
Paper ID #33409

A Comparison of Novice Coders’ Approaches to Reading Code: An
Eye-tracking Study

Dr. Geoffrey L. Herman, University of Illinois at Urbana-Champaign

Dr. Geoffrey L. Herman is a teaching associate professor with the Deprartment of Computer Science
at the University of Illinois at Urbana-Champaign. He also has a courtesy appointment as a research
assistant professor with the Department of Curriculum & Instruction. He earned his Ph.D. in Electrical
and Computer Engineering from the University of Illinois at Urbana-Champaign as a Mavis Future Faculty
Fellow and conducted postdoctoral research with Ruth Streveler in the School of Engineering Education
at Purdue University. His research interests include creating systems for sustainable improvement in
engineering education, conceptual change and development in engineering students, and change in faculty
beliefs about teaching and learning. He is a member of the Computing Research Association - Education
steering commitee.

Sofia Meyers, University of Illinois at Urbana-Champaign
Dr. Sarah-Elizabeth Deshaies, University of Illinois at Urbana-Champaign

©American Society for Engineering Education, 2021

1

Introduction and Literature Review
Considerable effort has been spent documenting students' misconceptions and difficulties

when learning to program, but much of this research has focused only on students' difficulties
and only after some formal instruction [1], [2]. Constructivist theories encourage us to consider
how we can help students construct their own knowledge with the experience and knowledge
they bring to our classrooms [3]. The overarching research project had many goals, however,
this paper will focus on just two main data-driven goals. The first is to understand what
productive knowledge experienced students (students who had taken at least three
programming courses) bring to code reading that complete novices (students who have never
programmed or studied programming before) may not have yet as measured through code-
reading accuracy, total reading times, and fixation heatmaps. The second goal is to explore
whether beacons (i.e., information rich portions of code) can be identified in eye-tracking studies
when participants are tracing code.

Eye tracking
Eye-tracking (using cameras to track the focal point of an individual's vision) has been used

to explore the cognitive processes involved in reading for over 40 years and has recently
expanded in scope from “traditional" reading to reading code. Reading can be broken down into
two distinct behaviors, fixations (moments where the eyes are relatively still and visual
information is obtained) and saccades (moments when the eyes move and no information can
be obtained by the reader). There are several types of time measures used within traditional
eye-tracking studies. One such measure is total reading time, this can be defined as the sum of
the fixation durations, or the total time it takes to read a sentence (or an area of interest). Often
this is the simplest measure to obtain and relates to the sum of the amount of time it takes to
process information and the attention given to the currently fixated object [4].

As individuals gain knowledge in a domain, their perception of domain problems also
change [5]. For example, chess experts see strategic collections of pieces rather than individual
pieces and physics experts focus on physics relevant details (i.e., is an object sliding or rolling)
rather than geometric shapes (i.e., is an object a ball or a box) [3]. Eye-tracking provides a great
moment-to-moment observation of these changes in perception and can reveal where experts
direct their attention [4].

For example, Madsen and colleagues illustrated the trajectory of balls by drawing the same
ball at different points in time at different points in space [6]. When asked to analyze the
diagram to answer a question about the ball's velocity, novices fixated on the absolute position
of the ball while experts fixated on the spacing between balls. This difference reveals a deeper
conceptual understanding of physics, because the spacing between balls indicates the change
in absolute position over a period of time (i.e., velocity) [6]. Similar differences between experts
and novices have been found in other domains. The finding is particularly striking because white
space normally encodes a lack of information and is easily ignored, but the experts found empty
space more interesting and information rich than drawings of the ball.

2

In computer science, eye-tracking studies have revealed similar differences between
experts and novices. Crosby, Scholtz, and Wiedenbeck found that experts were more likely to
fixate on beacons—information rich lines of code (e.g., function headers or common coding
conventions such as finding the middle element of an array) [7]. Similarly, prior studies have
found that expert programmers may take a longer time scanning a program to comprehend it,
but then focus on problem relevant portions of the code once they are identified. Crosby and
colleagues also found that experts focused on beacons longer than novices even though they
needed less time to initially comprehend the meaning and significance of those beacons [7].
They also found that more meaningful variable names helped novices more than experts to
identify beacons [7]. In these studies, expert programmers were either senior students or
industry programmers while novices were students who had taken an average of two terms of
programming. No studies have examined what information complete novices fixate on when
reading code for the first time.

