1 Adapt. Expertise 15 15   0.825 

5 Ultrasound Exp
1 

1 KBQ 22 21 -0.366 

6 Jumping Jack Exp
1 

1 Adapt. Expertise 10 11   0.766 

7 Matlab-based homework Exp
1 

1 KBQ 20 20   0.760 

8 Calorimetry Exp
1 

2 KBQ 30 47   0.435 

9 Bioreactor Q-Exp
2 

2 sections KBQ 11 11   0.650 

10 Microbial Kinetics Q-Exp
2 

1 KBQ 11 11   2.00* 

11 Spectral Analysis Q-Exp
2 

1 KBQ 24 22   0.693 

12 Capillary Filtration Q-Exp
2 

1 KBQ 39 46   0.377 

13 Homework-less course Q-Exp
2 

2 KBQ 69 39   0.361 

Biomechanics course 1 Q-Exp
2 

Full  Course KBQ ~50 ~50   0.680 

Biomechanics course 2 Q-Exp
2 

Full Course KBQ ~50 ~50   0.180 

Biomechanics course 3 Q-Exp
2 

Full Course KBQ ~50 ~50   0.490 

14 

Biomechanics course 4 Q-Exp
2
 Full Course KBQ ~50 ~50   0.230 

15 Metabolic flux Q-Exp
2 

1 KBQ 10 10   0.780 

16 Biotransport Q-Exp
2 

Full Course Adapt. Expertise 52 54   1.440 

17 Port Wine Stain Q-Exp
3 

3 sections KBQ 57 57   0.830 

Balance beam 1 Q-Exp
4 

1 Facts +KBQ 44 151   0.416 

ECG Q-Exp
4 

1 Facts +KBQ 62  85   0.764 

18 

Iron cross, imaging,  swim Q-Exp
4 

3 Facts +KBQ 99 12   2.00* 

ECG-Physics Q-Exp
4 

1 Facts+App+KBQ 47 37   1.060 

Balance beam 2 Q-Exp
4 

1 Facts+App+KBQ 15 19   0.853 

ECG-Biology Q-Exp
4 

1 Facts+App+KBQ 57 43   0.550 

Iron cross 2 Q-Exp
4 

1 Facts+App+KBQ 34 69   0.873 

19 

Image, Swim, Optics, 

Hemodynamics 

Q-Exp
4
 4 Facts+App+KBQ 14   6   2.00* 

Notes:
  1

true experimental design, with randomization to conditions; 
2 
Quasi-experimental design based on nonrandom enrollment in spring or fall courses (either 

intervention or control condition); 
3 
Quasi-experimental design with students as their own control in relevant and irrelevant 

conditions/outcomes; 
4
 Quasi-experimental design with students in intact classes, different schools.  

 

Eight of the estimates were derived from experimental studies; 11 estimates were 

obtained from studies employing the same/comparable institution cohort type of quasi-

experiment; and 9 of the estimates were derived from studies using intact classes as 

control conditions or another form of control (e.g., Study 17 using multiple dependent 

variables).   

__________ 
b
 Multiple estimates were derived from studies if the assessments involved independent samples of participants, 

otherwise an average effect size was derived across multiple outcomes or where a common control condition was used 

for two or more ESs. 
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In addition to the type of experimental or quasi-experimental research design that 

was used, these descriptions show that the modules/courses focused on a variety of  

bioengineering topics and that some topics were tested (replicated) multiple times. The 

studies differed in size, ranging from a total of 20 participants to nearly 200 participants. 

The statistical methods underlying the meta-analysis methods used here weight the effect 

size estimates by the precision of the individual estimate (sample size), so larger studies 

affect the aggregate estimate (the average effect size) more than smaller studies, all else 

considered.  