Code reading
Code reading is held as an important early gateway into learning to program [8], [9], [2], [10-

11]. Reading and tracing code to determine its functionality is surprisingly difficult and reveals
that novices struggle both to accurately read code and to extract meaning from that code [2].
Xie and colleagues argue that programming should first teach students how to read/trace code
and then teach them how to comprehend common programming templates or plans [8]. These
templates could be seen as being connected to the idea of beacons, where certain common
coding patterns can help an expert more quickly identify the purpose or meaning of a line of
code. Based on studies that have suggested that tracing skills may play an important role in
helping students read code [9], some have proposed that early code reading should focus on
teaching students how to formally trace programs with promising results [10].

Research Questions
We seek to examine what knowledge complete novices bring to the programming domain

and whether beacons are a relevant construct in early learning of code reading. Our research
questions are as follows.

R1: How accurately does each group of novice programmers trace code snippets?
R2: In what ways do the code reading behavior of complete novices and experienced students
differ?
R3: To what degree do these differences indicate the importance of beacons in code reading
and the contexts in which they matter?

Methods
Because we wanted to better understand what knowledge students bring into code

reading/tracing tasks, we chose to interview complete novices and experienced students. We
defined complete novices as students who had never read computer code before, informally or

3

formally. We defined experienced students as students who had taken at least three
programming courses.

We chose to use C/Java for our interviews, because they are commonly taught as a first
programming language and were the languages that most experienced students were taught on
our campus. Pilot interviews revealed that complete novices struggled significantly with variable
declaration keyword abbreviations such as int, and specific function names such as printf
or system.out without interviewer intervention. We swapped the keyword int for integer
and replaced printf or system.out with display so that these keywords would not need to
be explained to the complete novices by the interviewer. Analysis of verbal protocols revealed
no confusion for either group about the meaning of these changes.

Interview Protocols
We used two separate but related interview protocols for this study. All protocols used the

same eight code snippets for eye tracking. These code reading tasks sought to examine
participants' understanding of the concepts of assignment, conditionals, and loops. Two tasks
focused on assignment, two tasks focused on only if-else conditionals, two tasks used a while
loop (one with a nested conditional, one without a nested conditional), and two tasks contained
for loops.

All assignment tasks focused on using multiple assignments where one variable's value was
overwritten and that newly overwritten value was used in a subsequent assignment (e.g., Fig. 1,
Problem 1). Conditional tasks assigned only an initial value to a variable and then asked
students to assess whether one numerical value was greater than or less than another (e.g.,
Fig. 1, Problem 2). while loops were constructed so that the termination condition was
achieved without incrementing by 1 each iteration (e.g., Fig. 1, Problem 7). for loops always
incremented an iterator by 1 from the initial value until reaching the terminating value (e.g., Fig.
1, Problem 4).

Fig. 1. Example code snippets from interview protocol. Problem 1 focuses on multiple assignments to
the same variable. Problem 2 focuses on simple numerical conditional comparisons. Problem 7 focuses
on while loops that do not increment by 1. Problem 4 focuses on for loops that do increment by 1.

Problem 1
1
2

3
4
5
6

7

integer cansInFridge;
integer cansInCase;

cansInFridge = 5;
cansInCase = 24;
cansInFridge = cansInFridge – 1;
cansInFridge = cansInFridge + cansInCase;

display(cansInFridge);

Problem 2

1

2
3
4
5
6
7

integer numEggs= 5;

if (numEggs< 2) {
 display(“Buy more eggs!”);
}
else {
 display(“Enjoy your omelet.”);
}

 Problem 7
1

2
3
4
5
6
7

integer pounds = 250;

while (pounds > 190) {
 display(pounds);
 pounds = pounds - 10;
}

display("You reached your goal!");

Problem 4

1

2
3
4
5
6
7

integer factorial = 1;
integer i;

for (i = 1; i < 5; i = i + 1) {
 factorial = factorial * i;
}

display(factorial);

4

Experienced Student (ES) Protocol
The participants’ eye tracking display presented slides that resembled the image in Fig. 2,

except without the answer in the Display Box. While their eyes were being tracked, experienced
students read all eight code snippets silently, announcing only what they thought would be
displayed in the Display box after the code snippet finished executing. Participants were
instructed to read the code snippets silently so that participants would not feel the need to
explain their reasoning, creating variances in reading times based on speaking speed or
verbosity of explanations but only on comprehension speed. After providing their answers to all
code-reading tasks, we retrospectively interviewed participants to ask how they determined their
answers. These retrospective interviews are analyzed in other publications. This protocol took
less than an hour.

Fig. 2. Participants were given a code snippet (left) and asked to explain why they thought the code
snippet produced the value shown on the Display box or predict what they thought would be displayed on
the Display box (right).

Complete Novice (CN) Protocol
This protocol was broken up into two sessions, each less than an hour long.
First Session: While their eye movements were being tracked, complete novices read four

code snippets (one from each category of task) silently before announcing what they thought
would be displayed. This data was used as a baseline measurement of code reading behavior.
After these initial code-reading tasks were completed, we performed a retrospective interview,
asking the participants how they determined their answers.

After this baseline measurement, we gave participants a brief, self-guided training exercise.
Participants were given eight new code snippets that were different from the snippets used
during the eye-tracking portion of the study but had the same distribution of code snippets. The
participants were shown the correct answer after the code executed (Fig. 2). Participants were
asked to explain why they thought the code produced the answers it did.

5

Second Session: After the training exercise, we performed the same eye-tracking study and
retrospective interview with the complete novices as with the experienced students. Four of the
code snippets were repeated from the baseline measurement to assess learning. Four of the
code snippets were new to the complete novices and assessed near transfer of learning.

Participants
A total of 102 participants (55 female, 43 male, 4 not disclosed) participated in the study.

Due to eye-tracker calibration issues, only 90 participants’ data were analyzed: 34 Experienced
Students (ES) (6 female, 26 male, 2 not disclosed), and 56 Complete Novices (CN) (43 female,
12 male, 1 not disclosed). ES participants were primarily computer science majors. CN
participants were primarily non-STEM majors. All participants were traditionally aged students at
a large, Midwestern Research University.

During the consent process, participants confirmed that they met the prerequisite conditions
for assignment to each group. Participants were compensated $30/hour for participating.

Apparatus
Eye-tracking data and audio was recorded with Tobii T120 eye-tracker running Tobii studio

3.4.7 software using standard I-VT filter. The eye-tracker was calibrated to each participant
individually. All participants were assigned a randomly generated ID to link eye-tracking data
with audio recordings. In accordance with IRB regulations, the recordings and .csv data files
were exported to a secure Box folder with each subfolder labeled with participant randomly
generated 5-digit ID and contained video, complete .csv data files, and audio recordings.

Results

Research Question 1
R1: How accurately does each group of novice programmers trace code snippets?

For research question 1, we tabulated participants' correct/incorrect answers by major
concept (assignment, conditional, iteration). For iteration questions, we also marked whether the
participants' answer revealed any indication that iteration had occurred. A qualitative analysis of
students' responses is explored in a different manuscript.

Table I

Percentage of correct responses on tracing tasks for complete novices and experienced students.
Percentage of correct responses on Pre-/Post- tasks were compared using Mann-Whitney U tests.

 Assignment Conditional while loop for loop
Complete Novices (PRE) 30% 78% 0% 0%
Complete Novices (POST) 64% 92% 2% 1%
p-value (PRE-/POST-) <0.001 <0.001 0.16 0.32
Cohen’s d 0.60 0.39 0.18 0.13
Experienced Students 100% 100% 100% 92%

6

The experienced students correctly traced all the code snippets, except for off-by-one errors

on the iteration “for loop” snippets (i.e., one too many iterations). For the Problem 4 code
snippet (Figure 1, Problem 4), 6 of 38 participants reported the answer as 5 factorial instead of 4
factorial.

During the baseline activity, roughly a third of the complete novices correctly traced the
assignment code snippets. This percentage doubled, rising significantly (p < 0.001, d = 0.60)
after the training exercise. These results reveal that many complete novices (at the university
level) bring useful intuitions to their first programming experience and that many just need a
small nudge to begin understanding how multiple assignments might work.

Similarly, roughly three quarters of complete novices demonstrated an understanding of
conditionals. This number significantly rose (p < 0.001, d = 0.39) to roughly 9 in 10 after the
training exercise. These results reveal that most novices bring an intuitive understanding of
conditionals, at least when comparing the relative magnitude of two numbers.

Complete novices did not demonstrate an intuitive understanding of iteration initially and the
training exercise did not significantly increase the number of students who understand them.
Two students revealed an accurate understanding of iteration on multiple code tracing tasks
only after the intervention, suggesting that some students may bring useful prior experiences
that prepare them to understand the idea of iteration with even the most modest of instruction.