 

As noted earlier, a common or standardized outcome could not be used to assess 

educational outcomes across modules or courses. Rather, deep understanding of basic 

bioengineering knowledge was assessed through a combination of problem solving and 

performance transfer tasks. As shown in Table 1, these outcomes were scored with 

rubrics designed to assess the depth of knowledge and understanding through knowledge-

based questions (KBQ), weighted scores producing an index of adaptive expertise 

(variously defined), or as weighted composite effects (Facts+ Application+ KBQ).  

Effects are reported for each study or sub-study. In several cases (denoted with an “*”) 

the effect sizes exceeded conventional bounds. These effect estimates were winsorized 

(truncated) at a maximum value of ES=2.00.  

 

VI. Meta-analytic Results  

 

Table 1 presents evidence on the effectiveness of dozens of modules (from 19 

experimental or quasi-experimental studies). As shown in Table 2, for this set of VaNTH-

sponsored modules, the weighted average effect size is 0.644 standard deviation units 

(95% CI = 0.496 �0.792). That is, on average, the participants exposed to VaNTH-

sponsored modules or courses out-performed their counterparts (exposed to the same 

material but through traditional pedagogy) by about two-thirds of a standard deviation. 

Not surprising, the test of statistical significance (z = ES wt average/SE = 13.46) for this 

weighted estimate is highly significant; the weighted average is statistically different than 

0.  

 

Moreover, by Cohen’s norms
17

, this weighted average ES represents an effect that 

is solidly between a medium and large effect. Empirically, prior meta-analyses show that 

innovations produce effects that are on average in the small range (i.e., 0.25).  

____ 

 

 

Table 2. Overall Effects and Effects by Type of Design 
Study type Studies Estimates Weighted 

Average 

                95 % Confidence Intervals  

    ES     -.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 

Experiment 8 8 0.416                            ------X------ 

Cohort-based 

Quasi-experiment 

8 11 0.562                                     ----X---- 

Intact Class-based 

Quasi-experiment 

3 9 0.803                                              ----X----  

Overall 19 28 0.644                                           ---X--- 
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The effect of research design quality on the magnitude of the ES estimates. 

Additional analyses show that studies using higher quality designs (experiments) produce 

effects that are smaller (weighted average ES = 0.417, 95% CI = 0.188 �0.646) than 

studies using the cohort-based quasi-experimental design (weighted average ES = 0.562, 

95% CI = 0.419 �0.704). Studies using the intact classes to construct comparisons 

produced larger estimates (weighted average ES = 0.803, 95% CI = 0.655 � 0.951). All 

of the weighted averages are statistically different than zero at p <.001.   

 

V. Discussion and Future Directions 

 

Although this disparity in effects due to design quality is common in meta-

analytic studies (i.e., poorer designs produce biased effects), more careful examination of 

the studies suggests that design quality and treatment fidelity may be confounded. Some 

of the strongest interventions were studied with designs that appear, on the surface, to be 

weaker than the true experiments. Preliminary examination and reanalyses of some of the 

studies and sub-studies (e.g., the ECG –Physics sub-study from Study 19 in Table 2, one 

of the weaker quasi-experiments) shows that the groups are remarkably similar on pre-

test measures of knowledge and in gender/racial compositions. Here, the innovation was 

tested on 37 studies from four classes and the comparison group also contained 47 

students from four separate classes. As such, the overall statistical results are not accurate 

because students were nested within classes. This is a common problem in educational 

research that is only now being addressed with more advanced statistical methods (e.g., 

Hierarchical Linear Modeling). Before the final summative meta-analysis is undertaken, 

these studies will be reanalyzed.   

 

Returning to the design/fidelity confounding, some of the small effects produced 

by strong experimental designs may involve substantial infidelity in the implementation 

of the HPL model. For example, Studies 5 and 7 did not entail all the HPL elements. 

Instead, these studies investigated the influence of various forms of technology 

enhancements as their primary source of innovation. Other studies did not actively invoke 

all aspects of the Legacy Cycle model that was used in 15 of the 19 studies. Simultaneous 

consideration of the strength of the research design and fidelity of the intervention should 

provide more useful estimates of the underlying effects of this set of modules.   
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