Research Question 2
R2: In what ways does the reading behavior of complete novices and experienced students
differ?

The main dependent variables for this study are total reading time and fixation count. Total
reading time was chosen because it is used as an indicator of attention spent on text or code.
Fixation count was chosen because increased number of fixations alludes to increased
reiteration and/or re-fixation within the snippets of code. The predictors are Novice Type with
two levels (Experienced Student (ES) and Complete Novice (CN)) and line of code read (this
depended upon the problem analyzed, which ranged from 7 lines in Problem 1 to 15 lines for
Problem 3). Our main hypothesis is that there will be differences in the reading times between
the experienced students and the complete novices. We also suspect that reading times will be
more evenly spread across the lines of code for the complete novices, whereas the experienced
students will focus their attention on lines of code that are particularly informative to the output
to be displayed (i.e., indicating possible beacons) and will have increased number of fixations
on lines that require iteration. In other words, we expect the experienced students to take
advantage of the beacons within the code and spend more time in those areas as indicated
through total time reading and increased number of fixations.

For brevity, we focus our results on only the part of the protocol that was the same for all
participants: the entire eye-tracking protocol for the experienced student group and session 2 for
the two complete novice groups. Within that, we further focus on two of the eight coding
problems that were presented: the shortest and longest code snippets. Problem 1 was chosen
because it is a representative of most problems, in that at least one line of code contained a
significant difference in total reading time between the complete novice group and the

7

experienced student group. Problem 3 was chosen because it was the only problem in contrast
to this, whereby the experienced student group spent significantly longer time reading line 5.

One fixation above 3000 milliseconds was removed from the analysis due to participant
inattention. All eye-tracking data was processed through R [12] and ANOVA models were made
with base R. Interactions were explored with emmeans [13] and figures were made using
ggpubr [14] and ggplot2 in the tidyverse package [15]. The results are constrained to total gaze
duration times and fixation counts.

Analysis of Problem 1

Fig. 3. Problem 1 Heatmaps for each novice type, showing the relative number of times each population
fixated on each portion of the display. Experienced students spent significantly less time fixating on lines
5 and 6 (lines that re-used prior assignments) than the complete novices.

The fixations for both groups are qualitatively illustrated using heatmaps (Fig. 3). Heatmaps

for each population were created using ggoplot2 binhex. The heatmaps show that all
participants' attention were focused on lines 3 through 6. However, the complete novices
typically needed multiple fixations to comprehend the assignment operations on lines 5 and 6 as
illustrated by the purple and white hexagons on those lines. In contrast, the ES group did not
generally need multiple fixations to comprehend these lines as illustrated by the lack of purple
hexagons.

A two-way ANOVA was run on the total gaze duration with Novice Type and Area Of Interest
(AOI) as predictors, where the AOIs were defined as each line of code, in the model. The results
indicated a significant main effect of Novice type (F(1, 590) = 15.32, p < 0.001) and a main
effect of AOI (F(7, 590) = 23.52, p < 0.001). There was also a significant interaction between the
two effects (F(7, 590) = 2.83, p = 0.007). Indicating that the ES and CN spent different amounts
of time in total and that different amounts of time were required on different parts of the display.
A pairwise comparison revealed significant differences between groups on lines 5 and 6. On
Line 5, there was a significant difference between CN and ES (β = 1956, SE = 406, p < 0.001),
such that there was an estimated almost two seconds longer total gaze duration made by the
CN group on line 5 as compared to the ES group's total gaze time. On Line 6, there was a
significant difference between CN and ES (β = 1361, SE = 408, p =0.001), such that there was

8

an estimated second longer total gaze time made by the CN group on line 6 as compared to the
ES group's total gaze time.

A separate two-way ANOVA was run on the number of fixations made with each line of
interest as one predictor variable and with novice type as a second. The results indicated a
significant main effect of Novice Type (F(1, 590) = 15.16, p < 0.001) and a main effect of AOI
(F(7, 590) = 28.95, p < 0.001). The interaction was also significant (F(1, 590) = 2.99, p = 0.004).
This indicates that each group had a different number of fixations, some interest areas required
more fixations than others, and that each group had a different number of fixation in different
areas of interest.

Table II
Pairwise comparison between complete novices and experienced students for total gaze duration (ms)

and fixation count for Problem 1. The results from the Tukey Estimated Marginal means post-hoc
comparison is shown below.

 Total Gaze Duration (ms) Fixation Count

Comparison Complete vs. Experienced Students Complete vs. Experienced Students

AOI Estimate(SE) p-value Estimate(SE) p-value

L1 175 (471) 0.710 0.29 (1.97) 0.882

L2 184 (445) 0.679 0.80 (1.86) 0.668

L3 233 (448) 0.603 1.71 (1.87) 0.363

L4 249 (413) 0.547 0.68 (1.73) 0.694

L5 1956 (406)* <0.001 8.73 (1.70)* <0.001

L6 1361 (408)* 0.001 5.01 (1.70) * 0.003

L7 383 (471) 0.416 1.81 (1.97) 0.359

Table III
Problem 1 Mean and Standard Deviation of Total Gaze Duration and Fixation Counts. A two-way ANOVA

revealed a significant difference between the groups for the main effect (p < 0.001).
 Total Gaze Durations (ms) Fixations
AOI CN ES CN ES
L1 853.00 (634.79) 677.75 (619.45) 4.00 (2.04) 3.71 (3.14)
L2 1006.22 (699.82) 821.85 (637.06) 4.76 (3.29) 3.96 (2.92)
L3 1605.52 (1220.75) 1372.07 (975.08) 7.85 (5.80) 6.15 (4.14)
L4 2143.62 (1940.19) 1894 (1366.89) 9.68 (7.52) 9.00 (5.71)
L5 3972.25 (4070.23)* 2015.94 (1668.34)* 18.44 (16.47) * 9.71 (7.55) *
L6 3371.81 (3160.02)* 2010.65 (1197.14)* 15.69 (13.30)* 10.68 (6.07)*
L7 1099.31 (1074.72) 715.83 (697.43) 5.56 (4.52) 3.75 (3.11)

9

Table 2 outlines the pairwise comparison which revealed significant differences between
groups on lines 5 and 6. On line 5, the complete novices made significantly more fixations than
the ES group (β =8.73, SE = 1.70, p < 0.001). On line 6, the same pattern occurred with the
complete novices making significantly more fixations than the ES group (β = 5.01, SE = 1.70, p
= 0.003). This finding is similarly replicated in the total gaze duration analysis, such that the
increased number of fixations resulted in longer total reading times on line 5.

Analysis of Problem 3
Problem 3 (Fig. 4) was the longest code snippet with the most control structures.

1
2
3

4
5
6
7
8
9
10
11
12
13
14

15

integer running = 1;
integer waterBreaks= 0;
integer minutes = 0;

while (minutes < 20) {
 if(running == 1) {
 minutes = minutes + 4;
 running = 0;
 }
 else {
 minutes = minutes + 2;
 waterBreaks = waterBreaks + 1;
 running = 1;
 }
}

display(waterBreaks);

Fig. 4. Problem 3 from the eye-tracking study. This problem was the most complicated problem in the
study and assessed students’ understanding of iteration, conditionals, and assignment.

Fig. 5. Problem 3 Heatmaps for each novice type. Experienced students spent significantly more time
fixating on line 5 (the nested conditional) than the complete novices.

The heatmaps (Fig. 5) for Problem 3 show that both groups focused on lines 2 through 7.
However, the ES group gave the highest amount of attention to lines 4-6 (with significantly
longer gaze duration and fixation counts on line 5—a conditional that played a major role in
terminating the loop).

10

A two-way ANOVA for total reading times was created for Problem 3, the results of which
found a significant main effect of AOI (F(14, 963) = 15.58, p < 0.001) and a significant
interaction between AOI and Novice Type (F(15, 963) = 2.49, p = 0.003). This means that there
were several areas of interest that had longer fixation durations and that these areas of interest
had longer or shorter fixation durations depending upon the group. The pairwise comparison
(Table 4) revealed significant differences between groups on lines 1, 2, and 5. On line 1 there
was a significant difference between CN and ES (β = 782.8, SE = 405, p = 0.053) such that the
CN group had significantly longer total gaze durations on line 2 as compared to the ES group.
We found a similar group difference on line 2 (β = 1049.20, SE = 373, p = 0.005). However, on
line 5 there was the opposite effect, whereby the ES group was estimated to have longer total
gaze times as compared to the CN group (β = -912.3, SE = 962, p = 0.015).

A separate two-way ANOVA was created to explore the number of fixations made to each
line of code by the Novice Type for Problem 3. The results indicated a significant main effect of
AOI (F(14, 963) = 18.44, p < 0.001), and a significant interaction between AOI and Novice Type
(F(15, 950) = 2.42, p = 0.004). This main effect result pattern is similar to the total reading time
ANOVA, such that there were several areas of interest requiring more fixations, but that this
depended upon which group the participant was in. A pairwise comparison revealed significant
differences between groups on lines 1, 2, 3 and 5. On lines 1, 2 and 3, the CN group made
significantly more fixations than the ES group (Line 1: β = 3.59, SE = 1.78, p = 0.043; Line 2: β
= 5.88, SE = 1.64, p < 0.001; Line 3: β = 3.25, SE = 1.98, p = 0.048). On line 5, the opposite
pattern occurred whereby the ES group made significantly more fixations than the CN group (β
= -3.42, SE = 1.64, p = 0.037). The comparatively less time spent by the ES group on code
reading in general but comparatively more time reading the nested conditional supports the idea
that the ES group was obtaining information in a meaningful way.

Table IV

Pairwise comparison between complete novices and experienced students for Total Gaze Duration and
Fixation Count for Problem 3.

 Total Gaze Duration (ms) Fixation Count

Comparison Complete Novice vs.
Experienced Students

Complete Novices vs.
Experienced Students

AOI Estimate(SE) p-value Estimate(SE) p-value

L1 782.80 (405)* 0.054 3.59 (1.78)* 0.043

L2 1049.20 (373)* 0.005 5.88 (1.64)* < 0.001

L3 691.50 (373) 0.064 3.25 (1.64)* 0.048

L4 465.4 (374) 0.214 1.186 (1.64) 0.471

L5 -912.30 (373)* 0.015 -3.42 (1.64)* 0.037

L6 -657.00 (373) 0.079 -1.86 (1.64) 0.255

11

L7 -308.20 (395) 0.436 -1.66 (1.73) 0.338

L8 NA NA NA NA

L9 -25.80 (457) 0.955 -0.310 (2.01) 0.879

L10 171.60 (382) 0.653 1.46 (1.67) 0.384

L11 -581.30 (390) 0.136 -0.950 (1.71) 0.579

L12 -39.0 (432) 0.928 -0.125 (1.90) 0.948

L13 NA NA NA NA

L14 NA NA NA NA

L15 527.90 (409) 0.198 3.00 (1.80) 0.095

Table V
Problem 3 Mean and Standard Deviation of Total Gaze Durations and Fixation Counts. The ANOVA

revealed a significant difference between the populations for the main effect (p = 0.008). We exclude lines
that include only closing curly brackets since most participants never fixated on them.

 Total Gaze Durations (ms) Fixations
AOI CN ES CN ES
L1 1659.89 (1319.87)* 877.14 (842.54)* 8.17 (5.67) 4.57 (4.13)
L2 2575.02 (1582.39)* 1525.82 (765.86)* 13.41 (8.10) 7.53 (3.43)
L3 2492.26 (1730.06) 1800.74 (789.74) 12.63 (8.15) 9.38 (4.69)
L4 2829.70 (2063.19) 2364.26 (1327.57) 13.51 (9.56) 12.32 (6.49)
L5 2613.69 (2155.59)* 3526.00 (2687.14)* 12.52 (9.20) 15.94 (9.58)
L6 2581.02 (2562.23) 3238.00 (2140.45) 13.17 (11.65) 15.03 (8.23)
L7 1483.67 (1087.61) 1791.87 (1218.32) 7.20 (5.49) 8.87 (5.49)
L8 NA NA NA NA
L9 434.80 (338.62) 460.57 (439.26) 2.17 (1.63) 2.48 (1.63)
L10 2287.11 (2244.21) 2115.50 (2254.41) 11.49 (10.00) 10.03 (7.73)
L11 2181.80 (2052.63) 2763.13 (2704.34) 11.76 (10.41) 12.71 (8.82)
L12 759.88 (757.19) 798.92 (618.83) 4.00 (3.86) 4.12 (2.64)
L13 NA NA NA NA
L14 NA NA NA NA
L15 1323.85 (1535.73) 795.97 (727.14) 7.37 (7.67) 4.37 (3.50)

Research Question 3
R3: To what degree do these differences indicate the importance of beacons in code reading
and the contexts in which they matter?

Our data is inconclusive about the importance of beacons in code reading and more
research is needed. Our data does suggest some hints about when beacons are important,
particularly the differences in problem 3 from all other problems in the protocol. Problem 3 was
the longest, and most complicated, problem of the eight that the participants had to solve and
contained a loop with a nested conditional. Experienced students demonstrated an

12

understanding of the importance of this beacon by fixating on this line of code significantly more
frequently and for longer durations than the complete novice group. The increased number and
duration of fixations indicate that these fixations were not just simple checks on information,
rather they were deliberate moments of information processing. In all other problems (and even
those not reported in this paper), experienced students spent less time reading the code than
did the complete novices. We believe that this is due to the length and complexity of Problem 3
and that future studies should include longer snippets of code to further examine the potential
importance of beacons.

Limitations
The study relied almost exclusively on very simple code snippets, which helped us

understand how novices and beginner programmers might understand specific programming
constructs but limited our ability to investigate when/how beacons may be important.

While the whole population of the study had representation from male and female
participants, the ES and CN groups had dramatically different demographics, limiting our ability
to investigate any gender-based differences. Our study recruited primarily non-STEM-major
participants for the CN group, limiting our observations about what STEM-oriented complete
novices may have behaved but perhaps providing potential future insights for broadening
participation in computing.

Discussion and Conclusions
Programming has become a necessary skill in almost all domains and is particularly

necessary for Engineering students. It is imperative, then, that we investigate what skills and
knowledge students who have no prior formal coding experience bring to the learning process.
Our study provided evidence that college-aged, complete-novice programmers bring some
intuitive understandings about assignment and conditional operations. After a brief training
exercise (< 30 minutes with no formal instruction), a majority of the CN group were able to
correctly reason about multiple assignment calculations and nearly all were able to correctly
reason about basic conditionals. Assignment was notably trickier than conditional operators,
suggesting that colloquial knowledge of conditionals translates well into programming contexts,
but that the difference in meaning between assignment and equivalence for the ‘=’ sign is
troublesome. However, the behavior of assignment appears to be something that most
complete novices can discover inductively. Even though the complete novices, could reason
about these constructs correctly, they took longer to reason about both assignment and
conditional operations than more experienced students. The mechanisms for this increased
speed are not clear, but future studies into the role of beacons in code reading will certainly
need to consider the relative speed of code reading for different lines of code and not just
absolute speed of code reading.

In contrast with assignment and conditionals, few novices demonstrated any understanding
of iteration. Additionally, with the more complex code from Problem 3 that included conditionals
and iterations, the experienced students spent more time and needed more fixations to trace the
code. This difference suggests that the experienced students were actually iterating through

13

Problem 3 to trace it, while the complete novices were not. These findings further suggest that
for most of our code snippets, the concept of beacons is not particularly helpful—the code is just
too simple. In contrast, with the more complicated Problem 3, we begin to see that the more
experienced students spent more time fixating on the nested conditional, suggesting that the
conditional may have played a central beacon role in understanding and tracing the code.

The experienced students spent significantly less time on lines 2 and 3 (variable
initializations) than the complete novices in Problem 3 but spent significantly more time on the
loop conditional, suggesting that the difference in importance for the conditionals may have
been more stark if we had analyzed the relative amount of time participants spent on each line
of code rather than the absolute amount of time. Similarly, the number of fixations is inadequate
to assess whether the experienced students actually iteratively through or traced the code and
the complete novices did not. Future work can explore using scanpath analyses and
proportional fixation durations to more deeply interrogate these questions.

This study suggests that the use of beacons for studying novice code-reading behavior
requires a certain threshold of complexity before being useful. Future work on the productive
knowledge of complete novices may need to focus more on how those novices search for
information and the useful analogies or experiences that they bring to their early learning
experiences.

References
[1] L. Kaczmarczyk, E. Petrick, J. P. East, and G. L. Herman, “Identifying student
misconceptions of programming,” in Proceedings of the Forty-First ACM Technical Symposium
on Computer Science Education, 2010, Conference Proceedings, pp. 107–111.
[2] R. Lister, B. Simon, E. Thompson, J. L. Whalley, and C. Prasad, “Not seeing the forest
for the trees: Novice programmers and the solo taxonomy,” in Proceedings of the 11th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Education, ser.
ITICSE ’06. New York, NY, USA: Association for Computing Machinery, 2006, p. 118–122.
[Online]. Available: https://doi.org/10.1145/1140124.1140157
[3] J. D.Bransford, A. L.Brown, and R. R.Cocking, editors, How People Learn: Brain, Mind,
Experience, and School: Expanded Edition. Washington, DC: The National Academies Press,
2000. [Online]. Available: https://www.nap.edu/catalog/9853/how-people-learn-brain-mind-
experience-and-school-expanded-edition
[4] K. Rayner, “Eye movements and attention in reading, scene perception, and visual
search,” The Quarterly Journal of Experimental Psychology, vol. 62, no. 8, pp. 1457–1506,
2009. [Online]. Available: https://doi.org/10.1080/17470210902816461
[5] M. Hegarty, Multimedia learning and the development of mental models. Cam- bridge:
Cambridge University Press, 2014, p. 673–702.
[6] A. M. Madsen, A. M. Larson, L. C. Loschky, and N. S. Rebello, “Differences in visual
attention between those who correctly and incorrectly answer physics problems,” Phys. Rev. ST
Phys. Educ. Res., vol. 8, p. 010122, May 2012. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevSTPER.8.010122

14

[7] M. Crosby, J. Scholtz, and S. Wiedenbeck, “The roles beacons play in comprehension
for novice and expert programmers,” 07, 2002.
[8] B. Xie, D. Loksa, G. L. Nelson, M. J. Davidson, D. Dong, H. Kwik, A. H. Tan, L. Hwa, M.
Li, and A. J. Ko, “A theory of instruction for introductory programming skills,” Computer Science
Education, vol. 29, no. 2-3, pp. 205–253, 2019. [Online]. Available:
https://doi.org/10.1080/08993408.2019.1565235
[9] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M. Lindholm,
R. McCartney, J. E. Moström, K. Sanders, O. Seppälä, B. Simon, and L. Thomas, “A multi-
national study of reading and tracing skills in novice programmers,” in Working Group Reports
from ITiCSE on Innovation and Technology in Computer Science Education, ser. ITiCSE-
WGR ’04. New York, NY, USA: Association for Computing Machinery, 2004, p. 119–150.
[Online]. Available: https://doi.org/10.1145/1044550.1041673
[10] M. Hertz and M. Jump, “Trace-based teaching in early programming courses,” in
Proceeding of the 44th ACM Technical Symposium on Computer Science Education, ser.
SIGCSE ’13. New York, NY, USA: Association for Computing Machinery, 2013, p. 561–566.
[Online]. Available: https://doi.org/10.1145/2445196.2445364
[11] K. Cunningham, S. Blanchard, B. Ericson, and M. Guzdial, “Using tracing and sketching
to solve programming problems: Replicating and extending an analysis of what students draw,”
in Proceedings of the 2017 ACM Conference on International Computing Education Research,
ser. ICER ’17. New York, NY, USA: Association for Computing Machinery, 2017, p. 164–172.
[Online]. Available: https://doi.org/10.1145/3105726.3106190
[12] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation
for Statistical Computing, Vienna, Austria, 2013. [Online]. Available: http://www.R-project.org/
[13] R. Lenth, emmeans: Estimated Marginal Means, aka Least-Squares Means, 2020, r
package version 1.4.7. [Online]. Available: https://CRAN.R-project.org/package= emmeans
[14] A. Kassambara, ggpubr: ’ggplot2’ Based Publication Ready Plots, 2020, r package
version 0.4.0. [Online]. Available: https://CRAN.R-project.org/package=ggpubr
[15] H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François,
G. Grolemund, A. Hayes, L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller,
S. M. Bache, K. Müller, J. Ooms, D. Robinson, D. P. Seidel, V. Spinu, K. Takahashi,
D. Vaughan, C. Wilke, K. Woo, and H. Yutani, “Welcome to the tidyverse,” Journal of Open
Source Software, vol. 4, no. 43, p. 1686, 2019.

	Introduction and Literature Review
	Eye tracking
	Code reading
	Research Questions

	Methods
	Interview Protocols
	Experienced Student (ES) Protocol
	Complete Novice (CN) Protocol

	Participants
	Apparatus

	Results
	Research Question 1
	Research Question 2
	Analysis of Problem 1
	Analysis of Problem 3

	Research Question 3

	Limitations
	Discussion and Conclusions
	References

